Transcriptional Control of Dietary Sugar Metabolism and Homeostasis by Mondo-Mlx Transcription Factors Recent Publications in This Series

Total Page:16

File Type:pdf, Size:1020Kb

Transcriptional Control of Dietary Sugar Metabolism and Homeostasis by Mondo-Mlx Transcription Factors Recent Publications in This Series ESSI HAVULA Transcriptional Control of Dietary Sugar Metabolism and Homeostasis by Mondo-Mlx Transcription Factors Mondo-Mlx Transcription and Homeostasis by Control of Dietary Sugar Metabolism Transcriptional ESSI HAVULA Recent Publications in this Series 62/2016 Wojciech Cypryk Extracellular Vesicles in Innate Immunity - Proteomic Investigations 63/2016 Lauri Vaahtera Apoplastic ROS and Transcriptional Response in Plant Stress Signaling 64/2016 Hannele Poutiainen Mikä herättää terveydenhoitajan huolen? Huolen tunnistamisen ja toimimisen haasteet DISSERTATIONES SCHOLAE DOCTORALIS AD SANITATEM INVESTIGANDAM lastenneuvolassa ja kouluterveydenhuollossa UNIVERSITATIS HELSINKIENSIS 1/2017 65/2016 Jenni Viinamäki Analysis of Fatal Poisonings Due to Toxic Alcohols and Drugs — Focus on Metabolites 66/2016 Sari Riihijärvi Host- and Tumour-related Prognostic Factors in Diffuse Large B-cell Lymphoma 67/2016 Tatu Lajunen Liposomal Drug Delivery: Light Triggered Drug Release and Targeting to the Posterior Segment ESSI HAVULA of the Eye 68/2016 Kristian Taipale Immunologic Effects of Cancer Therapy with Oncolytic Adenoviruses Transcriptional Control of Dietary Sugar Metabolism 69/2016 Maarit Dimitrow Development and Validation of a Drug-related Problem Risk Assessment Tool for Use by and Homeostasis by Mondo-Mlx Transcription Factors Practical Nurses Working With Community-Dwelling Aged 70/2016 Vilma Aho Kuolema kuittaa univelat? Effects of Cumulative Sleep Loss on Immune Functions and Lipid Metabolism 71/2016 Aino Salminen Matrix Metalloproteinase 8: Genetic, Diagnostic, and Therapeutic Approaches 72/2016 Maili Jakobson Molecular Mechanisms Controlling Neuronal Bak Expression 73/2016 Lukasz Kuryk Strategies to Enhance Efficacy of Oncolytic Virotherapy 74/2016 Sini Heinonen Adipose Tissue Metabolism in Acquired Obesity 75/2016 Elina Karhu Natural Products as a Source for Rational Antichlamydial Lead-Discovery 76/2016 Zhilin Li Inflammatory Polarization of Immune Cells in Neurological and Neuropsychiatric Disorders 77/2016 Aino Salonsalmi Alcohol Drinking, Health-Related Functioning and Work Disability 78/2016 Heini Wennman Physical Activity, Sleep and Cardiovascular Diseases: Person-oriented and Longitudinal Perspectives 79/2016 Andres Lõhmus Helper Component-Proteinase and Coat Protein are Involved in the Molecular Processes of Potato Virus A Translation and Replication 80/2016 Li Ma INSTITUTE OF BIOTECHNOLOGY AND Brain Immune Gene Network in Inbred Mouse Models of Anxiety- and DEPARTMENT OF BIOSCIENCES Sociability-related Neuropsychiatric Disorders FACULTY OF BIOLOGICAL AND ENVIRONMENTAL SCIENCES 81/2016 Finny S. Varghese DOCTORAL PROGRAMME IN INTEGRATIVE LIFE SCIENCE Cracking the Code of Chikungunya Virus: Inhibitors as Tools to Explore UNIVERSITY OF HELSINKI Alphavirus Biology 1/2017 Helsinki 2017 ISSN 2342-3161 ISBN 978-951-51-2675-7 Transcriptional control of dietary sugar metabolism and homeostasis by Mondo-Mlx transcription factors Essi Havula Faculty of Biological and Environmental Sciences Department of Biosciences Division of Genetics and Institute of Biotechnology Research Program in Cell and Molecular Biology and Doctoral Programme in Integrative Life Science University of Helsinki ACADEMIC DISSERTATION To be presented for public examination with the permission of the Faculty of Biological and Environmental Sciences of the University of Helsinki in Auditorium 2041 in Biocenter 2, Viikinkaari 5, Helsinki, on January 5th, at 12 noon. Helsinki 2017 Supervisor Associate Professor Ville Hietakangas Department of Biosciences Division of Genetics Institute of Biotechnology University of Helsinki, Finland Thesis Advisory Committee Professor Howard Jacobs Institute of Biotechnology University of Helsinki, Finland and Ph.D. Thomas Sandmann Verily, USA Reviewed by Professor Anna-Liisa Levonen A.I. Virtanen Institute University of Eastern Finland and Docent Henna Tyynismaa Faculty of Medicine University of Helsinki, Finland Opponent Ph.D. Christen Mirth Monash University Melbourne, Australia Custodian Professor Juha Partanen Department of Biosciences Division of Genetics University of Helsinki, Finland ISBN 978-951-51-2675-7 (paperback) ISBN 978-951-51-2720-4 (PDF) ISSN 2342-3161 (print) ISSN 2342-317X (online) Press: Hansaprint, Vantaa 2016 Cover image: Salla Rytövuori “Just keep swimming” – Dory TABLE OF CONTENTS LIST OF ORIGINAL PUBLICATIONS ........................................................................................................ 6 ABBREVIATIONS ........................................................................................................................................... 7 SUMMARY ..................................................................................................................................................... 11 YHTEENVETO .............................................................................................................................................. 12 1. INTRODUCTION ...................................................................................................................................... 13 1.1. Nutrient sensing and metabolic homeostasis ............................................................................................. 13 1.1.1. Metabolic organs, tissues and digestion of macronutrients .......................................................... 13 1.1.2. Control of food intake ................................................................................................................... 15 1.1.3. Nutrient sensing pathways ............................................................................................................ 16 1.1.3.1. Amino acid sensing ......................................................................................................... 16 1.1.3.2. Lipid sensing ................................................................................................................... 19 1.1.3.3. Carbohydrate sensing ...................................................................................................... 19 1.2. Carbohydrate Response Element Binding Protein ChREBP, MondoA and Mlx ...................................... 20 1.2.1. ChREBP, MondoA and Mlx belong to the bHLH/LZ family of transcription factors ................. 20 1.2.2. Myc-Max-Mad-Mlx-Mondo transcription factor network ........................................................... 21 1.2.3. Mondo proteins are highly conserved .......................................................................................... 22 1.2.4. Glucose-6-phosphate regulates the activity of ChREBP/MondoA .............................................. 23 1.2.5. Regulation of ChREBP activity by posttranslational modifications and protein interactions ..... 24 1.2.6. Transcriptional regulation of ChREBP/MondoA-Mlx ................................................................. 25 1.3. ChREBP/MondoA as a key regulator of sugar-induced transcription ....................................................... 26 1.3.1. Regulation of glycolysis and lipogenesis by MondoA and ChREBP .......................................... 27 1.3.2. SREBP-1c controls expression of lipogenic genes in response to Insulin ................................... 27 1.3.3. Coordinated regulation of de novo lipogenesis by ChREBP and SREBP .................................... 29 1.3.4. ChREBP-Mlx controls the glucose induced expression of genes related to circadian rhythm .... 29 1.3.5. ChREBP and MondoA in human disease ..................................................................................... 30 1.4. Drosophila melanogaster as a model organism ......................................................................................... 31 1.4.1. Physiology and tissue organization of Drosophila melanogaster ................................................ 32 1.4.2. Nutrient sensing pathways in Drosophila .................................................................................... 34 1.4.3. Studies on nutrient-regulated transcription in Drosophila ........................................................... 35 2. AIMS OF THE STUDY ............................................................................................................................. 37 3. MATERIALS AND METHODS ............................................................................................................... 38 4. RESULTS .................................................................................................................................................... 40 4.1. Mondo-Mlx is essential for dietary sugar tolerance in Drosophila (I) ...................................................... 40 4.1.1. Loss of mlx leads to late pupal lethality in Drosophila ................................................................ 40 4.1.2. Mondo-Mlx deficient animals show intolerance to dietary sugars ............................................... 40 4.1.3. Loss of Mondo-Mlx leads to severe metabolic defects in vivo .................................................... 40 4.1.4. Mondo and mlx are expressed in the metabolic tissues of Drosophila ......................................... 41 4.2. Identification of putative Mondo-Mlx target genes by Agilent gene expression analysis (I) ................... 41 4.3. Sugar intolerance and hyperglycaemia are phenotypes that can be genetically uncoupled (I) ................. 42 4.4. Sugar-induced transcription in Drosophila melanogaster (II) ..................................................................
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Dimerization Specificity of Myogenic Helix-Loop-Helix DNA-Binding Factors Directed by Nonconserved Hydrophilic Residues
    Downloaded from genesdev.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press Dimerization specificity of myogenic helix-loop-helix DNA-binding factors directed by nonconserved hydrophilic residues Masaki Shirakata, Fred K. Friedman, 1 Qin Wei, and Bruce M. Paterson Laboratory of Biochemistry, ~Laboratory of Molecular Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892 USA The myogenic regulatory factor MyoD dimerizes with other positive and negative regulatory factors through a conserved region called the helix-loop-helix (HLH) domain. Using a non-DNA-binding MyoD mutant with a normal HLH domain as a dimerization competitor in gel mobility shift assays in conjunction with various MyoD HLH mutants, nonhydrophobic amino acids were identified in the HLH domain that contribute to dimerization specificity with El2. The assay detected subtle differences in dimerization activity among the mutant MyoD proteins that correlated with their ability to activate transcription in vivo, but this correlation was not apparent in the absence of competitor. The identification of such nonhydrophobic residues enabled us to predict the differences in dimerization affinity among the four vertebrate myogenic factors with El2. The experiments confirmed the prediction. Furthermore, a high-affinity homodimerizing analog of MyoD was designed by a single substitution at one of these residue positions. These experimental results were strengthened when they were analyzed in terms of the crystal structure for the Max bHLHZip domain homodimer. This analysis has allowed us to identify those residues that form charged residue pairs between the two HLH domains of MyoD and El2 and determine the dimerization specificity of the bHLH proteins.
    [Show full text]
  • Graphic No Vels & Comics
    GRAPHIC NOVELS & COMICS SPRING 2020 TITLE Description FRONT COVER X-Men, Vol. 1 The X-Men find themselves in a whole new world of possibility…and things have never been better! Mastermind Jonathan Hickman and superstar artist Leinil Francis Yu reveal the saga of Cyclops and his hand-picked squad of mutant powerhouses. Collects #1-6. 9781302919818 | $17.99 PB Marvel Fallen Angels, Vol. 1 Psylocke finds herself in the new world of Mutantkind, unsure of her place in it. But when a face from her past returns only to be killed, she seeks vengeance. Collects Fallen Angels (2019) #1-6. 9781302919900 | $17.99 PB Marvel Wolverine: The Daughter of Wolverine Wolverine stars in a story that stretches across the decades beginning in the 1940s. Who is the young woman he’s fated to meet over and over again? Collects material from Marvel Comics Presents (2019) #1-9. 9781302918361 | $15.99 PB Marvel 4 Graphic Novels & Comics X-Force, Vol. 1 X-Force is the CIA of the mutant world—half intelligence branch, half special ops. In a perfect world, there would be no need for an X-Force. We’re not there…yet. Collects #1-6. 9781302919887 | $17.99 PB Marvel New Mutants, Vol. 1 The classic New Mutants (Sunspot, Wolfsbane, Mirage, Karma, Magik, and Cypher) join a few new friends (Chamber, Mondo) to seek out their missing member and go on a mission alongside the Starjammers! Collects #1-6. 9781302919924 | $17.99 PB Marvel Excalibur, Vol. 1 It’s a new era for mutantkind as a new Captain Britain holds the amulet, fighting for her Kingdom of Avalon with her Excalibur at her side—Rogue, Gambit, Rictor, Jubilee…and Apocalypse.
    [Show full text]
  • Leucine Zippers
    Leucine Zippers Leucine Zippers Advanced article Toshio Hakoshima, Nara Institute of Science and Technology, Nara, Japan Article contents Introduction The leucine zipper (ZIP) motif consists of a periodic repetition of a leucine residue at every Structural Basis of ZIP seventh position and forms an a-helical conformation, which facilitates dimerization and in Occurrence of ZIP and Coiled-coil Motifs some cases higher oligomerization of proteins. In many eukaryotic gene regulatory proteins, Dimerization Specificity of ZIP the ZIP motif is flanked at its N-terminus by a basic region containing characteristic residues DNA-binding Specificity of bZIP that facilitate DNA binding. doi: 10.1038/npg.els.0005049 Introduction protein modules for protein–protein interactions. Knowing the structure and function of these motifs A structure referred to as the leucine zipper or enables us to understand the molecular recognition simply as ZIP has been proposed to explain how a system in several biological processes. class of eukaryotic gene regulatory proteins works (Landschulz et al., 1988). A segment of the mammalian CCAAT/enhancer binding protein (C/EBP) of 30 Structural Basis of ZIP amino acids shares notable sequence similarity with a segment of the cellular Myc transforming protein. The The a helix is a secondary structure element that segments have been found to contain a periodic occurs frequently in proteins. Alpha helices are repetition of a leucine residue at every seventh stabilized in proteins by being packed into the position. A periodic array of at least four leucines hydrophobic core of a protein through hydrophobic has also been noted in the sequences of the Fos and side chains.
    [Show full text]
  • The Function and Evolution of C2H2 Zinc Finger Proteins and Transposons
    The function and evolution of C2H2 zinc finger proteins and transposons by Laura Francesca Campitelli A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Molecular Genetics University of Toronto © Copyright by Laura Francesca Campitelli 2020 The function and evolution of C2H2 zinc finger proteins and transposons Laura Francesca Campitelli Doctor of Philosophy Department of Molecular Genetics University of Toronto 2020 Abstract Transcription factors (TFs) confer specificity to transcriptional regulation by binding specific DNA sequences and ultimately affecting the ability of RNA polymerase to transcribe a locus. The C2H2 zinc finger proteins (C2H2 ZFPs) are a TF class with the unique ability to diversify their DNA-binding specificities in a short evolutionary time. C2H2 ZFPs comprise the largest class of TFs in Mammalian genomes, including nearly half of all Human TFs (747/1,639). Positive selection on the DNA-binding specificities of C2H2 ZFPs is explained by an evolutionary arms race with endogenous retroelements (EREs; copy-and-paste transposable elements), where the C2H2 ZFPs containing a KRAB repressor domain (KZFPs; 344/747 Human C2H2 ZFPs) are thought to diversify to bind new EREs and repress deleterious transposition events. However, evidence of the gain and loss of KZFP binding sites on the ERE sequence is sparse due to poor resolution of ERE sequence evolution, despite the recent publication of binding preferences for 242/344 Human KZFPs. The goal of my doctoral work has been to characterize the Human C2H2 ZFPs, with specific interest in their evolutionary history, functional diversity, and coevolution with LINE EREs.
    [Show full text]
  • Tgfβ-Regulated Gene Expression by Smads and Sp1/KLF-Like Transcription Factors in Cancer VOLKER ELLENRIEDER
    ANTICANCER RESEARCH 28 : 1531-1540 (2008) Review TGFβ-regulated Gene Expression by Smads and Sp1/KLF-like Transcription Factors in Cancer VOLKER ELLENRIEDER Signal Transduction Laboratory, Internal Medicine, Department of Gastroenterology and Endocrinology, University of Marburg, Marburg, Germany Abstract. Transforming growth factor beta (TGF β) controls complex induces the canonical Smad signaling molecules which vital cellular functions through its ability to regulate gene then translocate into the nucleus to regulate transcription (2). The expression. TGFβ binding to its transmembrane receptor cellular response to TGF β can be extremely variable depending kinases initiates distinct intracellular signalling cascades on the cell type and the activation status of a cell at a given time. including the Smad signalling and transcription factors and also For instance, TGF β induces growth arrest and apoptosis in Smad-independent pathways. In normal epithelial cells, TGF β healthy epithelial cells, whereas it can also promote tumor stimulation induces a cytostatic program which includes the progression through stimulation of cell proliferation and the transcriptional repression of the c-Myc oncogene and the later induction of an epithelial-to-mesenchymal transition of tumor induction of the cell cycle inhibitors p15 INK4b and p21 Cip1 . cells (1, 3). In the last decade it has become clear that both the During carcinogenesis, however, many tumor cells lose their tumor suppressing and the tumor promoting functions of TGF β ability to respond to TGF β with growth inhibition, and instead, are primarily regulated on the level of gene expression through activate genes involved in cell proliferation, invasion and Smad-dependent and -independent mechanisms (1, 2, 4).
    [Show full text]
  • Mechanism of Nucleosome Targeting by Pioneer Transcription Factors
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2019 Mechanism Of Nucleosome Targeting By Pioneer Transcription Factors Meilin Mary Fernandez Garcia University of Pennsylvania Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Biochemistry Commons, and the Biophysics Commons Recommended Citation Fernandez Garcia, Meilin Mary, "Mechanism Of Nucleosome Targeting By Pioneer Transcription Factors" (2019). Publicly Accessible Penn Dissertations. 3624. https://repository.upenn.edu/edissertations/3624 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/3624 For more information, please contact [email protected]. Mechanism Of Nucleosome Targeting By Pioneer Transcription Factors Abstract Transcription factors (TFs) forage the genome to instruct cell plasticity, identity, and differentiation. These developmental processes are elicited through TF engagement with chromatin. Yet, how and which TFs can engage with chromatin and thus, nucleosomes, remains largely unexplored. Pioneer TFs are TF that display a high affinity for nucleosomes. Extensive genetic and biochemical studies on the pioneer TF FOXA, a driver of fibroblast to hepatocyte reprogramming, revealed its nucleosome binding ability and chromatin targeting lead to chromatin accessibility and subsequent cooperative binding of TFs. Similarly, a number of reprogramming TFs have been suggested to have pioneering activity due to their ability to target compact chromatin and increase accessibility and enhancer formation in vivo. But whether these factors directly interact with nucleosomes remains to be assessed. Here we test the nucleosome binding ability of the cell reprogramming TFs, Oct4, Sox2, Klf4 and cMyc, that are required for the generation of induced pluripotent stem cells. In addition, we also test neuronal and macrophage reprogramming TFs.
    [Show full text]
  • Expression of TXNIP in Cancer Cells and Regulation by 1,25(OH)2D3: Is It Really the Vitamin D3 Upregulated Protein?
    International Journal of Molecular Sciences Article Expression of TXNIP in Cancer Cells and Regulation by 1,25(OH)2D3: Is It Really the Vitamin D3 Upregulated Protein? Mohamed A. Abu el Maaty ID , Fadi Almouhanna and Stefan Wölfl * Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; [email protected] (M.A.A.e.M.); [email protected] (F.A.) * Correspondence: wolfl@uni-hd.de; Tel.: +49-6221-544-880 Received: 21 February 2018; Accepted: 7 March 2018; Published: 10 March 2018 Abstract: Thioredoxin-interacting protein (TXNIP) was originally identified in HL-60 cells as the vitamin D3 upregulated protein 1, and is now known to be involved in diverse cellular processes, such as maintenance of glucose homeostasis, redox balance, and apoptosis. Besides the initial characterization, little is known about if and how 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] induces TXNIP expression. We therefore screened multiple cancerous cell lines of different tissue origins, and observed induction, repression, or no change in TXNIP expression in response to 1,25(OH)2D3. In-depth analyses on HL-60 cells revealed a rapid and transient increase in TXNIP mRNA levels by 1,25(OH)2D3 (3–24 h), followed by a clear reduction at later time points. Furthermore, a strong induction in protein levels was observed only after 96 h of 1,25(OH)2D3 treatment. Induction of TXNIP expression by 1,25(OH)2D3 was found to be dependent on the availability of glucose in the culture medium, as well as the presence of a functional glucose transport system, indicating an inter-dependence of 1,25(OH)2D3 actions and glucose-sensing mechanisms.
    [Show full text]
  • Supplementary Material Contents
    Supplementary Material Contents Immune modulating proteins identified from exosomal samples.....................................................................2 Figure S1: Overlap between exosomal and soluble proteomes.................................................................................... 4 Bacterial strains:..............................................................................................................................................4 Figure S2: Variability between subjects of effects of exosomes on BL21-lux growth.................................................... 5 Figure S3: Early effects of exosomes on growth of BL21 E. coli .................................................................................... 5 Figure S4: Exosomal Lysis............................................................................................................................................ 6 Figure S5: Effect of pH on exosomal action.................................................................................................................. 7 Figure S6: Effect of exosomes on growth of UPEC (pH = 6.5) suspended in exosome-depleted urine supernatant ....... 8 Effective exosomal concentration....................................................................................................................8 Figure S7: Sample constitution for luminometry experiments..................................................................................... 8 Figure S8: Determining effective concentration .........................................................................................................
    [Show full text]
  • Mechanistic Insights Into the Effect of RUNX1/ETO Knockdown in T(8;21) AML
    Mechanistic insights into the effect of RUNX1/ETO knockdown in t(8;21) AML Anna Pickin A thesis submitted to the University of Birmingham for the degree of DOCTOR OF PHILOSOPHY Institute of Biomedical Research Birmingham Centre for Genomic Biology College of Medical and Dental Sciences University of Birmingham September 2016 1 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT The mutation of transcription factor genes is a main cause for acute myeloid leukaemia. RUNX1/ETO, the product of the t(8;21) chromosomal translocation, subverts normal blood cell development by impairing myeloid differentiation. RUNX1/ETO knockdown alleviates this block, with a global reprogramming of transcription factor binding and initiation of myeloid differentiation. Co-depletion of the myeloid transcription factor C/EBPα with RUNX1/ETO suppressed this differentiation response. Furthermore, C/EBPα overexpression largely phenocopied the effect of RUNX1/ETO knockdown. Our data show that low levels of C/EBPα are critical to the maintenance of t(8;21) AML and that C/EBPα drives the response to RUNX1/ETO depletion. To examine how changes in transcription factor binding impact on the activity of cis- regulatory elements we mapped genome wide promoter-distal-element interactions in a t(8;21) AML cell line, via Capture HiC, and found that hundreds of interactions were altered by RUNX1/ETO knockdown.
    [Show full text]
  • Genome and Transcriptome of the Regeneration- Competent Flatworm, Macrostomum Lignano
    Genome and transcriptome of the regeneration- competent flatworm, Macrostomum lignano Kaja Wasika,1, James Gurtowskia,1, Xin Zhoua,b, Olivia Mendivil Ramosa, M. Joaquina Delása,c, Giorgia Battistonia,c, Osama El Demerdasha, Ilaria Falciatoria,c, Dita B. Vizosod, Andrew D. Smithe, Peter Ladurnerf, Lukas Schärerd, W. Richard McCombiea, Gregory J. Hannona,c,2, and Michael Schatza,2 aWatson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724; bMolecular and Cellular Biology Graduate Program, Stony Brook University, NY 11794; cCancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; dDepartment of Evolutionary Biology, Zoological Institute, University of Basel, 4051 Basel, Switzerland; eDepartment of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089; and fDepartment of Evolutionary Biology, Institute of Zoology and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria Contributed by Gregory J. Hannon, August 23, 2015 (sent for review June 25, 2015; reviewed by Ian Korf and Robert E. Steele) The free-living flatworm, Macrostomum lignano has an impressive of all cells (15), and have a very high proliferation rate (16, 17). Of regenerative capacity. Following injury, it can regenerate almost M. lignano neoblasts, 89% enter S-phase every 24 h (18). This high an entirely new organism because of the presence of an abundant mitotic activity results in a continuous stream of progenitors, somatic stem cell population, the neoblasts. This set of unique replacing tissues that are likely devoid of long-lasting, differentiated properties makes many flatworms attractive organisms for study- cell types (18). This makes M.
    [Show full text]
  • Coordinated Cross-Talk Between the Myc and Mlx Networks in Liver
    bioRxiv preprint doi: https://doi.org/10.1101/2021.08.05.455215; this version posted August 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Coordinated Cross-Talk Between the Myc and Mlx Networks in Liver Regeneration and Neoplasia Key words: Adenoma, -catenin, ChREBP, Hepatoblastoma, Hepatocellular Carcinoma, Hippo, MondoA Running Title: Cross-Talk Between Myc and Mlx Networks Huabo Wang1, Jie Lu1, Frances Alencastro2,3, Alexander Roberts1, Julia Fiedor1, Patrick Carroll5, Robert N. Eisenman5, Sarangarajan Ranganathan6, Michael Torbenson7, Andrew W. Duncan2,3,4 and Edward V. Prochownik1,4,8,9,10 1Division of Hematology/Oncology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh PA; 2Department of Pathology, UPMC; 3McGowan Institute for Regenerative Medicine, UPMC, Pittsburgh, PA; 4Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA; 5Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; 6Department of Pathology, Cincinnati Children’s Hospital, Cincinnati, OH, 45229; 7Department of Laboratory Medicine and Pathology, The Mayo Clinic, Rochester, MN, 55905; 8The UPMC Hillman Comprehensive Cancer Center; 9The Dept. of Microbiology and Molecular Genetics, The University of Pittsburgh Medical Center, Pittsburgh PA 15224. 10Contact information: Edward V. Prochownik Children’s Hospital of Pittsburgh Division of Hematology/Oncology Rangos Research Center, Room 5124 4401 Penn Ave. Pittsburgh, PA 15224 Tel: 412-692-6795 Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.08.05.455215; this version posted August 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]