Notes from Observatories Observations of The

Total Page:16

File Type:pdf, Size:1020Kb

Notes from Observatories Observations of The NOTES FROM OBSERVATORIES OBSERVATIONS OF THE SPECTRUM OF THE COMPANION TO BD +4o4048 George H. Herbig Lick Observatory, University of California The star having the lowest luminosity known at the present time is the common proper motion companion of the M3 dwarf star BD +4^4048.1 The fainter star was discovered by Van Bies- broeck,2 and lies 74^ from the primary. The magnitude has been 3 4 determined by Baade as mPg— 19.2, and by Luyten and Jose as mVg = 19.5. The color index was estimated by both observers to be +1.4 mag. The trigonometric parallax of the system is given in the 1952 edition of the Yale General Catalogue of Trigo- nometric Stellar Parallaxes as 0^168 =b CK/CXH, which corresponds to a value of about +19.0 for the visual absolute magnitude of BD +4o4048(B). The M-type dwarf of lowest luminosity whose spectrum has previously been observed is Wolf 359, of type dM6e on the Mount Wilson system, whose Mv is about +16.5. Observation of the spectrum of BD +4o4048(B) presents some problems due to the faintness of the star (m^ = 17.9) and to its appreciable proper motion (1^4 annually). The system is located in a rich region of the Milky Way in Aquila, but a recent direct photograph taken with the Crossley reflector shows that at the present time the companion is in a favorable position for observation, in that no field stars are near enough to contaminate its spectrum.5 Three spectrograms of BD +4o4048(B) in the photographic region were obtained on September 3, 7, and 8, 1956 (UT), with the nebular spectrograph of the Crossley reflector and exposure times of about four hours. The dispersion is 430 Â/mm at Ηγ. Although the star could be seen faintly by looking through the slit jaws at the focal plane of the telescope, it was positioned initially by placing the slit in the proper position angle (determined by measurement of the direct photograph) through an easily visible fifteenth-magnitude star about 30^ away. The continuous spectrum of BD +4o4048(B) on all the 531 © Astronomical Society of the Pacific · Provided by the NASA Astrophysics Data System 532 NOTES FROM OBSERVATORIES spectrograms is overlain by a heavy sky spectrum, and classi- fication is most difficult and uncertain. The strongest TiO band heads can be discerned on all three plates, and Ca ι λ 4227 as well is suspected on the first spectrogram. All that the writer is will- ing to hazard from the present material is that the band strengths correspond to an intermediate subclass of type M. The type is not later than that of Wolf 359, so that a very uncertain classi- fication of dM5± on the Mount Wilson system seems reasonable. No emission whatsoever is visible on the September 7 and 8 spectrograms, hut on the plate of September 3 extraordinarily intense bright lines are present at the hydrogen lines (from Η β through H9) and at Η and Κ of Ca n. There is no obvious change in the visibility of the absorption spectrum between the three spectrograms, but the continuum extends farther to shorter wave- lengths on the exposure showing the bright lines than it does on the other two plates. Presumably a flare occurred during the September 3 exposure. The centering of the star in the slit jaws was checked a num- ber of times during the 4.5-hour exposure on September 3, and no conspicuous change in brightness was noted on these occasions, but a flare that lasted only about half an hour could easily have been missed between these inspections. The general brightness of the star seemed, visually at least, to be about the same on all three nights. The intensities of the bright lines of BD+4o4048(B) are greater with respect to the continuous spectrum on the plate of September 3 than in any other Me dwarf that has been observed by the writer. The case of Ηβ is particularly interesting. This emission line is not obliterated in Me dwarfs by overlying TiO as it often is in M-type long-period variables, but even so, Ηβ is not an outstanding feature in the band structure between λ 4700 and λ 5000 in low-dispersion spectra of M4e-M6e dwarfs. In BD-f-4o4048(B), however, Ηβ stands out far above the con- tinuum as a strikingly intense emission line on the plate of Sep- tember 3 (see Plate I). It is not known whether this is due to the great strength of the entire bright-line spectrum on that plate or whether the emission on that occasion originated at a higher level where there was less interference from TiO. © Astronomical Society of the Pacific · Provided by the NASA Astrophysics Data System PLATE I L726-8 AB d M 5.5 e φ fi inw <Μι..φι mm»· ^ + 4° 4048 Β- - Sept. 3,1956 Η Ι-Ι- » - Sept. 7 Μ Μ tfî fr 5Β - Sept. 8 Above: The upper two spectra (of different exposure times) are of L726-8(AB), type dM5.5e + dM5.5e, for comparison with the bright- line spectrum of BD+4o4048(B). The following component of this pair is Luyten's flare star UV Ceti. Below: Three spectrograms of BD+4o4048(B) ; the position of its continuous spectrum is shown by lines in the right-hand margin. Bright lines of hydrogen and Ca n appear only on the exposure of September 3. The strong emission lines extending across the spectrum on all three ex- posures are Hg ι λ 4047 and λ 4358, which are due to scattered city lights. The overexposed star spectrum just above the spectrum of BD -l-4o4048(B) is that of a near-by fifteenth-magnitude star. © Astronomical Society of the Pacific · Provided by the NASA Astrophysics Data System NOTES FROM OBSERVATORIES 533 If BD 4-4o4048(B) is a flare star in the usual sense of that term, it differs from other members of that class in not possessing bright lines at minimum light.6 ι BD +4o4048 = HD 180617(Ma) : α = 19*12^0, Ô = +5^(1900), mv = 9.1. 2 G. Van Biesbroeck, AJ., 51, 61,1944. 3 Carnegie Inst. Washington Yearbook, 43, 9, 1944. 4 W. J. Luyten and P. D. Jose, Harvard Announcenient Card No. 697, 1944. 5 This is not the case for another star of very low luminosity whose observation has also been attempted: L745-46(B) at the present time lies within a few seconds of a much brighter field star. It will be perhaps a decade before proper motion opens up the pair to the point where L745-46(B) can be observed separately at the scale of the Crossley re- flector. 6 The "flash" stars found by G. Haro and his collaborators in the Orion Nebula and in the Taurus dark clouds do not generally exhibit emis- sion lines at normal light, but the relationship of these variables to the near-by dMe flare stars like UV Ceti and AD Leonis is not yet entirely clear. A LATE-TYPE STAR OF VERY LARGE RADIAL VELOCITY* George W. Preston Berkeley Astronomical Department, University of California AND William P. Bidelman Lick Observatory, University of California Several months ago Dr. G. H. Herbig noticed that the star HD 2320781 appeared to be a very red object on Lick copies of the National Geographic Society-Palomar Observatory Sky Sur- vey plates, and he suggested that it might prove to be of interest. A low-dispersion spectrogram was subsequently obtained by one of us (W.P.B.) ; it was apparent on inspection of this spectro- gram that this star was an unusual late-type object with an * Presented at the Berkeley joint meeting of the Astronomical Society of the Pacific and the American Astronomical Society. © Astronomical Society of the Pacific · Provided by the NASA Astrophysics Data System Οcι -χί- hvi <ν J=, υ α3 CO Ο C\JΟ CO Φ Cvl CVJ Q ë Λΐ- ω Η r-C) f^\ < w <V ■ - Oj Μ ω ^ σ !-i OIL Ρ Ο ro ÖO O ir¿ o<u en σ © Astronomical Society of the Pacific · Provided by the NASA Astrophysics Data System .
Recommended publications
  • Commission 27 of the Iau Information Bulletin
    COMMISSION 27 OF THE I.A.U. INFORMATION BULLETIN ON VARIABLE STARS Nos. 2401 - 2500 1983 September - 1984 March EDITORS: B. SZEIDL AND L. SZABADOS, KONKOLY OBSERVATORY 1525 BUDAPEST, Box 67, HUNGARY HU ISSN 0374-0676 CONTENTS 2401 A POSSIBLE CATACLYSMIC VARIABLE IN CANCER Masaaki Huruhata 20 September 1983 2402 A NEW RR-TYPE VARIABLE IN LEO Masaaki Huruhata 20 September 1983 2403 ON THE DELTA SCUTI STAR BD +43d1894 A. Yamasaki, A. Okazaki, M. Kitamura 23 September 1983 2404 IQ Vel: IMPROVED LIGHT-CURVE PARAMETERS L. Kohoutek 26 September 1983 2405 FLARE ACTIVITY OF EPSILON AURIGAE? I.-S. Nha, S.J. Lee 28 September 1983 2406 PHOTOELECTRIC OBSERVATIONS OF 20 CVn Y.W. Chun, Y.S. Lee, I.-S. Nha 30 September 1983 2407 MINIMUM TIMES OF THE ECLIPSING VARIABLES AH Cep AND IU Aur Pavel Mayer, J. Tremko 4 October 1983 2408 PHOTOELECTRIC OBSERVATIONS OF THE FLARE STAR EV Lac IN 1980 G. Asteriadis, S. Avgoloupis, L.N. Mavridis, P. Varvoglis 6 October 1983 2409 HD 37824: A NEW VARIABLE STAR Douglas S. Hall, G.W. Henry, H. Louth, T.R. Renner 10 October 1983 2410 ON THE PERIOD OF BW VULPECULAE E. Szuszkiewicz, S. Ratajczyk 12 October 1983 2411 THE UNIQUE DOUBLE-MODE CEPHEID CO Aur E. Antonello, L. Mantegazza 14 October 1983 2412 FLARE STARS IN TAURUS A.S. Hojaev 14 October 1983 2413 BVRI PHOTOMETRY OF THE ECLIPSING BINARY QX Cas Thomas J. Moffett, T.G. Barnes, III 17 October 1983 2414 THE ABSOLUTE MAGNITUDE OF AZ CANCRI William P. Bidelman, D. Hoffleit 17 October 1983 2415 NEW DATA ABOUT THE APSIDAL MOTION IN THE SYSTEM OF RU MONOCEROTIS D.Ya.
    [Show full text]
  • The Dunhuang Chinese Sky: a Comprehensive Study of the Oldest Known Star Atlas
    25/02/09JAHH/v4 1 THE DUNHUANG CHINESE SKY: A COMPREHENSIVE STUDY OF THE OLDEST KNOWN STAR ATLAS JEAN-MARC BONNET-BIDAUD Commissariat à l’Energie Atomique ,Centre de Saclay, F-91191 Gif-sur-Yvette, France E-mail: [email protected] FRANÇOISE PRADERIE Observatoire de Paris, 61 Avenue de l’Observatoire, F- 75014 Paris, France E-mail: [email protected] and SUSAN WHITFIELD The British Library, 96 Euston Road, London NW1 2DB, UK E-mail: [email protected] Abstract: This paper presents an analysis of the star atlas included in the medieval Chinese manuscript (Or.8210/S.3326), discovered in 1907 by the archaeologist Aurel Stein at the Silk Road town of Dunhuang and now held in the British Library. Although partially studied by a few Chinese scholars, it has never been fully displayed and discussed in the Western world. This set of sky maps (12 hour angle maps in quasi-cylindrical projection and a circumpolar map in azimuthal projection), displaying the full sky visible from the Northern hemisphere, is up to now the oldest complete preserved star atlas from any civilisation. It is also the first known pictorial representation of the quasi-totality of the Chinese constellations. This paper describes the history of the physical object – a roll of thin paper drawn with ink. We analyse the stellar content of each map (1339 stars, 257 asterisms) and the texts associated with the maps. We establish the precision with which the maps are drawn (1.5 to 4° for the brightest stars) and examine the type of projections used.
    [Show full text]
  • The Nearest Stars: a Guided Tour by Sherwood Harrington, Astronomical Society of the Pacific
    www.astrosociety.org/uitc No. 5 - Spring 1986 © 1986, Astronomical Society of the Pacific, 390 Ashton Avenue, San Francisco, CA 94112. The Nearest Stars: A Guided Tour by Sherwood Harrington, Astronomical Society of the Pacific A tour through our stellar neighborhood As evening twilight fades during April and early May, a brilliant, blue-white star can be seen low in the sky toward the southwest. That star is called Sirius, and it is the brightest star in Earth's nighttime sky. Sirius looks so bright in part because it is a relatively powerful light producer; if our Sun were suddenly replaced by Sirius, our daylight on Earth would be more than 20 times as bright as it is now! But the other reason Sirius is so brilliant in our nighttime sky is that it is so close; Sirius is the nearest neighbor star to the Sun that can be seen with the unaided eye from the Northern Hemisphere. "Close'' in the interstellar realm, though, is a very relative term. If you were to model the Sun as a basketball, then our planet Earth would be about the size of an apple seed 30 yards away from it — and even the nearest other star (alpha Centauri, visible from the Southern Hemisphere) would be 6,000 miles away. Distances among the stars are so large that it is helpful to express them using the light-year — the distance light travels in one year — as a measuring unit. In this way of expressing distances, alpha Centauri is about four light-years away, and Sirius is about eight and a half light- years distant.
    [Show full text]
  • Temperature-Spectral Class-Color Index Relationships for Main
    ASTRONOMY SURVIVAL NOTEBOOK Stellar Evolution SESSION FOURTEEN: THE EVOLUTION OF STARS Approximate Characteristics of Several Types of MAIN SEQUENCE STARS Mass in Contraction Surface Luminosity M Years on Radius Class Comparison to Zero Age Temp. compared Absolute Main in to Sun Main Sequence (K) to sun Magnitude Sequence suns Not well known O6 29.5 10 Th 45,000 140,000 -4.0 2 M 6.2 mid blue super g O9 22.6 100 Th 37,800 55,000 -3.6 4 M 4.7 late blue super g B2 10.0 400 Th 21,000 3,190 -1.9 30 M 4.3 early B5 5.46 1 M 15,200 380 -0.4 140 M 2.8 mid A0 2.48 4 M 9,600 24 +1.5 1B 1.8 early A7 1.86 10 M 7,920 8.8 +2.4 2 B 1.6 late F2 1.46 15 M 7,050 3.8 +3.8 4 B 1.3 early G2 1.00 20 M 5,800 1.0 +4.83 10 B 1.0 early sun K7 0.53 40 M 4,000 0.11 +8.1 50 B 0.7 late M8 0.17 100 M 2,700 0.0020 +14.4 840B 0.2 late minimum 2 Jupiters Temperature-Spectral Class-Color Index Relationships for Main-Sequence Stars Temp 54,000 K 29,200 K 9,600 K 7,350 K 6,050 K 5,240 K 3,750 K | | | | | | | Sp Class O5 B0 A0 F0 G0 K0 M0 Co Index (UBV) -0.33 -0.30 -0.02 +0.30 +0.58 +0.81 +1.40 1.
    [Show full text]
  • Galaxies – AS 3011
    Galaxies – AS 3011 Simon Driver [email protected] ... room 308 This is a Junior Honours 18-lecture course Lectures 11am Wednesday & Friday Recommended book: The Structure and Evolution of Galaxies by Steven Phillipps Galaxies – AS 3011 1 Aims • To understand: – What is a galaxy – The different kinds of galaxy – The optical properties of galaxies – The hidden properties of galaxies such as dark matter, presence of black holes, etc. – Galaxy formation concepts and large scale structure • Appreciate: – Why galaxies are interesting, as building blocks of the Universe… and how simple calculations can be used to better understand these systems. Galaxies – AS 3011 2 1 from 1st year course: • AS 1001 covered the basics of : – distances, masses, types etc. of galaxies – spectra and hence dynamics – exotic things in galaxies: dark matter and black holes – galaxies on a cosmological scale – the Big Bang • in AS 3011 we will study dynamics in more depth, look at other non-stellar components of galaxies, and introduce high-redshift galaxies and the large-scale structure of the Universe Galaxies – AS 3011 3 Outline of lectures 1) galaxies as external objects 13) large-scale structure 2) types of galaxy 14) luminosity of the Universe 3) our Galaxy (components) 15) primordial galaxies 4) stellar populations 16) active galaxies 5) orbits of stars 17) anomalies & enigmas 6) stellar distribution – ellipticals 18) revision & exam advice 7) stellar distribution – spirals 8) dynamics of ellipticals plus 3-4 tutorials 9) dynamics of spirals (questions set after
    [Show full text]
  • The Solar System
    5 The Solar System R. Lynne Jones, Steven R. Chesley, Paul A. Abell, Michael E. Brown, Josef Durech,ˇ Yanga R. Fern´andez,Alan W. Harris, Matt J. Holman, Zeljkoˇ Ivezi´c,R. Jedicke, Mikko Kaasalainen, Nathan A. Kaib, Zoran Kneˇzevi´c,Andrea Milani, Alex Parker, Stephen T. Ridgway, David E. Trilling, Bojan Vrˇsnak LSST will provide huge advances in our knowledge of millions of astronomical objects “close to home’”– the small bodies in our Solar System. Previous studies of these small bodies have led to dramatic changes in our understanding of the process of planet formation and evolution, and the relationship between our Solar System and other systems. Beyond providing asteroid targets for space missions or igniting popular interest in observing a new comet or learning about a new distant icy dwarf planet, these small bodies also serve as large populations of “test particles,” recording the dynamical history of the giant planets, revealing the nature of the Solar System impactor population over time, and illustrating the size distributions of planetesimals, which were the building blocks of planets. In this chapter, a brief introduction to the different populations of small bodies in the Solar System (§ 5.1) is followed by a summary of the number of objects of each population that LSST is expected to find (§ 5.2). Some of the Solar System science that LSST will address is presented through the rest of the chapter, starting with the insights into planetary formation and evolution gained through the small body population orbital distributions (§ 5.3). The effects of collisional evolution in the Main Belt and Kuiper Belt are discussed in the next two sections, along with the implications for the determination of the size distribution in the Main Belt (§ 5.4) and possibilities for identifying wide binaries and understanding the environment in the early outer Solar System in § 5.5.
    [Show full text]
  • Monday, November 13, 2017 WHAT DOES IT MEAN to BE HABITABLE? 8:15 A.M. MHRGC Salons ABCD 8:15 A.M. Jang-Condell H. * Welcome C
    Monday, November 13, 2017 WHAT DOES IT MEAN TO BE HABITABLE? 8:15 a.m. MHRGC Salons ABCD 8:15 a.m. Jang-Condell H. * Welcome Chair: Stephen Kane 8:30 a.m. Forget F. * Turbet M. Selsis F. Leconte J. Definition and Characterization of the Habitable Zone [#4057] We review the concept of habitable zone (HZ), why it is useful, and how to characterize it. The HZ could be nicknamed the “Hunting Zone” because its primary objective is now to help astronomers plan observations. This has interesting consequences. 9:00 a.m. Rushby A. J. Johnson M. Mills B. J. W. Watson A. J. Claire M. W. Long Term Planetary Habitability and the Carbonate-Silicate Cycle [#4026] We develop a coupled carbonate-silicate and stellar evolution model to investigate the effect of planet size on the operation of the long-term carbon cycle, and determine that larger planets are generally warmer for a given incident flux. 9:20 a.m. Dong C. F. * Huang Z. G. Jin M. Lingam M. Ma Y. J. Toth G. van der Holst B. Airapetian V. Cohen O. Gombosi T. Are “Habitable” Exoplanets Really Habitable? A Perspective from Atmospheric Loss [#4021] We will discuss the impact of exoplanetary space weather on the climate and habitability, which offers fresh insights concerning the habitability of exoplanets, especially those orbiting M-dwarfs, such as Proxima b and the TRAPPIST-1 system. 9:40 a.m. Fisher T. M. * Walker S. I. Desch S. J. Hartnett H. E. Glaser S. Limitations of Primary Productivity on “Aqua Planets:” Implications for Detectability [#4109] While ocean-covered planets have been considered a strong candidate for the search for life, the lack of surface weathering may lead to phosphorus scarcity and low primary productivity, making aqua planet biospheres difficult to detect.
    [Show full text]
  • W359 E31 RS.Pdf
    WOLF 359 "SÉCURITÉ" by Gabriel Urbina (Writer's Note: The following takes place on Day 864 of the Hephaestus Mission) INT. U.S.S. URANIA - FLIGHT DECK - 1400 HOURS We come in on the STEADY HUM of a ship's engine. There's various BEEPS and DINGS from a control console. Sharp-eared listeners might notice that things sound considerably sleeker and smoother than what we're used to. Someone TYPES into a console, and hits a SWITCH. There's a discrete burst of STATIC, followed by - JACOBI Sécurité, sécurité, sécurité. U.S.S. Hephaestus Station, this is the U.S.S. Urania. Be advised that we are on an intercept vector. Request you avoid any course corrections or exterior activity. Please advise your intentions. He hits a BUTTON. For a BEAT he just awaits the reply. JACOBI (CONT'D) Still no reply, sir. You really think someone's alive in there? I mean... look at that thing. It's only duct tape and sheer stubbornness keeping it together. KEPLER No. They're there. Rebroadcast, and transmit the command authentication codes. JACOBI Aye-aye. (hits the radio switch) Sécurité, sécurité, sécurité. U.S.S. Hephaestus, this is the U.S.S. Urania. I say again: we are on an approach vector to your current position. Authentication code: Victor-Uniform-Lima-Charlie- Alpha-November. Please advise your intentions. BEAT. And then - KRRRCH! MINKOWSKI (over radio receiver) U.S.S. Urania, this is Hephaestus Actual. Continue on current course, and use vector zero one decimal nine for your final approach. 2. JACOBI Copy that, Hephaestus Actual.
    [Show full text]
  • The Transfiguration in the Theology of Gregory Palamas And
    Duquesne University Duquesne Scholarship Collection Electronic Theses and Dissertations Spring 2015 Deus in se et Deus pro nobis: The rT ansfiguration in the Theology of Gregory Palamas and Its Importance for Catholic Theology Cory Hayes Follow this and additional works at: https://dsc.duq.edu/etd Recommended Citation Hayes, C. (2015). Deus in se et Deus pro nobis: The rT ansfiguration in the Theology of Gregory Palamas and Its Importance for Catholic Theology (Doctoral dissertation, Duquesne University). Retrieved from https://dsc.duq.edu/etd/640 This Immediate Access is brought to you for free and open access by Duquesne Scholarship Collection. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Duquesne Scholarship Collection. For more information, please contact [email protected]. DEUS IN SE ET DEUS PRO NOBIS: THE TRANSFIGURATION IN THE THEOLOGY OF GREGORY PALAMAS AND ITS IMPORTANCE FOR CATHOLIC THEOLOGY A Dissertation Submitted to the McAnulty Graduate School of Liberal Arts Duquesne University In partial fulfillment of the requirements for the degree of Doctor of Philosophy By Cory J. Hayes May 2015 Copyright by Cory J. Hayes 2015 DEUS IN SE ET DEUS PRO NOBIS: THE TRANSFIGURATION IN THE THEOLOGY OF GREGORY PALAMAS AND ITS IMPORTANCE FOR CATHOLIC THEOLOGY By Cory J. Hayes Approved March 31, 2015 _______________________________ ______________________________ Dr. Bogdan Bucur Dr. Radu Bordeianu Associate Professor of Theology Associate Professor of Theology (Committee Chair) (Committee Member) _______________________________ Dr. Christiaan Kappes Professor of Liturgy and Patristics Saints Cyril and Methodius Byzantine Catholic Seminary (Committee Member) ________________________________ ______________________________ Dr. James Swindal Dr.
    [Show full text]
  • Introduction to ASTR 565 Stellar Structure and Evolution
    Introduction to ASTR 565 Stellar Structure and Evolution Jason Jackiewicz Department of Astronomy New Mexico State University August 22, 2019 Main goal Structure of stars Evolution of stars Applications to observations Overview of course Outline 1 Main goal 2 Structure of stars 3 Evolution of stars 4 Applications to observations 5 Overview of course Introduction to ASTR 565 Jason Jackiewicz Main goal Structure of stars Evolution of stars Applications to observations Overview of course 1 Main goal 2 Structure of stars 3 Evolution of stars 4 Applications to observations 5 Overview of course Introduction to ASTR 565 Jason Jackiewicz Main goal Structure of stars Evolution of stars Applications to observations Overview of course Order in the H-R Diagram!! Introduction to ASTR 565 Jason Jackiewicz Main goal Structure of stars Evolution of stars Applications to observations Overview of course Motivation: Understanding the H-R Diagram Introduction to ASTR 565 Jason Jackiewicz HRD (2) HRD (3) Main goal Structure of stars Evolution of stars Applications to observations Overview of course 1 Main goal 2 Structure of stars 3 Evolution of stars 4 Applications to observations 5 Overview of course Introduction to ASTR 565 Jason Jackiewicz Main goal Structure of stars Evolution of stars Applications to observations Overview of course Basic structure - highly non-linear solution Introduction to ASTR 565 Jason Jackiewicz Main goal Structure of stars Evolution of stars Applications to observations Overview of course Massive-star nuclear burning Introduction
    [Show full text]
  • Absolute-Magnitude Calibration for W Uma-Type Systems. II. in Uence Of
    AbsoluteMagnitude Calibration for W UMatype Systems I I Inuence of Metallicity 1 Slavek Rucinski Longb ow Drive Scarb orough Ontario MW W Canada March ABSTRACT A mo dication to the absolute magnitude calibration for W UMatype systems taking into account dierences in metal abundances is derived on the basis of contact binary systems recently discovered in metalp o or clusters A preliminary estimate of the magnitude of the metallicitydependent term for the B V based calibration is M F eH The calibration based on the V I color is V C exp ected to b e less sensitive with the correction term F eH Need for a metallicitydependent term in the calibration Searches for gravitational microlenses are currently giving large numbers of serendipitously discovered variable stars Among these variables there are many W UMatype contact binaries On the basis of the rst part of the catalog of variable stars discovered during the OGLE pro ject Udalski et al one can estimate the total number of contact binaries which will b e discovered in the Baade Window during OGLE at well over one thousand This estimate is based on discoveries of such systems in the rst part of the catalog which covered one of the OGLE elds ie less than of the whole area searched the Central Baade Window BWC and reached I The newly discovered systems will provide excellent statistics for the p erio d color and amplitude distributions of contact binaries much b etter than those based on the skyeld sample which is heavily biased towards largeamplitude variables Kaluzny
    [Show full text]
  • Dark Green Color Index As a Method of Real-Time In-Season Corn Nitrogen Measurement and Fertilization Upton Siddons University of Arkansas, Fayetteville
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2013 Dark Green Color Index as a Method of Real-time In-season Corn Nitrogen Measurement and Fertilization Upton Siddons University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Agricultural Science Commons, Agronomy and Crop Sciences Commons, and the Plant Biology Commons Recommended Citation Siddons, Upton, "Dark Green Color Index as a Method of Real-time In-season Corn Nitrogen Measurement and Fertilization" (2013). Theses and Dissertations. 667. http://scholarworks.uark.edu/etd/667 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. DARK GREEN COLOR INDEX AS A METHOD OF REAL-TIME IN-SEASON CORN NITROGEN MEASUREMENT AND FERTILIZATION DARK GREEN COLOR INDEX AS A METHOD OF REAL-TIME IN-SEASON CORN NITROGEN MEASUREMENT AND FERTILIZATION A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Crop, Soil, and Environmental Science By Upton Gardner Siddons Hendrix College Bachelor of Arts in Environmental Studies, 2007 May 2013 University of Arkansas ABSTRACT Corn ( Zea mays L.) requires higher rates of nitrogen fertilizer than any other major U.S. crop. Soil and applied N are subject to loss through various mechanisms. A timely, accurate, and precise method for measuring in-season corn N status is needed to ensure high yield and to allow producers to increase nitrogen use efficiency.
    [Show full text]