Hnf4a Is Required for the Development of Cdh6-Expressing Progenitors Into Proximal Tubules in the Mouse Kidney

Total Page:16

File Type:pdf, Size:1020Kb

Hnf4a Is Required for the Development of Cdh6-Expressing Progenitors Into Proximal Tubules in the Mouse Kidney BASIC RESEARCH www.jasn.org Hnf4a Is Required for the Development of Cdh6-Expressing Progenitors into Proximal Tubules in the Mouse Kidney Sierra S. Marable,1,2 Eunah Chung,1,2 and Joo-Seop Park 1,2,3 Due to the number of contributing authors, the affiliations are listed at the end of this article. ABSTRACT Background Hepatocyte NF 4a (Hnf4a) is a major regulator of renal proximal tubule (PT) development. In humans, a mutation in HNF4A impairs PT functions and is associated with Fanconi renotubular syndrome (FRTS). In mice, mosaic deletion of Hnf4a in the developing kidney reduces the population of PT cells, leading to FRTS-like symptoms. The molecular mechanisms underlying the role of Hnf4a in PT develop- ment remain unclear. Methods The gene deletion tool Osr2Cre removed Hnf4a in developing nephrons in mice, generating a novel model for FRTS. Immunofluorescence analysis characterized the mutant phenotype, and lineage analysis tested whether Cadherin-6 (Cdh6)–expressing cells are PT progenitors. Genome-wide mapping of Hnf4a binding sites and differential gene analysis of Hnf4a mutant kidneys identified direct target genes of Hnf4a. Results Deletion of Hnf4a with Osr2Cre led to the complete loss of mature PT cells, lethal to the Hnf4a mutant mice. Cdh6high, lotus tetragonolobus lectin-low (LTLlow) cells serve as PT progenitors and demon- strate higher proliferation than Cdh6low,LTLhigh differentiated PT cells. Additionally, Hnf4a is required for PT progenitors to differentiate into mature PT cells. Genomic analyses revealed that Hnf4a directly reg- ulates the expression of genes involved in transmembrane transport and metabolism. Conclusions Hnf4a promotes the differentiation of PT progenitors into mature PT cells by regulating the expression of genes associated with reabsorption, the major function of PT cells. JASN 31: ccc–ccc, 2020. doi: https://doi.org/10.1681/ASN.2020020184 The kidneys filter the blood, regulate osmotic lev- volume. Numerous transporter and metabolism els, maintain electrolyte balance, and metabolize genes are expressed in the proximal tubules in order drugs. The functional unit of the kidney is the to facilitate the function and energy demands of nephron, which is composed of the glomerulus, these highly active renal epithelial cells.6–12 Despite the proximal tubule, the loop of Henle, and the their importance in kidney function, the molecular distal tubule.1 Eachsegmentofthenephronhas mechanisms of proximal tubule development and distinct physiologic functions and morphology. maturation are not well understood. The proximal tubule cells are the most populous cell type in the kidney, and they carry out the bulk of reabsorption in the nephron.2–4 Under Received February 17, 2020. Accepted July 6, 2020. physiologic conditions, proximal tubules reabsorb Published online ahead of print. Publication date available at approximately two thirds of glomerular-filtered www.jasn.org. water and sodium chloride as well as most of the Correspondence: Dr. Joo-Seop Park, Cincinnati Children’s filtered glucose and phosphate.5 Proximal tubular Hospital Medical Center, Location R1566, ML7007, 3333 Burnet reabsorption of water and metabolites is essential in Avenue, Cincinnati, OH 45229. Email: [email protected] the regulation of body fluid composition and Copyright © 2020 by the American Society of Nephrology JASN 31: ccc–ccc, 2020 ISSN : 1046-6673/3111-ccc 1 BASIC RESEARCH www.jasn.org Fanconi renotubular syndrome (FRTS) is defined as gen- Significance Statement eralized proximal tubule dysfunction.13,14 Symptoms of FRTS include glucosuria, phosphaturia, proteinuria, polyuria, and Proximal tubule cells are the most abundant cell type in the mam- polydipsia.14,15 These symptoms are consistent with a failure malian kidney, and they perform the bulk of the renal reabsorption of the proximal tubules to reabsorb and transport filtered mol- function. Despite the importance of these cells in kidney function, the molecular mechanisms of proximal tubule development and 16,17 ecules, causing urinary wasting. In humans, the heterozy- maturation are not well understood. Experiments reveal that, in the gous mutation R76W in the gene encoding Hepatocyte NF 4a developing mouse kidney, Cadherin-6-expressing cells act as (HNF4A) causes FRTS with nephrocalcinosis.18 Because this proximal tubule progenitors and they require Hnf4a to further de- mutation is located in the DNA binding domain, it has been velop into mature proximal tubules. Genomic analyses show that speculated that the mutation affects the interactions of Hnf4a directly regulates the expression of genes required for re- absorption, such as transmembrane transporter genes and me- 18 HNF4A with regulatory DNA. A recent study of the FRTS tabolism genes. This study advances understanding of how kidney HNF4A mutation in Drosophila nephrocytes confirmed that proximal tubule cells form during development. the mutation reduced binding of Hnf4a to DNA and caused nuclear depletion of Hnf4a in a dominant-negative manner, leading to mitochondrial defects and lipid accumulation.19 regulations. All experiments were performed in accordance We have previously shown that Hnf4a is expressed in de- with animal care guidelines, and the protocol was approved veloping proximal tubules in the mouse kidney and that Hnf4a by the Institutional Animal Care and Use Committee of the – is important for proximal tubule formation.20 Mosaic loss of CCHMC (IACUC2017 0037). We adhere to the National In- Hnf4a in the murine nephron lineage caused FRTS–like symp- stitutes of Health Guide for the Care and Use of Laboratory toms, including polyuria, polydipsia, glucosuria, and phos- Animals. phaturia.20 Because of the mosaic expression of Six2GFPCre in mesenchymal nephron progenitor cells, the Hnf4a mutant Tamoxifen Treatment kidney by Six2GFPCre was a chimera of wild-type and mutant Tamoxifen (Sigma; T5648) was dissolved in corn oil (Sigma; cells.20 This made it difficult to perform more rigorous differ- C8267) at a concentration of 20 mg/ml. Pregnant female mice ential gene expression analyses. In this study, we generated a were injected with tamoxifen intraperitoneally (4 mg/40 g body wt). new mouse model with thorough deletion of Hnf4a in the IresCre proximal segments of the nephron using Osr2 and inves- Immunofluorescence Staining tigated the requirement of mature proximal tubules for post- Embryonic, neonatal, and adult murine kidneys were fixed in natal survival.21 We also performed lineage tracing to identify 4% paraformaldehyde in PBS, incubated overnight in 10% proximal tubule progenitor cells in the developing kidney. sucrose/PBS at 4°C, and imbedded in OCT (Fisher Scientific). To further elucidate the role of Hnf4a in proximal tubule de- Cryosections (8–9 mm) were incubated overnight with pri- velopment, we performed genome-wide mapping of Hnf4a mary antibodies in 5% heat-inactivated sheep serum/PBS binding sites in the murine neonate kidney and transcrip- with 0.1% Triton X-100. We used primary antibodies for tomic analysis of the Hnf4a mutant kidney. We found that GFP (1:500; Aves GFP-1020), Jag1 (1:20; DSHB TS1.15H), Hnf4a is required for terminal differentiation of proximal tu- Wt1 (sc-7385, 1:100; Santa Cruz), Biotin-LTL (B-1325, bule cells and that mature proximal tubules are required for 1:500; Vector Labs), FITC-LTL (FL-1321, 1:200; Vector postnatal survival. Cadherin-6-expressing (Cdh6high), lotus Labs), Hnf4a (ab41898, 1:500; Abcam), Hnf4a (sc-8987, tetragonolobus lectin-low (LTLlow) cells in the developing kid- 1:500; Santa Cruz), LDL-related protein 2 (Lrp2; sc-515772, ney are proximal tubule progenitor cells, and loss of Hnf4a 1:100; Santa Cruz), Ki67 (652402, 1:500; BioLegend), Slc12a1 causes their developmental arrest. Our genomic analyses (18970–1-AP, 1:500; Proteintech), Slc12a3 (HPA028748, revealed that Hnf4a directly regulates expression of many ma- 1:300; Sigma), Ass1 (16210–1-AP, 1:500; Proteintech), ture proximal tubule genes, including transporter and metabo- Slc5a2 (HPA041603, 1:100; Sigma), Miox (HPA039562, lism genes, consistent with the fact that active reabsorption is the 1:500; Sigma), Cdh6 (MAB2715-SP, 1:100; R&D Systems), major function of proximal tubules. and Cdh6 (HPA007047, 1:200; Sigma). Fluorophore-labeled secondary antibodies were used for indirect visualization of the target. Images were taken with a Nikon Ti-E wide-field METHODS microscope equipped with an Andor Zyla camera and Lumen- cor SpectraX light source housed at the Confocal Imaging Mice Core (CIC) at CCHMC. All mouse alleles used in this study have been previously pub- IresCre tm1Sad lished: Osr2tm2(cre)Jian (Osr2 ),22 Hnf4a Histology c tm1.1(cre/ERT2)Jrs CreER (Hnf4a ),23 Cdh6 (Cdh6 ),24 and Mouse kidneys were harvested and fixed in 4% paraformalde- tm3(CAG-EYFP)Hze Ai3 Gt(ROSA)26Sor (Rosa26 ).25 All mice were hyde in PBS overnight. Paraffinsections(5mm) were stained maintained in the Cincinnati Children’s Hospital Medical with hematoxylin and eosin or periodic acid–Schiff reagent Center (CCHMC) animal facility according to animal care (American MasterTech KTPAS). Images were taken with a 2 JASN JASN 31: ccc–ccc,2020 www.jasn.org BASIC RESEARCH A LTL Lrp2 Hnf4a Hoechst LTL Lrp2 Hnf4a IresCre/+ ;Osr2 Control c/+ Hnf4a IresCre/+ mutant ;Osr2 c/c Hnf4a Hnf4a B PAS Control mutant Hnf4a Figure 1. Hnf4a deletion by Osr2Cre leads to loss of mature proximal tubule (PT) cells. (A) Loss of Hnf4a in the nephron inhibits formation of LTLhigh, mature PT cells and causes a decrease in expression of Lrp2, a PT-specific gene in the newborn (P0) kidney. Yellow arrowheads mark LTLlow, Lrp2low cells that persist in the mutant. Image is representative of n53. Scale bar, 100 mm. (B) Periodic acid–Schiff (PAS) staining of control and Hnf4a mutant kidneys at P0 shows that Hnf4a mutants lack brush border. Black arrowheads mark brush border. Image is representative of n53. Scale bar, 50 mm. JASN 31: ccc–ccc, 2020 Hnf4a in Renal Proximal Tubules 3 BASIC RESEARCH www.jasn.org Nikon Ti-E wide-field microscope equipped with an Andor newborn mice were crosslinked with 1% paraformaldehyde, Zyla camera and Lumencor SpectraX light source housed at sonicated, and incubated with Hnf4a antibody (ab41898)– the CIC at CCHMC.
Recommended publications
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene
    Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A.
    [Show full text]
  • Somatic Mutational Landscapes of Adherens Junctions and Their
    1 Somatic mutational landscapes of adherens junctions and their 2 functional consequences in cutaneous melanoma development 3 4 Praveen Kumar Korla,1 Chih-Chieh Chen,2 Daniel Esguerra Gracilla,1 Ming-Tsung Lai,3 Chih- 5 Mei Chen,4 Huan Yuan Chen,5 Tritium Hwang,1 Shih-Yin Chen,4,6,* Jim Jinn-Chyuan Sheu1,4, 6-9,* 6 1Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80242, Taiwan; 7 2Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, 8 Taiwan; 3Department of Pathology, Taichung Hospital, Ministry of Health and Welfare, Taichung 9 40343, Taiwan; 4Genetics Center, China Medical University Hospital, Taichung 40447, Taiwan; 10 5Institute of Biomedical Sciences, Academia Sinica, Taipei 11574, Taiwan; 6School of Chinese 11 Medicine, China Medical University, Taichung 40402, Taiwan; 7Department of Health and 12 Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan; 8Department of 13 Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; 9Institute of 14 Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 80242, Taiwan 15 16 PKK, CCC and DEG contributed equally to this study. 17 *Correspondence to: Dr. Shih-Yin Chen ([email protected]) at Genetics Center, China 18 Medical University Hospital, Taichung, 40447, TAIWAN; or Dr. Jim Jinn-Chyuan Sheu 19 ([email protected]) at Institute of Biomedical Sciences, National Sun Yat-sen 20 University, Kaohsiung City 80424, TAIWAN. 21 22 Running title: mutational landscape of cadherins in melanoma 1 23 Abstract 24 Cell-cell interaction in skin homeostasis is tightly controlled by adherens junctions (AJs). 25 Alterations in such regulation lead to melanoma development.
    [Show full text]
  • MALE Protein Name Accession Number Molecular Weight CP1 CP2 H1 H2 PDAC1 PDAC2 CP Mean H Mean PDAC Mean T-Test PDAC Vs. H T-Test
    MALE t-test t-test Accession Molecular H PDAC PDAC vs. PDAC vs. Protein Name Number Weight CP1 CP2 H1 H2 PDAC1 PDAC2 CP Mean Mean Mean H CP PDAC/H PDAC/CP - 22 kDa protein IPI00219910 22 kDa 7 5 4 8 1 0 6 6 1 0.1126 0.0456 0.1 0.1 - Cold agglutinin FS-1 L-chain (Fragment) IPI00827773 12 kDa 32 39 34 26 53 57 36 30 55 0.0309 0.0388 1.8 1.5 - HRV Fab 027-VL (Fragment) IPI00827643 12 kDa 4 6 0 0 0 0 5 0 0 - 0.0574 - 0.0 - REV25-2 (Fragment) IPI00816794 15 kDa 8 12 5 7 8 9 10 6 8 0.2225 0.3844 1.3 0.8 A1BG Alpha-1B-glycoprotein precursor IPI00022895 54 kDa 115 109 106 112 111 100 112 109 105 0.6497 0.4138 1.0 0.9 A2M Alpha-2-macroglobulin precursor IPI00478003 163 kDa 62 63 86 72 14 18 63 79 16 0.0120 0.0019 0.2 0.3 ABCB1 Multidrug resistance protein 1 IPI00027481 141 kDa 41 46 23 26 52 64 43 25 58 0.0355 0.1660 2.4 1.3 ABHD14B Isoform 1 of Abhydrolase domain-containing proteinIPI00063827 14B 22 kDa 19 15 19 17 15 9 17 18 12 0.2502 0.3306 0.7 0.7 ABP1 Isoform 1 of Amiloride-sensitive amine oxidase [copper-containing]IPI00020982 precursor85 kDa 1 5 8 8 0 0 3 8 0 0.0001 0.2445 0.0 0.0 ACAN aggrecan isoform 2 precursor IPI00027377 250 kDa 38 30 17 28 34 24 34 22 29 0.4877 0.5109 1.3 0.8 ACE Isoform Somatic-1 of Angiotensin-converting enzyme, somaticIPI00437751 isoform precursor150 kDa 48 34 67 56 28 38 41 61 33 0.0600 0.4301 0.5 0.8 ACE2 Isoform 1 of Angiotensin-converting enzyme 2 precursorIPI00465187 92 kDa 11 16 20 30 4 5 13 25 5 0.0557 0.0847 0.2 0.4 ACO1 Cytoplasmic aconitate hydratase IPI00008485 98 kDa 2 2 0 0 0 0 2 0 0 - 0.0081 - 0.0
    [Show full text]
  • And MUC1 in Mammary Epithelial Cells
    Linköping University Post Print Loss of ICAM-1 signaling induces psoriasin (S100A7) and MUC1 in mammary epithelial cells Stina Petersson, E. Shubbar, M. Yhr, A. Kovacs and Charlotta Enerbäck N.B.: When citing this work, cite the original article. The original publication is available at www.springerlink.com: Stina Petersson, E. Shubbar, M. Yhr, A. Kovacs and Charlotta Enerbäck, Loss of ICAM-1 signaling induces psoriasin (S100A7) and MUC1 in mammary epithelial cells, 2011, Breast Cancer Research and Treatment, (125), 1, 13-25. http://dx.doi.org/10.1007/s10549-010-0820-4 Copyright: Springer Science Business Media http://www.springerlink.com/ Postprint available at: Linköping University Electronic Press http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-63954 1 Loss of ICAM-1 signaling induces psoriasin (S100A7) and MUC1 in mammary epithelial cells Petersson S1, Shubbar E1, Yhr M1, Kovacs A2 and Enerbäck C3 Departments of 1Clinical Genetics and 2Pathology, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden; 3Department of Clinical and Experimental Medicine, Division of Cell Biology and Dermatology, Linköping University, SE-581 85 Linköping, Sweden E-mail: [email protected] E-mail: maria.yhr@ clingen.gu.se E-mail: [email protected] E-mail: [email protected] Correspondence: Stina Petersson, Department of Clinical Genetics, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden E-mail: [email protected] 2 Abstract Psoriasin (S100A7), a member of the S100 gene family, is highly expressed in high-grade comedo ductal carcinoma in situ (DCIS), with a higher risk of local recurrence. Psoriasin is therefore a potential biomarker for DCIS with a poor prognosis.
    [Show full text]
  • Downloaded 10 April 2020)
    Breeze et al. Genome Medicine (2021) 13:74 https://doi.org/10.1186/s13073-021-00877-z RESEARCH Open Access Epigenome-wide association study of kidney function identifies trans-ethnic and ethnic-specific loci Charles E. Breeze1,2,3* , Anna Batorsky4, Mi Kyeong Lee5, Mindy D. Szeto6, Xiaoguang Xu7, Daniel L. McCartney8, Rong Jiang9, Amit Patki10, Holly J. Kramer11,12, James M. Eales7, Laura Raffield13, Leslie Lange6, Ethan Lange6, Peter Durda14, Yongmei Liu15, Russ P. Tracy14,16, David Van Den Berg17, NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium, TOPMed MESA Multi-Omics Working Group, Kathryn L. Evans8, William E. Kraus15,18, Svati Shah15,18, Hermant K. Tiwari10, Lifang Hou19,20, Eric A. Whitsel21,22, Xiao Jiang7, Fadi J. Charchar23,24,25, Andrea A. Baccarelli26, Stephen S. Rich27, Andrew P. Morris28, Marguerite R. Irvin29, Donna K. Arnett30, Elizabeth R. Hauser15,31, Jerome I. Rotter32, Adolfo Correa33, Caroline Hayward34, Steve Horvath35,36, Riccardo E. Marioni8, Maciej Tomaszewski7,37, Stephan Beck2, Sonja I. Berndt1, Stephanie J. London5, Josyf C. Mychaleckyj27 and Nora Franceschini21* Abstract Background: DNA methylation (DNAm) is associated with gene regulation and estimated glomerular filtration rate (eGFR), a measure of kidney function. Decreased eGFR is more common among US Hispanics and African Americans. The causes for this are poorly understood. We aimed to identify trans-ethnic and ethnic-specific differentially methylated positions (DMPs) associated with eGFR using an agnostic, genome-wide approach. Methods: The study included up to 5428 participants from multi-ethnic studies for discovery and 8109 participants for replication. We tested the associations between whole blood DNAm and eGFR using beta values from Illumina 450K or EPIC arrays.
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Supplementary Table 1: Differentially Methylated Genes and Functions of the Genes Before/After Treatment with A) Doxorubicin and B) FUMI and in C) Responders Vs
    Supplementary Table 1: Differentially methylated genes and functions of the genes before/after treatment with a) doxorubicin and b) FUMI and in c) responders vs. non- responders for doxorubicin and d) FUMI Differentially methylated genes before/after treatment a. Doxo GENE FUNCTION CCL5, CCL8, CCL15, CCL21, CCR1, CD33, IL5, immunoregulatory and inflammatory processes IL8, IL24, IL26, TNFSF11 CCNA1, CCND2, CDKN2A cell cycle regulators ESR1, FGF2, FGF14, FGF18 growth factors WT1, RASSF5, RASSF6 tumor suppressor b. FUMI GENE FUNCTION CCL7, CCL15, CD28, CD33, CD40, CD69, TNFSF18 immunoregulatory and inflammatory processes CCND2, CDKN2A cell cycle regulators IGF2BP1, IGFBP3 growth factors HOXB4, HOXB6, HOXC8 regulation of cell transcription WT1, RASSF6 tumor suppressor Differentially methylated genes in responders vs. non-responders c. Doxo GENE FUNCTION CBR1, CCL4, CCL8, CCR1, CCR7, CD1A, CD1B, immunoregulatory and inflammatory processes CD1D, CD1E, CD33, CD40, IL5, IL8, IL20, IL22, TLR4 CCNA1, CCND2, CDKN2A cell cycle regulators ESR2, ERBB3, FGF11, FGF12, FGF14, FGF17 growth factors WNT4, WNT16, WNT10A implicated in oncogenesis TNFSF12, TNFSF15 apoptosis FOXL1, FOXL2, FOSL1,HOXA2, HOXA7, HOXA11, HOXA13, HOXB4, HOXB6, HOXB8, HOXB9, HOXC8, regulation of cell transcription HOXD8, HOXD9, HOXD11 GSTP1, MGMT DNA repair APC, WT1 tumor suppressor d. FUMI GENE FUNCTION CCL1, CCL3, CCL5,CCL14, CD1B, CD33, CD40, CD69, immunoregulatory and inflammatory IL20, IL32 processes CCNA1, CCND2, CDKN2A cell cycle regulators IGF2BP1, IGFBP3, IGFBP7, EGFR, ESR2,RARB2
    [Show full text]
  • Supplementary Table 1
    Supplementary Table 1. 492 genes are unique to 0 h post-heat timepoint. The name, p-value, fold change, location and family of each gene are indicated. Genes were filtered for an absolute value log2 ration 1.5 and a significance value of p ≤ 0.05. Symbol p-value Log Gene Name Location Family Ratio ABCA13 1.87E-02 3.292 ATP-binding cassette, sub-family unknown transporter A (ABC1), member 13 ABCB1 1.93E-02 −1.819 ATP-binding cassette, sub-family Plasma transporter B (MDR/TAP), member 1 Membrane ABCC3 2.83E-02 2.016 ATP-binding cassette, sub-family Plasma transporter C (CFTR/MRP), member 3 Membrane ABHD6 7.79E-03 −2.717 abhydrolase domain containing 6 Cytoplasm enzyme ACAT1 4.10E-02 3.009 acetyl-CoA acetyltransferase 1 Cytoplasm enzyme ACBD4 2.66E-03 1.722 acyl-CoA binding domain unknown other containing 4 ACSL5 1.86E-02 −2.876 acyl-CoA synthetase long-chain Cytoplasm enzyme family member 5 ADAM23 3.33E-02 −3.008 ADAM metallopeptidase domain Plasma peptidase 23 Membrane ADAM29 5.58E-03 3.463 ADAM metallopeptidase domain Plasma peptidase 29 Membrane ADAMTS17 2.67E-04 3.051 ADAM metallopeptidase with Extracellular other thrombospondin type 1 motif, 17 Space ADCYAP1R1 1.20E-02 1.848 adenylate cyclase activating Plasma G-protein polypeptide 1 (pituitary) receptor Membrane coupled type I receptor ADH6 (includes 4.02E-02 −1.845 alcohol dehydrogenase 6 (class Cytoplasm enzyme EG:130) V) AHSA2 1.54E-04 −1.6 AHA1, activator of heat shock unknown other 90kDa protein ATPase homolog 2 (yeast) AK5 3.32E-02 1.658 adenylate kinase 5 Cytoplasm kinase AK7
    [Show full text]
  • Bioinformatics Analysis to Screen Key Genes in Papillary Thyroid Carcinoma
    ONCOLOGY LETTERS 19: 195-204, 2020 Bioinformatics analysis to screen key genes in papillary thyroid carcinoma YUANHU LIU1*, SHUWEI GAO2*, YAQIONG JIN2, YERAN YANG2, JUN TAI1, SHENGCAI WANG1, HUI YANG2, PING CHU2, SHUJING HAN2, JIE LU2, XIN NI1,2, YONGBO YU2 and YONGLI GUO2 1Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health; 2Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, P.R. China Received April 22, 2019; Accepted September 24, 2019 DOI: 10.3892/ol.2019.11100 Abstract. Papillary thyroid carcinoma (PTC) is the most verifying their potential for clinical diagnosis. Taken together, common type of thyroid carcinoma, and its incidence has the findings of the present study suggest that these genes and been on the increase in recent years. However, the molecular related pathways are involved in key events of PTC progression mechanism of PTC is unclear and misdiagnosis remains a and facilitate the identification of prognostic biomarkers. major issue. Therefore, the present study aimed to investigate this mechanism, and to identify key prognostic biomarkers. Introduction Integrated analysis was used to explore differentially expressed genes (DEGs) between PTC and healthy thyroid tissue. To Thyroid carcinoma is the most common malignancy of investigate the functions and pathways associated with DEGs, the head and neck, and accounts for 91.5% of all endocrine Gene Ontology, pathway and protein-protein interaction (PPI) malignancies (1).
    [Show full text]
  • Genome-Wide Gene Expression Profiles of Ovarian Carcinoma: Identification of Molecular Targets for the Treatment of Ovarian Carcinoma
    365-384 30/3/2009 09:55 Ì Page 365 MOLECULAR MEDICINE REPORTS 2: 365-384, 2009 365 Genome-wide gene expression profiles of ovarian carcinoma: Identification of molecular targets for the treatment of ovarian carcinoma DRAGOMIRA NIKOLAEVA NIKOLOVA1,4, NIKOLAI DOGANOV2, RUMEN DIMITROV2, KRASIMIR ANGELOV3, SIEW-KEE LOW1, IVANKA DIMOVA4, DRAGA TONCHEVA4, YUSUKE NAKAMURA1 and HITOSHI ZEMBUTSU1 1Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; 2University Hospital of Obstetrics and Gynecology ‘Maichin Dom’, Sofia 1431; 3National Hospital of Oncology, Sofia 1233; 4Department of Medical Genetics, Medical University of Sofia, Sofia 1431, Bulgaria Received October 31, 2008; Accepted January 7, 2009 DOI: 10.3892/mmr_00000109 Abstract. This study aimed to clarify the molecular mecha- in women. As there are no specific indicators or symptoms of nisms involved in ovarian carcinogenesis, and to identify ovarian cancer during the early stages of the disease, the candidate molecular targets for its diagnosis and treatment. majority of patients with epithelial ovarian cancer (EOC) are The genome-wide gene expression profiles of 22 epithelial diagnosed at an advanced stage, with involvement of other ovarian carcinomas were analyzed with a microarray represent- sites such as the upper abdomen, pleural space and paraaortic ing 38,500 genes, in combination with laser microbeam lymph nodes. The cancer antigen 125 assay (CA-125) has been microdissection. A total of 273 commonly up-regulated used to screen for ovarian cancer, but is not specific; only 50% transcripts and 387 down-regulated transcripts were identified of patients with early ovarian cancer test positive using this in the ovarian carcinoma samples.
    [Show full text]
  • Functional Equivalence of the Zinc Finger Transcription Factors Osr1 and Osr2 in Mouse Development
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Developmental Biology 328 (2009) 200–209 Contents lists available at ScienceDirect Developmental Biology journal homepage: www.elsevier.com/developmentalbiology Functional equivalence of the zinc finger transcription factors Osr1 and Osr2 in mouse development Yang Gao, Yu Lan, Catherine E. Ovitt, Rulang Jiang ⁎ Department of Biomedical Genetics and Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA article info abstract Article history: Osr1 and Osr2 are the only mammalian homologs of the Drosophila odd-skipped family developmental Received for publication 7 July 2008 regulators. The Osr1 protein contains three zinc-finger motifs whereas Osr2 exists in two isoforms, Revised 6 January 2009 containing three and five zinc-finger motifs respectively, due to alternative splicing of the transcripts. Accepted 6 January 2009 Targeted null mutations in these genes in mice resulted in distinct phenotypes, with heart and urogenital Available online 14 January 2009 developmental defects in Osr1−/− mice and with cleft palate and open eyelids at birth in Osr2−/− mice. To Keywords: investigate whether these contrasting mutant phenotypes are due to differences in their protein structure or Cleft palate to differential expression patterns, we generated mice in which the endogenous Osr2 coding region was Eyelid development replaced by either Osr1 cDNA or Osr2A cDNA encoding the five-finger isoform. The knockin alleles Fgf10, Functional equivalence recapitulated endogenous Osr2 mRNA expression patterns in most tissues and completely rescued cleft Gene substitution palate and cranial skeletal developmental defects of Osr2−/− mice.
    [Show full text]