EFFECTS of POSTTRANSLATIONAL MODIFICATION of TRANSCRIPTION FACTOR GLI-SIMILAR 3 by SUMOYLATION on INSULIN TRANSCRIPTION in PANCREATIC Β CELLS Tyler M

Total Page:16

File Type:pdf, Size:1020Kb

EFFECTS of POSTTRANSLATIONAL MODIFICATION of TRANSCRIPTION FACTOR GLI-SIMILAR 3 by SUMOYLATION on INSULIN TRANSCRIPTION in PANCREATIC Β CELLS Tyler M Murray State's Digital Commons Murray State Theses and Dissertations Graduate School 2017 EFFECTS OF POSTTRANSLATIONAL MODIFICATION OF TRANSCRIPTION FACTOR GLI-SIMILAR 3 BY SUMOYLATION ON INSULIN TRANSCRIPTION IN PANCREATIC β CELLS Tyler M. Hoard Murray State University Follow this and additional works at: https://digitalcommons.murraystate.edu/etd Part of the Cell Biology Commons, and the Molecular Genetics Commons Recommended Citation Hoard, Tyler M., "EFFECTS OF POSTTRANSLATIONAL MODIFICATION OF TRANSCRIPTION FACTOR GLI-SIMILAR 3 BY SUMOYLATION ON INSULIN TRANSCRIPTION IN PANCREATIC β CELLS" (2017). Murray State Theses and Dissertations. 56. https://digitalcommons.murraystate.edu/etd/56 This Thesis is brought to you for free and open access by the Graduate School at Murray State's Digital Commons. It has been accepted for inclusion in Murray State Theses and Dissertations by an authorized administrator of Murray State's Digital Commons. For more information, please contact [email protected]. EFFECTS OF SUMOYLATION OF TRANSCRIPTION FACTOR GLI-SIMILAR 3 ON INSULIN TRANSCRIPTION IN PANCREATIC β CELLS A Thesis Presented to The Faculty of the Department of Biological Sciences Murray State University Murray, Kentucky In Partial Fulfillment of the Requirements for the Degree of Master of Science in Biology By Tyler Matthew Hoard December 2017 iii Acknowledgements There are so many people to whom I am thankful for the roles that they have played in the completion of this project. I would first like to thank my thesis advisor, Dr. Gary ZeRuth. His guidance, patience, troubleshooting suggestions, and devotion to carrying out impactful research have contributed significantly to preparing me for a future in biomedical research. I would also like to thank my thesis committee members, Dr. Ed Zimmerer, Dr. Chris Trzepacz, Dr. David Canning, and Dr. J. Ricky Cox for dedicating their time and providing additional guidance and suggestions. Dr. Dayle Saar has been a valuable source of advice and support, and for that I am grateful. Additionally, I am thankful for the opportunities that have been provided to me by the Murray State Department of Biological Sciences. My appreciation for my fellow ZeRuth lab researchers, Dylan Hammrich, Katie Alexander, Fumi Nakamura, and Erin Clayton, whom I have been able to depend on to be a constant source of lively company that has proven to be particularly valuable on long days of work and to help with experiments, cannot be overstated. I am also thankful for all of the staff in the Biology Department Office for being a dependable source for whimsical conversation and unlimited coffee on particularly stressful days. This effort would have been virtually impossible without the unwavering support of my family. They have always taken a significant interest in my aspirations, and I owe a large portion of my success in this journey to them. Finally, I would like to thank my friends Jon Dunning, Jordan Osman, and Ashley Munie for providing countless instances of enjoyment and relaxation as well as providing feedback on much of this work. iv This research was supported by NSF-KY EPSCoR grant [RSF-042-14] and the Intramural Research Program of the National Institute of Environmental Health Sciences, the National Institutes of Health [Z01-ES-100485] with additional support from a competitive research grant sponsored by the Committee for Institutional Studies and Research at Murray State University v Abstract The ability to control blood glucose levels is a fundamental component of vertebrates. In these organisms, blood glucose homeostasis is achieved through a fine- tuned mechanism that largely involves the secretion of hormones from the endocrine pancreas into the bloodstream. These hormones include glucagon, which is secreted by the α cells of the pancreas and initiates the release of glucose into the bloodstream through gluconeogenesis in the liver, and insulin, which is secreted from the β cells and signals the uptake of excess blood glucose by the peripheral tissue. Gli-similar 3 (Glis3) is a transcription factor that has previously been shown to play a critical role in both the development of β cells and transcriptional activation of the insulin gene. The mechanism by which the activity of Glis3 is modulated is still largely enigmatic. The posttranslational modification of proteins by covalent attachment of the small ubiquitin-like modifier protein (SUMO) has become an interest of many labs in recent years. This is largely because of the multiple identified substrates for SUMOylation as well as the wide variety of effects that modification by SUMOylation can have on these substrates. A yeast two-hybrid assay using the Glis3 N-terminal conserved region as bait and a murine pancreatic β cell library identified enzymes that play an important role in the process of SUMOylation as potential Glis3 interactors. Subsequently, potential SUMOylation sites were identified within a phylogenetically conserved N-terminal region of Glis3. vi We found that Glis3 was SUMOylated by PIAS-family proteins (PIAS1 and PIASy) at two conserved lysine residues within the N-terminal region of Glis3. Additionally, it was found that posttranslational modification of Glis3 by SUMOylation regulated the transactivational activity of Glis3 in a tissue-dependent manner: down- regulating target genes in a β cell environment, and up-regulating genes in a non-β cell environment. These observed effects were due to mechanisms both dependent and independent of Glis3 SUMOylation as effects were observed after the mutation of the modified conserved lysine residues. The transactivation activity of MafA, another transcription factor that plays a major role in activating target genes in β cells has previously been shown to be modulated by SUMOylation. It has also been demonstrated previously that MafA and Glis3 work synergistically to activate target genes. We found that PIASy promoted MafA SUMOylation which disrupts synergism between MafA and Glis3 at the insulin promoter. Finally, we found that chronic exposure of β cells to hyperglycemic conditions promoted Glis3 and MafA SUMOylation which was coincident with a sharp decrease in insulin transcription. These data suggest a potential mechanism that could underlie β cell dysfunction preceding type 2 diabetes and could potentially explain one mechanism by which insulin secretion is negatively affected in individuals that are incapable of regulating their blood glucose levels. Collectively, the results of this project provided novel information regarding transcriptional control of the insulin gene that is modulated by a combination of blood glucose levels and posttranslational modification. vii Table of Contents Signature Page.....................................................................................................................ii Acknowledgements............................................................................................................iii Abstract................................................................................................................................v Table of Contents...............................................................................................................vii Chapter 1: Introduction........................................................................................................1 1A: The Pancreas.....................................................................................................1 1B: Blood Glucose Homeostasis.............................................................................4 1C: GLIS3, The Gene..............................................................................................5 1D: GLIS3, The Protein...........................................................................................5 1E: Glis3 Localization.............................................................................................6 1F: Glis3-Associated Pathologies............................................................................7 1G: Glis3-Mediated Gene Regulation.....................................................................8 1H: MafA.................................................................................................................9 1I: Posttranslational Modifications........................................................................10 1J: SUMOylation...................................................................................................12 1K: Pathologies Associated with SUMOylation....................................................14 Chapter 2: Materials and Methods.....................................................................................16 2A: Cells and Growth Conditions..........................................................................16 2B: Generation of Plasmids and Constructs..........................................................16 2C: Reporter Assays..............................................................................................18 2D: Co-Immunoprecipitation Assays....................................................................19 2E: Western Blot Analysis and Protein Quantification.........................................20 2F: Quantitative Reverse Transcriptase Real-Time PCR Analysis.......................20 2G: Immunocytochemistry and Microscopy..........................................................21 Chapter 3: Results..............................................................................................................23
Recommended publications
  • Transcriptomic Analysis of Pluripotent Stem Cells: Insights Into Health and Disease Jia-Chi Yeo1,2 and Huck-Hui Ng1,2,3,4,5,*
    Yeo and Ng Genome Medicine 2011, 3:68 http://genomemedicine.com/content/3/10/68 REVIEW Transcriptomic analysis of pluripotent stem cells: insights into health and disease Jia-Chi Yeo1,2 and Huck-Hui Ng1,2,3,4,5,* Abstract types, termed ‘pluripotency’, allows researchers to study early mammalian development in an artificial setting and Embryonic stem cells (ESCs) and induced pluripotent offers opportunities for regenerative medicine, whereby stem cells (iPSCs) hold tremendous clinical potential ESCs could generate clinically relevant cell types for because of their ability to self-renew, and to tissue repair. However, this same malleability of ESCs dierentiate into all cell types of the body. This unique also renders it a challenge to obtain in vitro differentiation capacity of ESCs and iPSCs to form all cell lineages of ESCs to specific cell types at high efficacy. erefore, is termed pluripotency. While ESCs and iPSCs are harnessing the full potential of ESCs requires an in-depth pluripotent and remarkably similar in appearance, understanding of the factors and mechanisms regulating whether iPSCs truly resemble ESCs at the molecular ESC pluripotency and cell lineage decisions. level is still being debated. Further research is therefore Early studies on ESCs led to the discovery of the core needed to resolve this issue before iPSCs may be safely pluripotency factors Oct4, Sox2 and Nanog [1], and, applied in humans for cell therapy or regenerative increasingly, the use of genome-level screening assays has medicine. Nevertheless, the use of iPSCs as an in vitro revealed new insights by uncovering additional trans- human genetic disease model has been useful in cription factors, transcriptional cofactors and chromatin studying the molecular pathology of complex genetic remodeling complexes involved in the maintenance of diseases, as well as facilitating genetic or drug screens.
    [Show full text]
  • Dimerization Specificity of Myogenic Helix-Loop-Helix DNA-Binding Factors Directed by Nonconserved Hydrophilic Residues
    Downloaded from genesdev.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press Dimerization specificity of myogenic helix-loop-helix DNA-binding factors directed by nonconserved hydrophilic residues Masaki Shirakata, Fred K. Friedman, 1 Qin Wei, and Bruce M. Paterson Laboratory of Biochemistry, ~Laboratory of Molecular Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892 USA The myogenic regulatory factor MyoD dimerizes with other positive and negative regulatory factors through a conserved region called the helix-loop-helix (HLH) domain. Using a non-DNA-binding MyoD mutant with a normal HLH domain as a dimerization competitor in gel mobility shift assays in conjunction with various MyoD HLH mutants, nonhydrophobic amino acids were identified in the HLH domain that contribute to dimerization specificity with El2. The assay detected subtle differences in dimerization activity among the mutant MyoD proteins that correlated with their ability to activate transcription in vivo, but this correlation was not apparent in the absence of competitor. The identification of such nonhydrophobic residues enabled us to predict the differences in dimerization affinity among the four vertebrate myogenic factors with El2. The experiments confirmed the prediction. Furthermore, a high-affinity homodimerizing analog of MyoD was designed by a single substitution at one of these residue positions. These experimental results were strengthened when they were analyzed in terms of the crystal structure for the Max bHLHZip domain homodimer. This analysis has allowed us to identify those residues that form charged residue pairs between the two HLH domains of MyoD and El2 and determine the dimerization specificity of the bHLH proteins.
    [Show full text]
  • Leucine Zippers
    Leucine Zippers Leucine Zippers Advanced article Toshio Hakoshima, Nara Institute of Science and Technology, Nara, Japan Article contents Introduction The leucine zipper (ZIP) motif consists of a periodic repetition of a leucine residue at every Structural Basis of ZIP seventh position and forms an a-helical conformation, which facilitates dimerization and in Occurrence of ZIP and Coiled-coil Motifs some cases higher oligomerization of proteins. In many eukaryotic gene regulatory proteins, Dimerization Specificity of ZIP the ZIP motif is flanked at its N-terminus by a basic region containing characteristic residues DNA-binding Specificity of bZIP that facilitate DNA binding. doi: 10.1038/npg.els.0005049 Introduction protein modules for protein–protein interactions. Knowing the structure and function of these motifs A structure referred to as the leucine zipper or enables us to understand the molecular recognition simply as ZIP has been proposed to explain how a system in several biological processes. class of eukaryotic gene regulatory proteins works (Landschulz et al., 1988). A segment of the mammalian CCAAT/enhancer binding protein (C/EBP) of 30 Structural Basis of ZIP amino acids shares notable sequence similarity with a segment of the cellular Myc transforming protein. The The a helix is a secondary structure element that segments have been found to contain a periodic occurs frequently in proteins. Alpha helices are repetition of a leucine residue at every seventh stabilized in proteins by being packed into the position. A periodic array of at least four leucines hydrophobic core of a protein through hydrophobic has also been noted in the sequences of the Fos and side chains.
    [Show full text]
  • Effects of Downregulating GLIS1 Transcript On
    Journal of Reproduction and Development, Vol. 61, No 5, 2015 —Original Article— Effects of downregulating GLIS1 transcript on preimplantation development and gene expression of bovine embryos Kazuki TAKAHASHI1), Nobuyuki SAKURAI2), Natsuko EMURA1), Tsutomu HASHIZUME1, 2) and Ken SAWAI1, 2) 1)Faculty of Agriculture, Iwate University, Iwate 020-8550, Japan 2)The United Graduate School of Agricultural Sciences, Iwate University, Iwate 020-8550, Japan Abstract. Krüppel-like protein Gli-similar 1 (GLIS1) is known as a direct reprogramming factor for the generation of induced pluripotent stem cells. The objective of this study was to investigate the role of GLIS1 in the preimplantation development of bovine embryos. GLIS1 transcripts in in vitro-matured oocytes and 1-cell to 4-cell stage embryos were detected, but they were either absent or at trace levels at the 8-cell to blastocyst stages. We attempted GLIS1 downregulation of bovine early embryos by RNA interference and evaluated developmental competency and gene transcripts, which are involved in zygotic gene activation (ZGA) in GLIS1-downregulated embryos. Injection of specific siRNA resulted in a distinct decrease inGLIS1 transcript in bovine embryos at the 4-cell stage. Although the bovine embryos injected with GLIS1-siRNA could develop to the 16-cell stage, these embryos had difficulty in developing beyond the 32-cell stage. Gene transcripts of PDHA1 and HSPA8, which are transcribed after ZGA, showed lower level in GLIS1 downregulated embryos. It is possible that GLIS1- downregulated embryos fail to initiate ZGA. Our results indicated that GLIS1 is an important factor for the preimplantation development of bovine embryos. Key words: Bovine embryo, Early development, Gene expression, GLIS1, RNA interference (J.
    [Show full text]
  • The Function and Evolution of C2H2 Zinc Finger Proteins and Transposons
    The function and evolution of C2H2 zinc finger proteins and transposons by Laura Francesca Campitelli A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Molecular Genetics University of Toronto © Copyright by Laura Francesca Campitelli 2020 The function and evolution of C2H2 zinc finger proteins and transposons Laura Francesca Campitelli Doctor of Philosophy Department of Molecular Genetics University of Toronto 2020 Abstract Transcription factors (TFs) confer specificity to transcriptional regulation by binding specific DNA sequences and ultimately affecting the ability of RNA polymerase to transcribe a locus. The C2H2 zinc finger proteins (C2H2 ZFPs) are a TF class with the unique ability to diversify their DNA-binding specificities in a short evolutionary time. C2H2 ZFPs comprise the largest class of TFs in Mammalian genomes, including nearly half of all Human TFs (747/1,639). Positive selection on the DNA-binding specificities of C2H2 ZFPs is explained by an evolutionary arms race with endogenous retroelements (EREs; copy-and-paste transposable elements), where the C2H2 ZFPs containing a KRAB repressor domain (KZFPs; 344/747 Human C2H2 ZFPs) are thought to diversify to bind new EREs and repress deleterious transposition events. However, evidence of the gain and loss of KZFP binding sites on the ERE sequence is sparse due to poor resolution of ERE sequence evolution, despite the recent publication of binding preferences for 242/344 Human KZFPs. The goal of my doctoral work has been to characterize the Human C2H2 ZFPs, with specific interest in their evolutionary history, functional diversity, and coevolution with LINE EREs.
    [Show full text]
  • Tgfβ-Regulated Gene Expression by Smads and Sp1/KLF-Like Transcription Factors in Cancer VOLKER ELLENRIEDER
    ANTICANCER RESEARCH 28 : 1531-1540 (2008) Review TGFβ-regulated Gene Expression by Smads and Sp1/KLF-like Transcription Factors in Cancer VOLKER ELLENRIEDER Signal Transduction Laboratory, Internal Medicine, Department of Gastroenterology and Endocrinology, University of Marburg, Marburg, Germany Abstract. Transforming growth factor beta (TGF β) controls complex induces the canonical Smad signaling molecules which vital cellular functions through its ability to regulate gene then translocate into the nucleus to regulate transcription (2). The expression. TGFβ binding to its transmembrane receptor cellular response to TGF β can be extremely variable depending kinases initiates distinct intracellular signalling cascades on the cell type and the activation status of a cell at a given time. including the Smad signalling and transcription factors and also For instance, TGF β induces growth arrest and apoptosis in Smad-independent pathways. In normal epithelial cells, TGF β healthy epithelial cells, whereas it can also promote tumor stimulation induces a cytostatic program which includes the progression through stimulation of cell proliferation and the transcriptional repression of the c-Myc oncogene and the later induction of an epithelial-to-mesenchymal transition of tumor induction of the cell cycle inhibitors p15 INK4b and p21 Cip1 . cells (1, 3). In the last decade it has become clear that both the During carcinogenesis, however, many tumor cells lose their tumor suppressing and the tumor promoting functions of TGF β ability to respond to TGF β with growth inhibition, and instead, are primarily regulated on the level of gene expression through activate genes involved in cell proliferation, invasion and Smad-dependent and -independent mechanisms (1, 2, 4).
    [Show full text]
  • Mechanism of Nucleosome Targeting by Pioneer Transcription Factors
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2019 Mechanism Of Nucleosome Targeting By Pioneer Transcription Factors Meilin Mary Fernandez Garcia University of Pennsylvania Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Biochemistry Commons, and the Biophysics Commons Recommended Citation Fernandez Garcia, Meilin Mary, "Mechanism Of Nucleosome Targeting By Pioneer Transcription Factors" (2019). Publicly Accessible Penn Dissertations. 3624. https://repository.upenn.edu/edissertations/3624 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/3624 For more information, please contact [email protected]. Mechanism Of Nucleosome Targeting By Pioneer Transcription Factors Abstract Transcription factors (TFs) forage the genome to instruct cell plasticity, identity, and differentiation. These developmental processes are elicited through TF engagement with chromatin. Yet, how and which TFs can engage with chromatin and thus, nucleosomes, remains largely unexplored. Pioneer TFs are TF that display a high affinity for nucleosomes. Extensive genetic and biochemical studies on the pioneer TF FOXA, a driver of fibroblast to hepatocyte reprogramming, revealed its nucleosome binding ability and chromatin targeting lead to chromatin accessibility and subsequent cooperative binding of TFs. Similarly, a number of reprogramming TFs have been suggested to have pioneering activity due to their ability to target compact chromatin and increase accessibility and enhancer formation in vivo. But whether these factors directly interact with nucleosomes remains to be assessed. Here we test the nucleosome binding ability of the cell reprogramming TFs, Oct4, Sox2, Klf4 and cMyc, that are required for the generation of induced pluripotent stem cells. In addition, we also test neuronal and macrophage reprogramming TFs.
    [Show full text]
  • Mechanistic Insights Into the Effect of RUNX1/ETO Knockdown in T(8;21) AML
    Mechanistic insights into the effect of RUNX1/ETO knockdown in t(8;21) AML Anna Pickin A thesis submitted to the University of Birmingham for the degree of DOCTOR OF PHILOSOPHY Institute of Biomedical Research Birmingham Centre for Genomic Biology College of Medical and Dental Sciences University of Birmingham September 2016 1 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT The mutation of transcription factor genes is a main cause for acute myeloid leukaemia. RUNX1/ETO, the product of the t(8;21) chromosomal translocation, subverts normal blood cell development by impairing myeloid differentiation. RUNX1/ETO knockdown alleviates this block, with a global reprogramming of transcription factor binding and initiation of myeloid differentiation. Co-depletion of the myeloid transcription factor C/EBPα with RUNX1/ETO suppressed this differentiation response. Furthermore, C/EBPα overexpression largely phenocopied the effect of RUNX1/ETO knockdown. Our data show that low levels of C/EBPα are critical to the maintenance of t(8;21) AML and that C/EBPα drives the response to RUNX1/ETO depletion. To examine how changes in transcription factor binding impact on the activity of cis- regulatory elements we mapped genome wide promoter-distal-element interactions in a t(8;21) AML cell line, via Capture HiC, and found that hundreds of interactions were altered by RUNX1/ETO knockdown.
    [Show full text]
  • Diverse, Biologically Relevant, and Targetable Gene Rearrangements in Triple-Negative Breast Cancer and Other Malignancies Timothy M
    Published OnlineFirst May 26, 2016; DOI: 10.1158/0008-5472.CAN-16-0058 Cancer Therapeutics, Targets, and Chemical Biology Research Diverse, Biologically Relevant, and Targetable Gene Rearrangements in Triple-Negative Breast Cancer and Other Malignancies Timothy M. Shaver1,2, Brian D. Lehmann1,2, J. Scott Beeler1,2, Chung-I Li3, Zhu Li1,2, Hailing Jin1,2, Thomas P. Stricker4, Yu Shyr5,6, and Jennifer A. Pietenpol1,2 Abstract Triple-negative breast cancer (TNBC) and other molecularly discovered a clinical occurrence and cell line model of the target- heterogeneous malignancies present a significant clinical chal- able FGFR3–TACC3 fusion in TNBC. Expanding our analysis to lenge due to a lack of high-frequency "driver" alterations amena- other malignancies, we identified a diverse array of novel and ble to therapeutic intervention. These cancers often exhibit geno- known hybrid transcripts, including rearrangements between mic instability, resulting in chromosomal rearrangements that noncoding regions and clinically relevant genes such as ALK, affect the structure and expression of protein-coding genes. How- CSF1R, and CD274/PD-L1. The over 1,000 genetic alterations ever, identification of these rearrangements remains technically we identified highlight the importance of considering noncod- challenging. Using a newly developed approach that quantita- ing gene rearrangement partners, and the targetable gene tively predicts gene rearrangements in tumor-derived genetic fusions identified in TNBC demonstrate the need to advance material, we identified
    [Show full text]
  • And Acidic Amino Acid-Rich Basic Leucine Zipper Proteins Modulate Peroxisome Proliferator- Activated Receptor Α (Pparα) Activity
    Proline- and acidic amino acid-rich basic leucine zipper proteins modulate peroxisome proliferator- activated receptor α (PPARα) activity Frédéric Gachona,b,1, Nicolas Leuenbergerc,2, Thierry Claudeld, Pascal Gosa, Céline Jouffeb, Fabienne Fleury Olelaa, Xavier de Mollerat du Jeue, Walter Wahlic, and Ueli Schiblera,1 aDepartment of Molecular Biology, National Center of Competence in Research “Frontiers in Genetics,” Sciences III, University of Geneva, CH-1211 Geneva 4, Switzerland; bDepartment of Pharmacology and Toxicology, University of Lausanne, CH-1005 Lausanne, Switzerland; cCenter for Integrative Genomics, National Center of Competence in Research “Frontiers in Genetics,” University of Lausanne, CH-1015 Lausanne, Switzerland; dLaboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Medicine, Medical University Graz, A-8036 Graz, Austria; and eLife Technologies, Carlsbad, CA 92008 Edited by Steven L. McKnight, University of Texas Southwestern, Dallas, TX, and approved February 4, 2011 (received for review April 7, 2010) In mammals, many aspects of metabolism are under circadian leucine zipper (PAR bZip) proteins, D-site-binding protein control. At least in part, this regulation is achieved by core-clock (DBP), thyrotroph embryonic factor (TEF), and hepatic leuke- or clock-controlled transcription factors whose abundance and/or mia factor (HLF), are examples of such output mediators (for activity oscillate during the day. The clock-controlled proline- review, see ref. 7). Mice deficient of only one or two members and acidic amino acid-rich domain basic leucine zipper proteins of the PAR bZip gene family display rather mild phenotypes, D-site-binding protein, thyrotroph embryonic factor, and hepatic suggesting that the three members execute partially redundant leukemia factor have previously been shown to participate in functions.
    [Show full text]
  • Mit Family Transcriptional Factors in Immune Cell Functions Seongryong Kim Et Al
    Molecules and Cells Minireview MiT Family Transcriptional Factors in Immune Cell Functions Seongryong Kim1,3, Hyun-Sup Song1,3, Jihyun Yu1, and You-Me Kim1,2,* 1Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea, 2The Center for Epidemic Preparedness, KAIST, Daejeon 34141, Korea, 3These authors contributed equally to this work. *Correspondence: [email protected] https://doi.org/10.14348/molcells.2021.0067 www.molcells.org The microphthalmia-associated transcription factor family transcription factor E3 (TFE3), transcription factor EB (TFEB), (MiT family) proteins are evolutionarily conserved transcription transcription factor EC (TFEC) factors that perform many essential biological functions. In mammals, the MiT family consists of MITF (microphthalmia- INTRODUCTION associated transcription factor or melanocyte-inducing transcription factor), TFEB (transcription factor EB), TFE3 The microphthalmia-associated transcription factor fami- (transcription factor E3), and TFEC (transcription factor EC). ly (MiT family) consists of four transcription factors: MITF These transcriptional factors belong to the basic helix-loop- (microphthalmia-associated transcription factor or melano- helix-leucine zipper (bHLH-LZ) transcription factor family and cyte-inducing transcription factor), TFEB (transcription factor bind the E-box DNA motifs in the promoter regions of target EB), TFE3 (transcription factor E3), and TFEC (transcription genes to enhance transcription. The best studied functions factor EC) (Goding and Arnheiter, 2019; Napolitano and of MiT proteins include lysosome biogenesis and autophagy Ballabio, 2016; Oppezzo and Rosselli, 2021). The Mitf gene induction. In addition, they modulate cellular metabolism, encoding the first member of the MiT family, MITF, was dis- mitochondria dynamics, and various stress responses.
    [Show full text]
  • Complexity of CEBPA Dysregulation in Human Acute Myeloid Leukemia Thomas Pabst1,3 and Beatrice U
    Published OnlineFirst August 25, 2009; DOI: 10.1158/1078-0432.CCR-08-2941 Published Online First on August 25, 2009 as 10.1158/1078-0432.CCR-08-2941 Molecular Pathways Complexity of CEBPA Dysregulation in Human Acute Myeloid Leukemia Thomas Pabst1,3 and Beatrice U. Mueller2,3 Abstract The transcription factor CCAAT enhancer binding protein alpha (CEBPA) is crucial for normal development of granulocytes. Various mechanisms have been identified how CEBPA function is dysregulated in patients with acute myeloid leukemia (AML). In par- ticular, dominant-negative mutations located either at the N- or the C terminus of the CEBPA gene are observed in roughly 10% of AML patients, either in the combination on separate alleles or as sole mutation. Clinically significant complexity exists among AML with CEBPA mutations, and patients with double CEBPA mutations seem to have a more favorable course of the disease than patients with a single mutation. In addition, myeloid precursor cells of healthy carriers with a single germ-line CEBPA mutation evolve to overt AML by acquiring a second sporadic CEBPA mutation. This review sum- marizes recent reports on dysregulation of CEBPA function at various levels in human AML and therapeutic concepts targeting correction of CEBPA activity. The currently available data are persuasive evidence that impaired CEBPA function contributes di- rectly to the development of AML, whereas restoring CEBPA function represents a promising target for novel therapeutic strategies in AML. (Clin Cancer Res 2009;15 (17):5303–7) Background binding domain in the C-terminal part. As a condition for DNA binding, dimerization depends on the basic amino acid The hallmark of acute myeloid leukemia (AML) is the accu- residues, and genomic alterations in the exact distance between mulation of myeloid precursor cells in the bone marrow.
    [Show full text]