Hyperbolic Metamaterial Antenna for Second- Harmonic Generation Tomography

Total Page:16

File Type:pdf, Size:1020Kb

Hyperbolic Metamaterial Antenna for Second- Harmonic Generation Tomography Hyperbolic metamaterial antenna for second- harmonic generation tomography Paulina Segovia,1,2,5 Giuseppe Marino,1,5 Alexey V. Krasavin,1,5 Nicolas Olivier,1 Gregory A. Wurtz,1,3 Pavel A. Belov,4 Pavel Ginzburg,1,2,* and Anatoly V. Zayats1 1Department of Physics, King’s College London, Strand, London WC2R 2LS, UK 2Currently with the School of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel 3Currently with the Department of Physics, University of North Florida, Jacksonville Florida 32224, USA 4National Research University of Information Technologies, Mechanics and Optics (ITMO), St. Petersburg 197101, Russia 5Contributed equally * [email protected] Abstract: The detection and processing of information carried by evanescent field components are key elements for subwavelength optical microscopy as well as single molecule sensing applications. Here, we numerically demonstrate the potential of a hyperbolic medium in the design of an efficient metamaterial antenna enabling detection and tracking of a nonlinear object, with an otherwise hidden second-harmonic signature. The presence of the antenna provides 103-fold intensity enhancement of the second harmonic generation (SHG) from a nanoparticle through a metamaterial-assisted access to evanescent second-harmonic fields. Alternatively, the observation of SHG from the metamaterial itself can be used to detect and track a nanoparticle without a nonlinear response. The antenna allows an optical resolution of several nanometers in tracking the nanoparticle’s location via observations of the far-field second-harmonic radiation pattern. ©2015 Optical Society of America OCIS codes: (160.3918) Metamaterials; (180.4315) Nonlinear microscopy; (190.2620) Harmonic generation and mixing. References and links 1. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999). 2. Z. Zalevsky and D. Mendlovic, Optical Superresolution (Springer, 2004). 3. V. A. Podolskiy and E. E. Narimanov, “Near-sighted superlens,” Opt. Lett. 30(1), 75–77 (2005). 4. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). 5. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006). 6. W. Yan, N. A. Mortensen, and M. Wubs, “Hyperbolic metamaterial lens with hydrodynamic nonlocal response,” Opt. Express 21(12), 15026–15036 (2013). 7. L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015). 8. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012). 9. A. N. Poddubny, P. A. Belov, P. Ginzburg, A. V. Zayats, and Y. S. Kivshar, “Microscopic model of Purcell enhancement in hyperbolic metamaterials,” Phys. Rev. B 86(3), 035148 (2012). 10. W. Yan, M. Wubs, and N. A. Mortensen, “Hyperbolic metamaterials: nonlocal response regularizes broadband supersingularity,” Phys. Rev. B 86(20), 205429 (2012). 11. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009). 12. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007). 13. D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012). #249227 Received 2 Sep 2015; revised 22 Oct 2015; accepted 27 Oct 2015; published 17 Nov 2015 (C) 2015 OSA 30 Nov 2015 | Vol. 23, No. 24 | DOI:10.1364/OE.23.030730 | OPTICS EXPRESS 30730 14. A. Schilling, J. Schilling, C. Reinhardt, and B. Chichkov, “A superlens for the deep ultraviolet,” Appl. Phys. Lett. 95(12), 121909 (2009). 15. A. V. Zayats and V. Sandoghdar, “Apertureless near-field optical microscopy via local second-harmonic generation,” J. Microsc. 202(1), 94–99 (2001). 16. S. Takahashi and A. V. Zayats, “Near-field second-harmonic generation at a metal tip apex,” Appl. Phys. Lett. 80(19), 3479–3481 (2002). 17. P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003). 18. L. Sacconi, D. A. Dombeck, and W. W. Webb, “Overcoming photodamage in second-harmonic generation microscopy: real-time optical recording of neuronal action potentials,” Proc. Natl. Acad. Sci. U.S.A. 103(9), 3124–3129 (2006). 19. I. I. Smolyaninov, A. V. Zayats, and C. C. Davis, “Near-field second harmonic generation from a rough metal surface,” Phys. Rev. B 56(15), 9290–9293 (1997). 20. A. V. Zayats, T. Kalkbrenner, V. Sandoghdar, and J. Mlynek, “Second-harmonic generation from individual surface defects under local excitation,” Phys. Rev. B 61(7), 4545–4548 (2000). 21. D. de Ceglia, M. A. Vincenti, S. Campione, F. Capolino, J. W. Haus, and M. Scalora, “Second-harmonic double- resonance cones in dispersive hyperbolic metamaterials,” Phys. Rev. B 89(7), 075123 (2014). 22. A. D. Neira, N. Olivier, M. E. Nasir, W. Dickson, G. A. Wurtz, and A. V. Zayats, “Eliminating material constraints for nonlinearity with plasmonic metamaterials,” Nat. Commun. 6, 7757 (2015). 23. W. Dickson, S. Beckett, C. McClatchey, A. Murphy, D. O’Connor, G. A. Wurtz, R. Pollard, and A. V. Zayats, “Hyperbolic polaritonic crystals based on nanostructured nanorod metamaterials,” Adv. Mater. 27(39), 5974– 5980 (2015). 24. H. J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89(26), 261102 (2006). 25. N. Vasilantonakis, M. E. Nasir, W. Dickson, G. A. Wurtz, and A. V. Zayats, “Bulk plasmon-polaritons in hyperbolic nanorod metamaterial waveguides,” Laser Photonics Rev. 9(3), 345–353 (2015). 26. J. Stratton, Electromagnetic Theory (McGraw-Hill, 1941). 27. G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Multipolar second-harmonic generation in noble metal nanoparticles,” J. Opt. Soc. Am. B 25(6), 955–960 (2008). 28. J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83(20), 4045–4048 (1999). 29. J. I. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit,” J. Opt. Soc. Am. B 21(7), 1328–1347 (2004). 30. E. V. Makeev and S. E. Skipetrov, “Second harmonic generation in suspensions of spherical particles,” Opt. Commun. 224(1-3), 139–147 (2003). 31. G. Marino, P. Segovia, A. V. Krasavin, P. Ginzburg, N. Olivier, G. A. Wurtz, and A. V. Zayats, “Second- harmonic generation from hyperbolic plasmonic nanorod metamaterial slab,” http://arxiv.org/abs/1508.07586. 32. P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014). 33. D. de Ceglia, M. A. Vincenti, C. De Angelis, A. Locatelli, J. W. Haus, and M. Scalora, “Role of antenna modes and field enhancement in second harmonic generation from dipole nanoantennas,” Opt. Express 23(2), 1715– 1729 (2015). 34. C. Forestiere, G. Iadarola, G. Rubinacci, A. Tamburrino, L. Dal Negro, and G. Miano, “Surface integral formulations for the design of plasmonic nanostructures,” J. Opt. Soc. Am. A 29(11), 2314–2327 (2012). 1. Introduction A key challenge in microscopy is spatial resolution, mediating the relation between real features of an object and its observed image. In optical microscopy, a complete set of electromagnetic modes including the evanescent ones is required to reconstruct a perfect image. Evanescent modes, however, decay in the vicinity of the object before being detected in the far-field, giving rise to the diffraction limit [1]. Among various approaches for resolution improvement [2], the use of nanostructured composites (metamaterials) is beneficial, enabling efficient manipulation of evanescent fields components in order to reconstruct the image of an object with the resolution limited only by a particular realization of the metamaterial, e.g., its inherent material losses [3]. While superlenses [4] do not change the decaying nature of evanescent components, lenses made with materials exhibiting hyperbolic dispersion (hyperlenses) [5,6] convert them in propagating modes detectable in the far-field. This near-to-far field transformation is enabled by the hyperbolic dispersion of the medium which occurs in uniaxial crystals with different signs of the longitudinal and transverse components of the permittivity tensor [7]. Such dispersion also gives rise to #249227 Received 2 Sep 2015; revised 22 Oct 2015; accepted 27 Oct 2015; published 17 Nov 2015 (C) 2015 OSA 30 Nov 2015 | Vol. 23, No. 24 | DOI:10.1364/OE.23.030730 | OPTICS EXPRESS 30731 enhanced spontaneous decay rates of nearby emitters [8–10]. Hyperbolic metamaterials can be based on, e.g., arrays of vertically aligned nanorods [11] or layered metal-dielectric structures [8]. They have already been used to demonstrate improved resolution in linear optical microscopy [12–14]. These microscopy techniques,
Recommended publications
  • Calibrating Evanescent-Wave Penetration Depths for Biological TIRF Microscopy
    Oheim et al. (2019) TIRF calibration Calibrating evanescent-wave penetration depths for biological TIRF microscopy Short title: TIRF image quantification Martin Oheim, *,†,‡,1 *, Adi Salomon, ¶,2 Adam Weissman, ¶ Maia Brunstein, *,†,‡,§ and Ute Becherer£ * SPPIN – Saints Pères Paris Institute for the Neurosciences, F-75006 Paris, France; † CNRS, UMR 8118, Brain Physiology Laboratory, 45 rue des Saints Pères, Paris, F-75006 France; ‡ Fédération de Recherche en Neurosciences FR3636, Faculté de Sciences Fondamentales et Biomédicales, Université Paris Descartes, PRES Sorbonne Paris Cité, F-75006 Paris, France; ¶Department of Chemistry, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, 5290002, Israel; §Chaire d’Excellence Junior, Université Sorbonne Paris Cité, Paris, F-75006 France; £Saarland University, Department of Physiology, CIPMM, Building 48, D-66421 Homburg/Saar, Germany; * Address all correspondence to Dr Martin Oheim SPPIN – Saints Pères Paris Institute for the Neurosciences 45 rue des Saints Pères F-75006 Paris Phone: +33 1 4286 4221 (Lab), -4222 (Office) Fax: +33 1 4286 3830 E-mails: [email protected] 1) MO is a Joseph Meyerhof invited professor with the Department of Biomolecular Sciences, The Weizmann Institute for Science, Rehovot, Israel. 2) AS was an invited professor with the Faculty of Fundamental and Biomedical Sciences, Paris Descartes University, Paris, France during the academic year 2017-18. arXiv - presubmission 1 Oheim et al. (2019) TIRF calibration ABSTRACT. Roughly half of a cell’s proteins are located at or near the plasma membrane. In this restricted space, the cell senses its environment, signals to its neighbors and ex- changes cargo through exo- and endocytotic mechanisms.
    [Show full text]
  • Evanescent Wave Imaging in Optical Lithography
    Evanescent wave imaging in optical lithography Bruce W. Smith, Yongfa Fan, Jianming Zhou, Neal Lafferty, Andrew Estroff Rochester Institute of Technology, 82 Lomb Memorial Drive, Rochester, New York, 14623 ABSTRACT New applications of evanescent imaging for microlithography are introduced. The use of evanescent wave lithography (EWL) has been employed for 26nm resolution at 1.85NA using a 193nm ArF excimer laser wavelength to record images in a photoresist with a refractive index of 1.71. Additionally, a photomask enhancement effect is described using evanescent wave assist features (EWAF) to take advantage of the coupling of the evanescent energy bound at the substrate-absorber surface, enhancing the transmission of a mask opening through coupled interference. Keywords: Evanescent wave lithography, solid immersion lithography, 193nm immersion lithography 1. INTRODUCTION The pursuit of optical lithography at sub-wavelength dimensions leads to limitations imposed by classical rules of diffraction. Previously, we reported on the use of near-field propagation in the evanescent field through a solid immersion lens gap for lithography at numerical apertures approaching the refractive index of 193nm ArF photoresist.1 Other groups have also described achievements with various configurations of a solid immersion lens for photolithography within the refractive index limitations imposed by the image recording media, a general requirement for the frustration of the evanescent field for propagation and detection. 2-4 We have extended the resolution of projection lithography beyond the refractive index constraints of the recording media by direct imaging of the evanescent field into a photoresist layer with a refractive index substantially lower than the numerical aperture of the imaging system.
    [Show full text]
  • Superconducting Metamaterials for Waveguide Quantum Electrodynamics
    ARTICLE DOI: 10.1038/s41467-018-06142-z OPEN Superconducting metamaterials for waveguide quantum electrodynamics Mohammad Mirhosseini1,2,3, Eunjong Kim1,2,3, Vinicius S. Ferreira1,2,3, Mahmoud Kalaee1,2,3, Alp Sipahigil 1,2,3, Andrew J. Keller1,2,3 & Oskar Painter1,2,3 Embedding tunable quantum emitters in a photonic bandgap structure enables control of dissipative and dispersive interactions between emitters and their photonic bath. Operation in 1234567890():,; the transmission band, outside the gap, allows for studying waveguide quantum electro- dynamics in the slow-light regime. Alternatively, tuning the emitter into the bandgap results in finite-range emitter–emitter interactions via bound photonic states. Here, we couple a transmon qubit to a superconducting metamaterial with a deep sub-wavelength lattice constant (λ/60). The metamaterial is formed by periodically loading a transmission line with compact, low-loss, low-disorder lumped-element microwave resonators. Tuning the qubit frequency in the vicinity of a band-edge with a group index of ng = 450, we observe an anomalous Lamb shift of −28 MHz accompanied by a 24-fold enhancement in the qubit lifetime. In addition, we demonstrate selective enhancement and inhibition of spontaneous emission of different transmon transitions, which provide simultaneous access to short-lived radiatively damped and long-lived metastable qubit states. 1 Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA 91125, USA. 2 Thomas J. Watson, Sr., Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA. 3 Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125, USA. Correspondence and requests for materials should be addressed to O.P.
    [Show full text]
  • Nonlinear Oscillator Metamaterial Model: Numerical and Experimental Verification
    Nonlinear oscillator metamaterial model: numerical and experimental verification E. Poutrina,* D. Huang, Y. Urzhumov, and D. R. Smith Center of Metamaterials and Integrated Plasmonics, Duke University, ECE, Box 90291, Durham, North Carolina 27708, USA *[email protected] Abstract: We verify numerically and experimentally the accuracy of an analytical model used to derive the effective nonlinear susceptibilities of a varactor-loaded split ring resonator (VLSRR) magnetic medium. For the numerical validation, a nonlinear oscillator model for the effective magnetization of the metamaterial is applied in conjunction with Maxwell equations and the two sets of equations solved numerically in the time- domain. The computed second harmonic generation (SHG) from a slab of a nonlinear material is then compared with the analytical model. The com- puted SHG is in excellent agreement with that predicted by the analytical model, both in terms of magnitude and spectral characteristics. Moreover, experimental measurements of the power transmitted through a fabri- cated VLSRR metamaterial at several power levels are also in agreement with the model, illustrating that the effective medium techniques associ- ated with metamaterials can accurately be transitioned to nonlinear systems. © 2011 Optical Society of America OCIS codes: (160.3918) Metamaterials; (190.4400) Nonlinear optics, materials. References and links 1. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999). 2. M. Lapine, M. Gorkunov, and K. H. Ringhofer, “Nonlinearity of a metamaterial arising from diode insertions into resonant conductive elements,” Phys. Rev. E 67, 065601 (2003).
    [Show full text]
  • Transient Analysis of Nonlinear Locally Resonant Metamaterials Via Computational Homogenization
    Transient analysis of nonlinear locally resonant metamaterials via computational homogenization Citation for published version (APA): van Nuland, T., Brandão Silva, P., Sridhar, A., Geers, M., & Kouznetsova, V. (2019). Transient analysis of nonlinear locally resonant metamaterials via computational homogenization. Mathematics and Mechanics of Solids, 24(10), 3136–3155. https://doi.org/10.1177/1081286519833100 DOI: 10.1177/1081286519833100 Document status and date: Published: 01/10/2019 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Shaping Light with Metamaterials
    Shaping light with metamaterials Yuri S. Kivshar Nonlinear Physics Centre, Australian National University, Canberra, Australia St. Petersburg University of Information Technologies, Mechanics & Optics, Russia http://wwwrsphysse.anu.edu.au/nonlinear/ http://phoi.ifmo.ru/metamaterials// Our group in Canberra • www.rsphysse.anu.edu.au/nonlinear Our team in Canberra August 2013 Experimental Photonics 15 research fellows A/Prof. Neshev 14 PhD students 4 visiting fellows Theoretical 2 visiting students Photonics A/Prof. Sukhorukov Matter waves Microwave & THz Dr. Ostrovskaya metamaterials Dr. Shadrivov Plasmonics and Singular fields nanoantennas Dr. Desyatnikov Dr. Miroshnichenko www.rsphysse.anu.edu.au/nonlinear Canberra: Selected research activities http://wwwrsphysse.anu.edu.au/nonlinear/ BEC condensates Nanoantennas Optical vortices Photon pair generation Nonlinear metamaterialsMetamaterials and quantum walks Laboratory of Metamaterials in National Research University of Information Technologies, Mechanics and Optics, St. Petersburg, Russia Financial support: Ministry of Science and Education of Russian Federation Our group in St. Petersburg http://phoi.ifmo.ru/metamaterials// Other recent research activities: St. Petersburg Microwave antennas http://phoi.ifmo.ru/metamaterials// Magnetoelastic metamaterials Purcell effect Transmission lines: hyperbolic metamaterials Graphene nanophotonics Outline of today’s talk • Introduction: the concepts & properties • Backward waves • Invisibility cloaking • Tunable properties of metamaterials • Nonlinear
    [Show full text]
  • 1 Analysis of Nonlinear Electromagnetic Metamaterials
    Analysis of Nonlinear Electromagnetic Metamaterials Ekaterina Poutrina, Da Huang, David R. Smith Center for Metamaterials and Integrated Plasmonics and Department of Electrical and Computer Engineering, Duke University, Box 90291, Durham, NC 27708 Abstract We analyze the properties of a nonlinear metamaterial formed by integrating nonlinear components or materials into the capacitive regions of metamaterial elements. A straightforward homogenization procedure leads to general expressions for the nonlinear susceptibilities of the composite metamaterial medium. The expressions are convenient, as they enable inhomogeneous system of scattering elements to be described as a continuous medium using the standard notation of nonlinear optics. We illustrate the validity and accuracy of our theoretical framework by performing measurements on a fabricated metamaterial sample composed of an array of split ring resonators (SRRs) with packaged varactors embedded in the capacitive gaps in a manner similar to that of Wang et al. [Opt. Express 16 , 16058 (2008)]. Because the SRRs exhibit a predominant magnetic response to electromagnetic fields, the varactor-loaded SRR composite can be described as a magnetic material with nonlinear terms in its effective magnetic susceptibility. Treating the composite as a nonlinear effective medium, we can quantitatively assess the performance of the medium to enhance and facilitate nonlinear processes, including second harmonic generation, three- and four-wave mixing, self-focusing and other well-known nonlinear phenomena. We illustrate the accuracy of our approach by predicting the intensity- dependent resonance frequency shift in the effective permeability of the varactor-loaded SRR medium and comparing with experimental measurements. 1. Introduction Metamaterials consist of arrays of magnetically or electrically polarizable elements.
    [Show full text]
  • 7 Plasmonics
    7 Plasmonics Highlights of this chapter: In this chapter we introduce the concept of surface plasmon polaritons (SPP). We discuss various types of SPP and explain excitation methods. Finally, di®erent recent research topics and applications related to SPP are introduced. 7.1 Introduction Long before scientists have started to investigate the optical properties of metal nanostructures, they have been used by artists to generate brilliant colors in glass artefacts and artwork, where the inclusion of gold nanoparticles of di®erent size into the glass creates a multitude of colors. Famous examples are the Lycurgus cup (Roman empire, 4th century AD), which has a green color when observing in reflecting light, while it shines in red in transmitting light conditions, and church window glasses. Figure 172: Left: Lycurgus cup, right: color windows made by Marc Chagall, St. Stephans Church in Mainz Today, the electromagnetic properties of metal{dielectric interfaces undergo a steadily increasing interest in science, dating back in the works of Gustav Mie (1908) and Rufus Ritchie (1957) on small metal particles and flat surfaces. This is further moti- vated by the development of improved nano-fabrication techniques, such as electron beam lithographie or ion beam milling, and by modern characterization techniques, such as near ¯eld microscopy. Todays applications of surface plasmonics include the utilization of metal nanostructures used as nano-antennas for optical probes in biology and chemistry, the implementation of sub-wavelength waveguides, or the development of e±cient solar cells. 208 7.2 Electro-magnetics in metals and on metal surfaces 7.2.1 Basics The interaction of metals with electro-magnetic ¯elds can be completely described within the frame of classical Maxwell equations: r ¢ D = ½ (316) r ¢ B = 0 (317) r £ E = ¡@B=@t (318) r £ H = J + @D=@t; (319) which connects the macroscopic ¯elds (dielectric displacement D, electric ¯eld E, magnetic ¯eld H and magnetic induction B) with an external charge density ½ and current density J.
    [Show full text]
  • Metamaterials: Past, Present, and Future
    2286-6 Workshop on New Materials for Renewable Energy 31 October - 11 November 201 Metamaterials: Past, Present, and Future Yuri S. Kivshar Nonlinear Physics Centre Research School of Physics and Engineering The Australian National University Canberra ACT 0200 Australia Metamaterials: Past, Present, and Future Yuri Kivshar Nonlinear Physics Centre Australian National University Canberra Outline • Metamaterials: Basic properties • Negative refraction • The first experiment and a variety of designs • From microwaves to optics • Nonlinear metamaterials • Optical cloaking • Roadmap for metamaterials http://wwwrshysse.anu.edu.au/nonlinear Light interaction with matter • Interaction depends on ε and μ of the medium • ε characterizes response to the electric field • μ characterizes response to the magnetic field http://wwwrshysse.anu.edu.au/nonlinear Electromagnetic properties of materials • Response to the electromagnetic field is determined by internal structure of the material • For large wavelengths any material can be described by ε and μ • Classical Macroscopic Electrodynamics 1 B rlcu E ~ ~ c t DE 1 D ~ ~ rlcu H BH c t http://wwwrshysse.anu.edu.au/nonlinear Natural materials and metamaterials ω2 k 2 εμ c2 RHM 0 , 0 0 , 0 0 , 0 0 , 0 LeftHandedMaterials http://wwwrshysse.anu.edu.au/nonlinear The first Paper Left-Handed Materials • V.G.Veselago, • The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ. Soviet Physics Uspekhi 10 (4), 509-514 (1968) Even earlier papers D. Sivukhin, Opt. Spectroscopy
    [Show full text]
  • Nonlinear Optical Effects in Epsilon-Near-Zero Media
    REVIEWS Nonlinear optical effects in epsilon-near-zero media Orad Reshef 1*, Israel De Leon 2, M. Zahirul Alam 1 and Robert W. Boyd1,3* Abstract | Efficient nonlinear optical interactions are essential for many applications in modern photonics. However, they typically require intense laser sources and long interaction lengths, requirements that often render nonlinear optics incompatible with new nanophotonic architectures in integrated optics and metasurface devices. Obtaining materials with stronger nonlinear properties is a crucial step towards applications that require lower powers and smaller footprints. Recently , a new class of materials with a vanishing permittivity, known as epsilon- near-zero (ENZ) materials, has been reported to exhibit unprecedented ultrafast nonlinear efficiencies within sub-wavelength propagation lengths. In this Review, we survey the work that has been performed on ENZ materials and the related near-zero-index materials, focusing on the observation of various nonlinear phenomena (such as intensity-dependent refraction, four-wave mixing and harmonic generation), the identification of unique field-enhancement mechanisms and the study of non-equilibrium dynamics. Degenerately doped semiconductors (such as tin-doped indium oxide and aluminium-doped zinc oxide) are particularly promising candidates for ENZ-enhanced nonlinear optical applications. We conclude by pointing towards possible future research directions, such as the search for ENZ materials with low optical losses and the elucidation of the mechanisms underlying nonlinear enhancements. Nonlinear optical phenomena enable a broad range of near- zero-index (NZI) metamaterials21–24. Research applications1, including telecommunications and all- on these topics was pioneered in a series of theore- optical data processing and storage2,3, spectroscopy4 tical papers published at the beginning of the decade and quantum information technologies5,6.
    [Show full text]
  • Analytical and Numerical Analysis of Low Optical Overlap Mode Evanescent Wave
    Analytical and Numerical Analysis of Low Optical Overlap Mode Evanescent Wave Chemical Sensors A thesis presented to the faculty of the Russ College of Engineering and Technology of Ohio University In partial fulfillment of the requirements for the degree Master of Science Anupama Solam August 2009 © 2009 Anupama Solam. All Rights Reserved. 2 This thesis titled Analytical and Numerical Analysis of Low Optical Overlap Mode Evanescent Wave Chemical Sensors by ANUPAMA SOLAM has been approved for the School of Electrical Engineering and Computer Science and the Russ College of Engineering and Technology by Ralph D. Whaley, Jr. Assistant Professor of Electrical Engineering and Computer Science Dennis Irwin Dean, Russ College of Engineering and Technology 3 ABSTRACT SOLAM, ANUPAMA, M.S., August 2009, Electrical Engineering Analytical and Numerical Analysis of Low Optical Overlap Mode Evanescent wave Chemical Sensors (106 pp.) Director ofThesis: Ralph D. Whaley, Jr Demands for integrated optical (IO) sensors have tremendously increased over the years due to issues concerning environmental pollution and other biohazards. Thus, an integrated optical sensor with good detection scheme, sensitivity and low cost is needed. This thesis proposes a novel evanescent wave chemical sensing (EWCS) technique for ammonia (gaseous) and nitrite (aqueous) detection utilizing a low optical overlap mode (LOOM) waveguide structure. This design has the advantage of low modal fill factor and more field interaction with the sensing region compared to fiber sensors; hence eliminating the difficulty faced by traditional EWCS designs. Effective refractive index is a crucial parameter for analyzing the sensitivity, which is compared using the analytical and numerical methods such as finite element method (FEM) and semi-vectorial beam propagation method (BPM).
    [Show full text]
  • University of California, San Diego
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Impact Generated Pulses in Strongly Nonlinear Dissipative Metamaterial A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering Sciences (Mechanical Engineering) by Yichao Xu Committee in charge: Professor Vitali F. Nesterenko, Chair Professor Yuri Bazilevs Professor Renkun Chen Professor Hyonny Kim Professor Vlado Lubarda 2016 Copyright Yichao Xu, 2016 All rights reserved. SIGNATURE PAGE This dissertation of Yichao Xu is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2016 iii DEDICATION This work is lovingly dedicated to my parents. iv TABLE OF CONTENTS Signature page ............................................................................................................... iii Dedication ..................................................................................................................... iv Table of Contents ............................................................................................................ v List of Figures .............................................................................................................. vii List of Tables ................................................................................................................ xi Acknowledgements ..................................................................................................... xiv Vita ............................................................................................................................
    [Show full text]