Shaping with

Yuri S. Kivshar Nonlinear Physics Centre, Australian National University, Canberra, Australia St. Petersburg University of Information Technologies, Mechanics & , Russia

http://wwwrsphysse.anu.edu.au/nonlinear/

http://phoi.ifmo.ru/metamaterials// Our group in Canberra

• www.rsphysse.anu.edu.au/nonlinear

Our team in Canberra August 2013 Experimental Photonics 15 research fellows A/Prof. Neshev 14 PhD students 4 visiting fellows Theoretical 2 visiting students Photonics A/Prof. Sukhorukov Matter waves & THz Dr. Ostrovskaya metamaterials Dr. Shadrivov

Plasmonics and Singular fields nanoantennas Dr. Desyatnikov Dr. Miroshnichenko www.rsphysse.anu.edu.au/nonlinear Canberra: Selected research activities http://wwwrsphysse.anu.edu.au/nonlinear/ BEC condensates Nanoantennas

Optical vortices

Photon pair generation Nonlinear metamaterialsMetamaterials and quantum walks Laboratory of Metamaterials in National Research University of Information Technologies, Mechanics and Optics, St. Petersburg, Russia

Financial support: Ministry of Science and Education of Russian Federation Our group in St. Petersburg

http://phoi.ifmo.ru/metamaterials// Other recent research activities: St. Petersburg Microwave antennas http://phoi.ifmo.ru/metamaterials//

Magnetoelastic metamaterials

Purcell effect

Transmission lines: hyperbolic metamaterials Graphene nanophotonics Outline of today’s talk

• Introduction: the concepts & properties • Backward waves • Invisibility cloaking • Tunable properties of metamaterials • Nonlinear metamaterials • Novel strategies: circuitry Light interaction with matter

• Interaction depends on ε and μ of the medium • ε characterizes response to the • μ characterizes response to the magnetic field

http://wwwrshysse.anu.edu.au/nonlinear Natural materials

• Transparent

• Non-transparent

http://wwwrshysse.anu.edu.au/nonlinear Electromagnetic properties of materials

• Response to the is determined by internal structure of the material • For large any material can be described by ε and μ • Classical Macroscopic Electrodynamics

1 B curl E  ~~ tc   ED 1 D ~~ curl H    HB tc http://wwwrshysse.anu.edu.au/nonlinear Natural materials and metamaterials ω 2 k 2  εμ c 2  RHM     0,0 0,0    0,0   0,0

LeftHandedMaterials

http://wwwrshysse.anu.edu.au/nonlinear The first Paper on Left-Handed Materials

• Viktor G.Veselago

• The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ. Soviet Physics Uspekhi 10 (4), 509-514 (1968)

http://wwwrshysse.anu.edu.au/nonlinear    Ek  H Left-handed waves c    Hk  E c   • If   0,0 then  ,, kHE  is a right set of vectors:  E   k H

  • If   0,0 then  ,, kHE  is a left set of vectors:   E k  H http://wwwrshysse.anu.edu.au/nonlinear Energy flow in left-handed waves  c  • Energy flow (): S  HE  4

 Conventional (right-handed) medium    E    kS k S    H gr VV ph

   Left-handed medium   kS  E   k S   gr VV ph

H http://wwwrshysse.anu.edu.au/nonlinear Refraction of light at the LH/RH interface

 Hi  H    r E kr RH i ki  Er Snell’s law: 1  0ε    1 0μ sin n2  22 sin n2  22   ψsin ψsin n1 n1  11

22 0ε 0ε   ψ 0μ 0μ 22  kt   n 2   22 LHRH Ht Ht  Et  Et kt http://wwwrshysse.anu.edu.au/nonlinear Negative refraction

• Negative refraction is a property of backward waves and it has been observed in many materials:  Photonic crystals  Anisotropic media Materials with  Left-handed materials

LHM - LHM are materials with

negative refraction negative refraction - Not all materials with negative refraction are LHM

http://wwwrshysse.anu.edu.au/nonlinear Positive vs. negative refraction

http://wwwrshysse.anu.edu.au/nonlinear Negative refraction—back to 1942

Mandelshtam, 1942 “Lectures about waves”

http://wwwrshysse.anu.edu.au/nonlinear Backward waves: Manchester, 1904

Sir Horace Lamb : 1849-1934 Sir Arthur Schuster: 1851-1934 Professor of Mathematics Professor of Physics

http://wwwrshysse.anu.edu.au/nonlinear Unusual lenses

LH lens does not have a diffraction resolution limit Improved resolution is due to the surface waves

• V. G. Veselago, Soviet Physics Uspekhi 10 (4), 509-514 (1968) • J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)

http://wwwrshysse.anu.edu.au/nonlinear Right- and left-handed water

http://wwwrshysse.anu.edu.au/nonlinear How to make a left-handed material ?

http://wwwrshysse.anu.edu.au/nonlinear Magnetic response of a gold ring

H

M

Split-Ring Resonator M can produce strong negative magnetic response

http://wwwrshysse.anu.edu.au/nonlinear D. R. Smith and S. Schultz, UCSD

Concept of metamaterials

magnetic atom

electric atom D. R. Smith et al, UCSD

http://wwwrshysse.anu.edu.au/nonlinear Periodic structures

  a   a

Continuous medium (Effective medium)

http://wwwrshysse.anu.edu.au/nonlinear Examples of metamaterials

http://wwwrshysse.anu.edu.au/nonlinear • Now we can engineer ‘atoms’ for artificial materials with desired properties – what can we do with them?

• Can we make an invisibility cloak?

http://wwwrshysse.anu.edu.au/nonlinear Principle of invisibility cloak

• Guide light around the object, so that it appears on the other side of the object unperturbed.

http://wwwrshysse.anu.edu.au/nonlinear How does it work

• Complex mathematical approach ‘Transforming Space’ • Challenging manufacturing requirements • The first microwave cloak (by D. Smith)

D. Schurig et al, Science 314, 977 (2006)

http://wwwrshysse.anu.edu.au/nonlinear Earlier suggestions: 1961

L. S. Dolin, Izv. VUZov Radiofizika 4, 964-967 (1961)

http://wwwrshysse.anu.edu.au/nonlinear Cloaks of a complex form

• The transformation are used to find the fields inside the cloak

Coordinate transformation gives a recipe for creating the cloak

1 x m ~~ x n ~mn   mn g xa xb

1 x m ~~ x n ~mn  mn g xa xb

and the field distribution in the cloak

k ~ xk ~ x E  E Hi  Hk i ~x i k ~x i N.A. Zharova, I.V. Shadrivov, A.A. Zharov, Yu.S. Kivshar (2008)

http://wwwrshysse.anu.edu.au/nonlinear “Invisibility” means “publicity”

“Herald Sun”: March 2008 http://wwwrshysse.anu.edu.au/nonlinear Different approaches to cloaking

Carpet Cloak: On a surface -p p

D. Smith, APL (2008) U. Leonhardt, Science (2009)

Jensen Li & Pendry, PRL (2008) R. Liu, C. Ji, and D. Smith, Science (2009)

N. Engheta, PRL (2008) Smolyaninov,&Shalaev PRL (2009) http://wwwrshysse.anu.edu.au/nonlinear Metamaterials: Hypes and highlights

Optical Magnetism NegativeOptical Metamaterial Phenomena Cloaking

Linden et al., Science (2004) Valentine et al., Nature (2008) Pendry et al., Science (2006) Optical Circuits Hyperlens Chirality

Engheta, Science (2007) Fang et al., Science (2005) Liu et al., Science (2007) Gansel et al. Science (2009)

Current: Optical properties are fixed at the time of fabrication

Future: Active, tunable & reconfigurable metamaterials 36 Metamaterials: control of ε & μ

artificial metamaterial Two independent channels for control of Light electric and magnetic properties of light

Negative refraction Perfect absorber Unidirectional x n  

Veselago, Sov Phys Uspekhi (1968) z Pendry, Phys Rev Lett (2000) y λ=1.55 µm Liu et al. PRL 104, 207403 (2010) Liu et al., ACS Nano 6, 5489 (2012) Nonlinear response in metamaterials

)1( )2( )3( P 0  E   : EE   EEE  

)1( )2( )3( M 0  m H   m : HH  m HHH    j  2 H  + +E + g ~ EC g  g HE )( - - -  j Zharov et al., PRL 91, 037401 (2003)

2 2 ퟐ ퟐ ퟐ 푃 ~ 휒 푒푒푒퐸푞퐸푟 + 흌 풆풎풎퐻푞퐻푟 + 흌 풆풎풆퐻푞퐸푟 + 흌 풆풆풎퐸푞퐻푟 푞,푟 2 2 ퟐ ퟐ ퟐ 휇0푀 ~ 휒푚푚푚 퐻푞퐻푟 + 흌 풎풆풆퐸푞퐸푟 + 흌 풎풎풆퐻푞퐸푟 + 흌 풎풆풎퐸푞퐻푟 푞,푟 Two independent channels for control (enhancement) of nonlinearity or emission: electric and magnetic Why nonlinear metamaterials

Frequency

0 Magnetic permeability

Phys. Rev. Lett. 91, 037401 (2003) http://wwwrshysse.anu.edu.au/nonlinear Nonlinearity-induced transparency

Optics Express 13 1291 (2005)

http://wwwrshysse.anu.edu.au/nonlinear Nonlinear metamaterial for

• Nonlinear electronic components provide required response • Second and third order nonlinear response  shift  Harmonic generation

http://wwwrshysse.anu.edu.au/nonlinear Nonlinear magnetic metamaterials

Induced transmission Suppressed transmission

http://wwwrshysse.anu.edu.au/nonlinear Nonlinearity-suppressed transmission

http://wwwrshysse.anu.edu.au/nonlinear Nonlinearity-induced transparency

http://wwwrshysse.anu.edu.au/nonlinear Optical metamaterials in Canberra Fishnet metamaterials Regular and disordered Negative Index @ 1.45m lattices of meta-atoms

Magnetic Metamaterials, @ 1.3m

Magnetic resonance

Liquid crystal tuning and switching

Electro-optical mode switching in SRR metamaterials:

Liquid-crystal cell Experimental spectra

Functional metasurfaces

Voltage ON Numerics • Switching mechanism:

E

Voltage OFF Numerics Towards metamaterial circuitry: Hybrid fabrication

I. Staude et al, Adv Mat (2013) Optical characterization: magnetic resonance

I. Staude et al, Adv Mat (2013) All-Dielectric Nanophotonics

http://wwwrsphysse.anu.edu.au/nonlinear/ http://phoi.ifmo.ru/metamaterials// Electric and magnetic response of nanoparticles

Metal nanoparticle Metal split-ring with electric response with magnetic response

Dielectric nanoparticle with magnetic response Experiment: Si nanoparticles

A. Kuznetsov et al, Sci. Rep. (2012) A. Evlyukhin et al Nano Lett (2012) Optics in 2012

Optics & Photonics News, December 2012 Opportunities with metamaterials Dispersion engineering Miniaturization Strong Field Localization   E 2

Electrical Common Materials Plasma   Negative- Magnetic Index Plasma Materials

Materials Devices Applications Artificial Magnetism Smaller Antennas Thinner Negative Index Sensors Lightweight Absorbers Zero-index

54

Summary • Novel approaches for controlling light with nanostructured matter--metamaterials • Nonlinear effects in metamaterials • Novel ideas for metamaterial integration • New trends-- functional metadevices and all- dielectric nanophotonics