Subduction-Transition Zone Interaction: a Review
Research Paper THEMED ISSUE: Subduction Top to Bottom 2 GEOSPHERE Subduction-transition zone interaction: A review Saskia Goes1, Roberto Agrusta1,2, Jeroen van Hunen2, and Fanny Garel3 1Department of Earth Science & Engineering, Royal School of Mines, Imperial College, London SW7 2AZ, UK GEOSPHERE; v. 13, no. 3 2Department of Earth Sciences, Durham University, Science Labs, Durham DH1 3LE, UK 3Géosciences Montpellier, Université de Montpellier, Centre national de la recherche scientifique (CNRS), 34095 Montpellier cedex 05, France doi:10.1130/GES01476.1 9 figures ABSTRACT do not; (2) on what time scales slabs are stagnant in the transition zone if they have flattened; (3) how slab-transition zone interaction is reflected in plate mo- CORRESPONDENCE: s .goes@ imperial .ac .uk As subducting plates reach the base of the upper mantle, some appear tions; and (4) how lower-mantle fast seismic anomalies can be correlated with to flatten and stagnate, while others seemingly go through unimpeded. This past subduction. CITATION: Goes, S., Agrusta, R., van Hunen, J., variable resistance to slab sinking has been proposed to affect long-term ther- Over the past 20 years since the last Subduction Top to Bottom volume and and Garel, F., 2017, Subduction-transition zone inter- action: A review: Geosphere, v. 13, no. 3, p. 1– mal and chemical mantle circulation. A review of observational constraints several reviews of subduction through the transition zone (Lay, 1994; Chris- 21, doi:10.1130/GES01476.1. and dynamic models highlights that neither the increase in viscosity between tensen, 2001; King, 2001; Billen, 2008; Fukao et al., 2009), information about upper and lower mantle (likely by a factor 20–50) nor the coincident endo- the nature of the transition zone and our understanding of how slabs dynami- Received 6 December 2016 thermic phase transition in the main mantle silicates (with a likely Clapeyron cally interact with it has increased substantially.
[Show full text]