Sonoma House: Monitoring of the First U.S

Total Page:16

File Type:pdf, Size:1020Kb

Sonoma House: Monitoring of the First U.S Sonoma House: Monitoring of the First U.S. Passive House Retrofit A. German, B. Weitzel, C. Backman, M. Hoeschele, and B. Dakin Alliance for Residential Building Innovation (ARBI) December 2012 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: mailto:[email protected] Available for sale to the public, in paper, from: U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 phone: 800.553.6847 fax: 703.605.6900 email: [email protected] online ordering: http://www.ntis.gov/ordering.htm Printed on paper containing at least 50% wastepaper, including 20% postconsumer waste Sonoma House: Monitoring of the First U.S. Passive House Retrofit Prepared for: The National Renewable Energy Laboratory On behalf of the U.S. Department of Energy’s Building America Program Office of Energy Efficiency and Renewable Energy 15013 Denver West Parkway Golden, CO 80401 NREL Contract No. DE-AC36-08GO28308 Prepared by: A. German, B. Weitzel, C. Backman, M. Hoeschele, B. Dakin Alliance for Residential Building Innovation (ARBI) Davis Energy Group, Team Lead 123 C Street Davis, California 95616 NREL Technical Monitor: Cheryn Metzger Prepared under Subcontract No. KNDJ-0-40340-00 December 2012 iii [This page left blank] iv Contents List of Figures ............................................................................................................................................ vi List of Tables .............................................................................................................................................. vi Definitions .................................................................................................................................................. vii Foreward ................................................................................................................................................... viii Acknowledgements ................................................................................................................................. viii 1 Introduction ........................................................................................................................................... 1 1.1 Background and Motivation ................................................................................................1 1.2 Research Questions ..............................................................................................................1 2 House Description ................................................................................................................................ 3 2.1 Energy Efficiency Measure (EEM) Details .........................................................................4 Thermal Envelope ................................................................................................................6 Mechanical and Electrical Systems .....................................................................................8 Lighting and Appliances ....................................................................................................11 Photovoltaic System...........................................................................................................11 2.2 Preliminary Savings Estimations .......................................................................................11 3 Methodology ....................................................................................................................................... 12 3.1 General Technical Approach .............................................................................................12 3.2 Measurements ....................................................................................................................12 Monitoring Data Points ......................................................................................................12 Short Term Tests ................................................................................................................12 3.3 Equipment ..........................................................................................................................15 Data Logger Specifications ................................................................................................15 Sensor Types and Specifications .......................................................................................15 3.4 Computation of Monitoring Variables ...............................................................................16 4 Results ................................................................................................................................................. 19 4.1 System Commissioning .....................................................................................................19 4.2 Short Term Test Results .....................................................................................................19 4.3 Monitoring Results and Discussion ...................................................................................20 Solar Water Heating ...........................................................................................................20 Load Reduction and HVAC Strategies ..............................................................................27 4.4 Annual Energy Use ............................................................................................................29 4.5 Project Costs and Builder Feedback ..................................................................................33 5 Recommendations and Conclusions ............................................................................................... 37 References ................................................................................................................................................. 39 Appendix A: Building Plans ..................................................................................................................... 40 v List of Figures Figure 1. The Sonoma House is the first certified Passive House retrofit in the United States. ........ 3 Figure 2. Remodel floor plan ..................................................................................................................... 4 Figure 3. Floor layers above slab for floor type #1 .................................................................................. 6 Figure 4. Wall construction ........................................................................................................................ 7 Figure 5. Exterior wall showing foil-faced EPS and furring for siding .................................................. 7 Figure 6: Netted blown insulation at roof and kneewall ......................................................................... 8 Figure 7. Mechanical schematic ................................................................................................................ 9 Figure 8. Mechanical closet containing solar thermal storage system and tankless water heater . 10 Figure 9. Sensor location schematic ...................................................................................................... 14 Figure 10. Monthly solar fraction and hot water use for the domestic hot water system ................. 21 Figure 11. Total 15 minute domestic hot water volume draw by size ................................................. 22 Figure 12. Tankless water heater 15-minute efficiency versus hot water draw ................................. 23 Figure 13. Summer water heater system operation .............................................................................. 24 Figure 14. Winter water heater system operation .................................................................................. 25 Figure 15. Contribution of solar thermal and mini-split to space heating and comparison to BEopt heating loads ....................................................................................................................................... 26 Figure 16. Winter heating operation of solar hydronic heating coil and mini-split heat pump ........ 27 Figure 17. Degree day comparison ......................................................................................................... 31 Figure 18. Breakdown of monitored energy
Recommended publications
  • Net Energy Analysis of a Solar Combi System with Seasonal Thermal Energy Store
    Net energy analysis of a solar combi system with Seasonal Thermal Energy Store Colclough, S., & McGrath, T. (2015). Net energy analysis of a solar combi system with Seasonal Thermal Energy Store. Applied Energy, 147, 611-616. https://doi.org/10.1016/j.apenergy.2015.02.088 Published in: Applied Energy Document Version: Peer reviewed version Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights © Elsevier 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits distribution and reproduction for non-commercial purposes, provided the author and source are cited. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:29. Sep. 2021 Elsevier Editorial System(tm) for Applied Energy Manuscript Draft Manuscript Number: Title: Net Energy analysis of a Solar Combi System with Seasonal Thermal Energy Store Article Type: Original Paper Keywords: Seasonal Thermal Energy Storage; STES; Passive House; Life Cycle Analysis; Net Energy Ratio Corresponding Author: Dr.
    [Show full text]
  • Heating, Cooling, and Ventilation Strategies in Passive House Design
    On a Path to Zero Energy Construction: Passive House & Building Workshop Heating, Cooling, and Ventilation Strategies in Passive House Design John Semmelhack www.think-little.com AGENDA o HVAC goals o Heating, Cooling, Dehumidification o Ventilation o Single-family, mixed-humid climate focus HVAC GOALS o We don’t build buildings in order to save energy o Our first job is to provide comfort! o Indoor Air Quality – first, do no harm HEAT – COOL – DEHU AGENDA o PHIUS heating + cooling load standards o Load calculations o Equipment selection o Supplemental dehumidification? o Duct design PHIUS HEATING + COOLING METRICS PHIUS HEATING + COOLING METRICS For a 2,500ft2 house: 10,000 Btu/hr heating load 12,250 Btu/hr cooling load “1-ton” LOAD CALCULATIONS* Why do we do load calcs? * aka “Peak loads” or “Design Loads” LOAD CALCULATIONS Why do we do load calcs? Prior to selecting equipment, we need to know how much heat we need to add or remove in order to maintain comfort during peak/design conditions. We’d like to pick equipment that’s neither too small (bad comfort) nor too big (higher cost and bad comfort) ……but just right! LOAD CALCULATIONS Three loads: 1. Heating 2. Sensible cooling 3. Latent cooling (aka dehumidification) LOAD CALCULATIONS Three loads: 1. Heating 2. Sensible cooling 3. Latent cooling LOAD CALCULATION METHODS Manual J o Room-by-room or block load o Typically uses 1% and 99% ASHRAE design temperatures o Incorporates solar and internal gains for cooling, but not for heating o Thermal mass/lag is accounted for in solar gains.
    [Show full text]
  • Passive House 101
    PASSIVE HOUSE 101 An Introduction t o Passive Buildings & D e s i g n AGENDA What is Passive House Passive House Standards & Metrics Design Principles and Features Case Studies and Lessons Learned Can You Find the Passive House? Can You Find the Passive House? Passive House Passive House is a performance-based building certification that focuses on the dramatic reduction of energy use for space heating and cooling Passive House achieves: ● Dramatic reduction in overall energy use ● Dramatic reduction in carbon emissions ● Proven improvement in air quality, health, and occupant comfort ● Greater building durability ● Resilience to major weather events ● Lower operating costs ● Pathway to net-zero Goal: 90% reduction in heating and cooling loads comparted to a typical building Goal: 60-70% reduction in Typical Residential Passive House overall energy use Building comparted to typical buildings Measured Performance: 30-45% less carbon emissions than MA stretch code buildings Source: New Ecology Air Quality, Health, and Comfort Continuous ventilation of filtered air Increased use of non-toxic materials Consistent comfortable room temps Elimination of air drafts Increased natural lighting Quieter acoustic conditions Durability & Resilience Shelter in Place Maintain consistent indoor temps during extreme weather and power outages Durable & Long Lasting Construction Resists mold, rot, pests & water intrusion Passive Not Active Lower reliance on mechanical systems Passive House Examples Rocksbury House Placetailor Design/Build 33.2 EUI Wayland
    [Show full text]
  • I HISTORIC WINDOWS and SUSTAINABILITY
    HISTORIC WINDOWS AND SUSTAINABILITY: A COMPARISON OF HISTORIC AND REPLACEMENT WINDOWS BASED ON ENERGY EFFICIENCY, LIFE CYCLE ANALYSIS, EMBODIED ENERGY, AND DURABILITY A THESIS SUBMITTED TO THE GRADUATE SCHOOL IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE MASTER OF SCIENCE IN HISTORIC PRESERVATION BY ERIN CASEY WARE (WALTER GRONDZIK) BALL STATE UNIVERSITY MUNCIE, INDIANA MAY 2011 i Acknowledgements I would like to thank the members of my thesis committee, Walter Grondzik, William Hill, and David Kroll, for sharing their time and expertise. ii Table of Contents Acknowledgements ii Chapter 1: Introduction 1 Chapter 2: Defining Sustainability 16 Chapter 3: History of Windows 28 Chapter 4: Window Materials 40 Chapter 5: Windows and Energy 53 Chapter 6: Embodied Energy and Life Cycle Analysis 75 Chapter 7: Durability 85 Chapter 8: Findings 91 Appendix A National Park Service Technical Preservation Services Brief 9: The Repair of Historic Wooden Windows 97 Brief 13: The Repair and Thermal Upgrading of Historic Steel Windows 104 iii Appendix B Durability of Timber 116 Bibliography 117 iv Chapter 1 Introduction Historic preservation and environmentalism are often understood as unrelated or even opposing disciplines. Environmentalism is seen as dealing with the future while historic preservation is only concerned with the past. Popular perception is that only new buildings constructed using the latest green products are sustainable. Historic preservationists have long argued that historic buildings are inherently green because the energy required in their construction has already been expended. While this embodied energy is certainly a consideration, thorough research on whether historic buildings are sustainable in other ways has not been conducted.
    [Show full text]
  • Moisture Conditions in Passive House Wall Constructions
    Available online at www.sciencedirect.com ScienceDirect Energy Procedia 78 ( 2015 ) 219 – 224 6th International Building Physics Conference, IBPC 2015 Moisture conditions in passive house wall constructions Lars Gullbrekkena*, Stig Gevingb, Berit Timea, Inger Andresena aSINTEF Buiding and Infrastructure, Trondheim, Norway bNTNU, Norwegian University of Science and technology, Department of Civil and Transport Engineering , Trondheim, Norway Abstract Buildings for the future, i.e zero emission buildings and passive houses, will need well insulated building envelopes, which includes increased insulation thicknesses for roof, wall and floor constructions. Increased insulation thicknesses may cause an increase in moisture levels and thereby increased risk of mold growth. There is need for increased knowledge about moisture levels in wood constructions of well insulated houses, to ensure robust and moisture safe solutions. Monitoring of wood moisture levels and temperatures have been performed in wall- and roof constructions of 4 passive houses in three different locations representing different climate conditions in Norway. © 20152015 The The Authors. Authors. Published Published by byElsevier Elsevier Ltd. Ltd This. is an open access article under the CC BY-NC-ND license (Peerhttp://creativecommons.org/licenses/by-nc-nd/4.0/-review under responsibility of the CENTRO). CONGRESSI INTERNAZIONALE SRL. Peer-review under responsibility of the CENTRO CONGRESSI INTERNAZIONALE SRL Keywords: Wood fram wall, moisture, mould growth, 1. Introduction Buildings that are designed to meet the high energy performance requirement of the future, require well insulated building envelopes, with increased thicknesses of roof, wall and floor structures. Increased insulation thicknesses in the external structure could lead to increased moisture level and thus increased risk of mold growth.
    [Show full text]
  • Green Retrofit of Existing Non-Domestic Buildings As a Multi Criteria Decision Making Process
    Green retrofit of existing non-domestic buildings as a multi criteria decision making process by Jin Si Institute of Environmental Design and Engineering University College London Primary Supervisor: Dr Ljiljana Marjanovic-Halburd, IEDE Secondary Supervisor: Dr Sarah Bell, CEGE A Thesis Submitted for the Degree of Doctor of Philosophy University College London 2017 Abstract With increased awareness of natural resources depletion, environmental pollution and social issues, the importance of sustainable development has been emphasised. Sustainable development is accepted as a guiding principle to reconcile economic development with limited natural resources and the dangers of environmental degradation. The building industry is a vital element of any economy and can have a significant impact on the environment. By virtue of the large size of existing buildings, green retrofit of existing buildings is an effective approach to improve building sustainability and energy performance. Unlike domestic building retrofit, bound in the research, non-domestic building retrofit lacks a sufficient research and requires a further investigation. Green retrofit of existing buildings is a complex decision making process. With the rise of sustainability agenda in the building sector, it is essential for decision makers to consider sustainability criteria, which address environmental, economic and social performance. Due to the intrinsic characteristic of existing buildings, technical challenges can emerge when integrating green technologies or measures. The qualitative and quantitative nature of these multiple criteria can increase the complexity of the decision making process. In addition, the decision making process may involve stakeholders from varying backgrounds. The conflicting perspectives can be the main barrier in the decision making of green retrofits.
    [Show full text]
  • Climate Change, Buildings, and the Passive House Standard
    Weathering the Storm: Climate Change, Buildings, and the Passive House Standard Jennifer Hogan, RRO, CET, Certified Passive House Consultant, LEED AP Pretium Engineering 4903 Thomas Alton Blvd., Suite 201, Burlington, ON L7M 0W8 Phone: 905-333-6550 • E-mail: [email protected] R C I I NTE R NAT I ONAL C ONVENT I ON AND T R ADE S HOW • M A rc H 14-19, 2019 H OGAN • 2 1 1 Abstract The climate data are clear: climate change is happening. As the severity and frequency of storms and other extreme weather events increase, it becomes more and more critical that we achieve the targets set out in the Paris Agreement. While limiting our global temperature rise to 2°C (3.6°F) may seem like an easy target, how we design, construct, and operate buildings will need to change dramatically. There are many sustainable building initiatives/programs, but Passive House is the most rigorous voluntary energy-based standard in the design and construction industry today. Passive House buildings: • Achieve up to a 90% reduction in energy required for space heating and cooling • Maintain a habitable interior temperature for weeks without power • Have excellent indoor environmental quality • Allow design flexibility Through the course of this paper, actual project examples will be used to reinforce each of the five key principles of the Passive House standard and how quality assurance is car- ried out for each: • Low U-value and continuous insulation • Continuous air barrier layer • Elimination of thermal bridges • Use of high-performance glazing • Optimization of mechanical ventilation with heat recovery We will conclude with a discussion on how the standard is being implemented in codes and standards at the local level using the Toronto Green Standard as an example, and dis- cuss the potential impact of widespread adoption of the standard.
    [Show full text]
  • Passive House Standard: Heating a Home with a Hair Dryer
    Passive Houses – “Homes you can Heat with a Hair Dryer.” For City of Portland ReTHINK Education Series 2009 By Tad Everhart - [email protected] – 503 239-8961 This is not the Time for “Incrementalism.” With potentially catastrophic climate change, severe economic decline, need for green collar jobs, and increasing energy prices, we need to build carbon-neutral buildings, not buildings that are merely x% “better than code.” After all, a code building is the worst building you can legally build. Why base our standard on the worst building? Passive House is an Approach that starts with Conservation and a Standard based on Science and Technology. Passive House starts from the premise that we must reduce energy use in buildings as far as possible. It recognizes that generally speaking, conserving energy and using it efficiently is less expensive than producing energy. It optimizes the building to the heating source as far as is technically and economically feasible. You can design and build a Passive House for no more than a 10% increase in costs---a cost quickly repaid. If we all lived in houses meeting the Passive House standard, we could lower our energy use to sustainable levels. And as technology progresses, we can raise the standards. Let’s Radically Reduce Building Energy Use: 90% below Conventional Buildings. At this level of efficiency, we can eliminate the conventional heating or air conditioning systems. This offsets any extra costs in building an energy-efficient envelope. Passive House Europe has 15,000 Passive Houses. The European Parliament adopted a resolution to make Passive House the mandatory building energy code for member nations starting 2012.
    [Show full text]
  • SUSTAINABILITY GUIDE for HISTORIC and OLDER HOMES Abigail Ahern PROJECT DESCRIPTION
    CONCORD’S SUSTAINABILITY GUIDE FOR HISTORIC AND OLDER HOMES Abigail Ahern PROJECT DESCRIPTION The UNH Sustainability Institute Fellowship pairs students from across the United States with municipal, educational, corporate, and non-profit partners in New England to work on transformative sustainability initiatives each summer. Sustainability Fellows undertake challenging projects that are designed to create an immediate impact, offer a quality learning experience, and foster meaningful collaboration. Fellows work with their mentors at partner organizations during the summer, supported by a network of Fellows, partners, alumni, and the UNH Team. This summer, Abigail Ahern was chosen to work with the Town of Concord to develop a set of guidelines for historic homeowners interested in retrofitting their historic or older homes to become more sustainable. Concord has long been committed to sustainability and has a goal of reducing greenhouse gas emissions by 80% by 2050. About 30% of community wide greenhouse emissions in Concord come from residential homes. Achieving Concord’s 80% greenhouse gas reduction goal will require retrofitting the existing housing stock, much of which is located within an historic district or is subject to a Demolition Review bylaw, approximately 1,260 homes (14% of total buildings), to be more energy efficient and carbon-free. Retrofitting historic buildings located in a designated Historic District presents unique challenges because replacing inefficient windows and/or installing rooftop solar panels requires approval by the Historic Districts Commission (HDC) and may be of concern to members of the HDC when such work changes the look or character of the building. Additionally, owners of older houses that are subject to the Demolition Review bylaw may believe that retrofitting their home may be cost prohibitive or less efficient than tearing down and building new.
    [Show full text]
  • Solar Combisystems
    Method and comparison of advanced storage concepts A Report of IEA Solar Heating and Cooling programme - Task 32 “Advanced storage concepts for solar and low energy buildings” Report A4 of Subtask A December 2007 Jean-Christophe Hadorn Thomas Letz Michel Haller Method and comparison of advanced storage concepts Jean-Christophe Hadorn, BASE Consultants SA, Geneva, Switzerland Thomas Letz INES Education, Le Bourget du Lac, France Contribution on method: Michel Haller Institute of Thermal Engineering Div. Solar Energy and Thermal Building Simulation Graz University of Technology Inffeldgasse 25 B, A-8010 Graz A technical report of Subtask A BASE CONSULTANTS SA 8 rue du Nant CP 6268 CH - 1211 Genève INES - Education Parc Technologique de Savoie Technolac 50 avenue du Léman BP 258 F - 73 375 LE BOURGET DU LAC Cedex 3 Executive Summary This report presents the criteria that Task 32 has used to evaluate and compare several storage concepts part of a solar combisystem and a comparison of storage solutions in a system. Criteria have been selected based on relevance and simplicity. When values can not be assessed for storage techniques to new to be fully developped, we used more qualitative data. Comparing systems is always a very hard task. Boundary conditions and all paramaters must be comparable. This is very difficult to achieve when 9 analysts work around the world on similar systems but with different storage units. This report is an attempt of a comparison. Main generic results that we can draw with some confidency from the inter comparison of systems are: - The drain back principle increases thermal performances because it does not use of a heat exchanger in the solar loop and increases therefore the efficiency of the solar collector.
    [Show full text]
  • Calculating Design Heating Loads for Superinsulated Buildings
    Technology Solutions for New and Existing Homes Building America Case Study Calculating Design Heating Loads for Superinsulated Buildings Ithaca, New York Superinsulated homes offer many benefits, including improved comfort, PROJECT INFORMATION reduced exterior noise, lower energy costs, and the ability to withstand power Project Name: Third Residential and fuel outages under much more comfortable conditions than a typical home. EcoVillage Experience (TREE) The tighter building envelope reduces the heating and cooling loads, requiring Location: Ithaca, NY much smaller heating, ventilating, and air-conditioning equipment than for a Partners: conventional home. Sizing the mechanical system to these much lower loads Builder: AquaZephyr, LLC reduces first costs and the size of the distribution system. Consortium for Advanced Residential Buildings, carb-swa.com Although these homes aren’t necessarily constructed with extra mass in the form of concrete floors and walls, the increase in insulation of the building Building Component: Heating, ventilating, and air conditioning envelope results in high thermal inertia that makes the building less sensitive to drastic temperature swings and decreases the peak heating load demand. Alter- Application: New and/or retrofit; single- family and/or multifamily native methods for calculating heating loads that take this inertia into account Year tested: 2014 (along with solar and internal gains) result in smaller and more appropriate design loads than those calculated using Manual J version 8 (MJ8). Climate zones: Cold (5–8) During the winter of 2013–2014, the U.S. Department of Energy’s Building PERFORMANCE DATA America team Consortium for Advanced Residential Buildings (CARB) moni- Accuracy of Sizing Method: tored the energy use of three homes in the EcoVillage community in climate PHPP method: 30%–37% higher than zone 6 to evaluate the accuracy of two different mechanical system sizing actual design loads methods for low-load homes.
    [Show full text]
  • Deep Energy Retrofits Market in the Greater Boston Area
    DEEP ENERGY RETROFITS MARKET IN THE GREATER BOSTON AREA Commissioned by the Netherlands Enterprise Agency Final Report DEEP ENERGY RETROFITS MARKET IN THE GREATER BOSTON AREA Submitted: 13 October 2020 Prepared for: The Netherlands Innovation Network This report was commissioned by the Netherlands Enterprise Agency RVO. InnovationQuarter served as an advisor on the project. Contents I. Introduction ................................................................................................................................ 3 II. Overview of Policy Drivers ........................................................................................................... 5 III. Economic Opportunity Assessment .............................................................................................. 9 IV. Market Snapshot ....................................................................................................................... 11 V. Actor Profiles ............................................................................................................................. 24 VI. Appendix ................................................................................................................................... 33 2 I. Introduction Cadmus is supporting the Netherlands Innovation Network (NIN) by providing an overview of the deep energy retrofit market in the Greater Boston Area. This report is intended to help Dutch companies in identify strategic opportunities to enter or expand their business opportunities in the Greater
    [Show full text]