A Population-Based Study on Burkitt Lymphoma/Leukemia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Quantitative Analysis of Bcl-2 Expression in Normal and Leukemic Human B-Cell Differentiation
Leukemia (2004) 18, 491–498 & 2004 Nature Publishing Group All rights reserved 0887-6924/04 $25.00 www.nature.com/leu Quantitative analysis of bcl-2 expression in normal and leukemic human B-cell differentiation P Menendez1,2, A Vargas3, C Bueno1,2, S Barrena1,2, J Almeida1,2 M de Santiago1,2,ALo´pez1,2, S Roa2, JF San Miguel2,4 and A Orfao1,2 1Servicio General de Citometrı´a, Universidad de Salamanca, Salamanca, Spain; 2Departamento de Medicina and Centro de Investigacio´n del Ca´ncer, Universidad de Salamanca, Salamanca, Spain; 3Servicio de Inmunodiagno´stico, Departamento de Patologı´a Clı´nica, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru´, ; and 4Servicio de Hematologı´a, Hospital Universitario, Salamanca, Spain Lack of apoptosis has been linked to prolonged survival of results in the overexpression of the bcl-2 protein and it malignant B cells expressing bcl-2. The aim of the present represented the first clear example of a common step in study was to analyze the amount of bcl-2 protein expressed 9,10 along normal human B-cell maturation and to establish the oncogenesis mediated by decreased cell death. Currently, frequency of aberrant bcl-2 expression in B-cell malignancies. the exact antiapoptotic pathways through which bcl-2 exerts its In normal bone marrow (n ¼ 11), bcl-2 expression obtained by role are only partially understood, involving decreased mito- quantitative multiparametric flow cytometry was highly vari- chondrial release of cytochrome c, which in turn is required for þ À able: very low in both CD34 and CD34 B-cell precursors, high the activation of procaspase-9 and the subsequent initiation of in mature B-lymphocytes and very high in plasma cells. -
SNF Mobility Model: ICD-10 HCC Crosswalk, V. 3.0.1
The mapping below corresponds to NQF #2634 and NQF #2636. HCC # ICD-10 Code ICD-10 Code Category This is a filter ceThis is a filter cellThis is a filter cell 3 A0101 Typhoid meningitis 3 A0221 Salmonella meningitis 3 A066 Amebic brain abscess 3 A170 Tuberculous meningitis 3 A171 Meningeal tuberculoma 3 A1781 Tuberculoma of brain and spinal cord 3 A1782 Tuberculous meningoencephalitis 3 A1783 Tuberculous neuritis 3 A1789 Other tuberculosis of nervous system 3 A179 Tuberculosis of nervous system, unspecified 3 A203 Plague meningitis 3 A2781 Aseptic meningitis in leptospirosis 3 A3211 Listerial meningitis 3 A3212 Listerial meningoencephalitis 3 A34 Obstetrical tetanus 3 A35 Other tetanus 3 A390 Meningococcal meningitis 3 A3981 Meningococcal encephalitis 3 A4281 Actinomycotic meningitis 3 A4282 Actinomycotic encephalitis 3 A5040 Late congenital neurosyphilis, unspecified 3 A5041 Late congenital syphilitic meningitis 3 A5042 Late congenital syphilitic encephalitis 3 A5043 Late congenital syphilitic polyneuropathy 3 A5044 Late congenital syphilitic optic nerve atrophy 3 A5045 Juvenile general paresis 3 A5049 Other late congenital neurosyphilis 3 A5141 Secondary syphilitic meningitis 3 A5210 Symptomatic neurosyphilis, unspecified 3 A5211 Tabes dorsalis 3 A5212 Other cerebrospinal syphilis 3 A5213 Late syphilitic meningitis 3 A5214 Late syphilitic encephalitis 3 A5215 Late syphilitic neuropathy 3 A5216 Charcot's arthropathy (tabetic) 3 A5217 General paresis 3 A5219 Other symptomatic neurosyphilis 3 A522 Asymptomatic neurosyphilis 3 A523 Neurosyphilis, -
Lymphoproliferative Disorders
Lymphoproliferative disorders Objectives: • To understand the general features of lymphoproliferative disorders (LPD) • To understand some benign causes of LPD such as infectious mononucleosis • To understand the general classification of malignant LPD Important. • To understand the clinicopathological features of chronic lymphoid leukemia Extra. • To understand the general features of the most common Notes (LPD) (Burkitt lymphoma, Follicular • lymphoma, multiple myeloma and Hodgkin lymphoma). Success is the result of perfection, hard work, learning Powellfrom failure, loyalty, and persistence. Colin References: Editing file 435 teamwork slides 6 girls & boys slides Do you have any suggestions? Please contact us! @haematology436 E-mail: [email protected] or simply use this form Definitions Lymphoma (20min) Lymphoproliferative disorders: Several clinical conditions in which lymphocytes are produced in excessive quantities (Lymphocytosis) increase in lymphocytes that are not normal Lymphoma: Malignant lymphoid mass involving the lymphoid tissues. (± other tissues e.g: skin, GIT, CNS ..) The main deference between Lymphoma & Leukemia is that the Lymphoma proliferate primarily in Lymphoid Tissue and cause Mass , While Leukemia proliferate mainly in BM& Peripheral blood Lymphoid leukemia: Malignant proliferation of lymphoid cells in Bone marrow and peripheral blood. (± other tissues e.g: lymph nodes, spleen, skin, GIT, CNS ..) BCL is an anti-apoptotic (prevent apoptosis) Lymphocytosis (causes) 1- Viral infection: 2- Some* bacterial -
Non-Hodgkin and Hodgkin Lymphomas Select for Overexpression of BCLW Clare M
Published OnlineFirst August 29, 2017; DOI: 10.1158/1078-0432.CCR-17-1144 Biology of Human Tumors Clinical Cancer Research Non-Hodgkin and Hodgkin Lymphomas Select for Overexpression of BCLW Clare M. Adams1, Ramkrishna Mitra1, Jerald Z. Gong2, and Christine M. Eischen1 Abstract Purpose: B-cell lymphomas must acquire resistance to apopto- follicular, mantle cell, marginal zone, and Hodgkin lymphomas. sis during their development. We recently discovered BCLW, an Notably, BCLW was preferentially overexpressed over that of antiapoptotic BCL2 family member thought only to contribute to BCL2 and negatively correlated with BCL2 in specific lymphomas. spermatogenesis, was overexpressed in diffuse large B-cell lym- Unexpectedly, BCLW was overexpressed as frequently as BCL2 in phoma (DLBCL) and Burkitt lymphoma. To gain insight into the follicular lymphoma. Evaluation of all five antiapoptotic BCL2 contribution of BCLW to B-cell lymphomas and its potential to family members in six types of B-cell lymphoma revealed that confer resistance to BCL2 inhibitors, we investigated the expres- BCL2, BCLW, and BCLX were consistently overexpressed, whereas sion of BCLW and the other antiapoptotic BCL2 family members MCL1 and A1 were not. In addition, individual lymphomas in six different B-cell lymphomas. frequently overexpressed more than one antiapoptotic BCL2 Experimental Design: We performed a large-scale gene family member. expression analysis of datasets comprising approximately Conclusions: Our comprehensive analysis indicates B-cell 2,300 lymphoma patient samples, including non-Hodgkin lymphomas commonly select for BCLW overexpression in andHodgkinlymphomasaswellasindolentandaggressive combination with or instead of other antiapoptotic BCL2 lymphomas. Data were validated experimentally with qRT- family members. Our results suggest BCLW may be equally as PCR and IHC. -
Non-Hodgkin Lymphoma
Non-Hodgkin Lymphoma Rick, non-Hodgkin lymphoma survivor This publication was supported in part by grants from Revised 2013 A Message From John Walter President and CEO of The Leukemia & Lymphoma Society The Leukemia & Lymphoma Society (LLS) believes we are living at an extraordinary moment. LLS is committed to bringing you the most up-to-date blood cancer information. We know how important it is for you to have an accurate understanding of your diagnosis, treatment and support options. An important part of our mission is bringing you the latest information about advances in treatment for non-Hodgkin lymphoma, so you can work with your healthcare team to determine the best options for the best outcomes. Our vision is that one day the great majority of people who have been diagnosed with non-Hodgkin lymphoma will be cured or will be able to manage their disease with a good quality of life. We hope that the information in this publication will help you along your journey. LLS is the world’s largest voluntary health organization dedicated to funding blood cancer research, education and patient services. Since 1954, LLS has been a driving force behind almost every treatment breakthrough for patients with blood cancers, and we have awarded almost $1 billion to fund blood cancer research. Our commitment to pioneering science has contributed to an unprecedented rise in survival rates for people with many different blood cancers. Until there is a cure, LLS will continue to invest in research, patient support programs and services that improve the quality of life for patients and families. -
Childhood Cancer Staging for Population Registries
Childhood cancer staging for population registries according to the 1 Toronto Childhood Cancer Stage Guidelines Acknowledgements This project was funded by Cancer Australia through an initiative to strengthen national data capacity for reporting cancer stage at diagnosis. We also acknowledge and thank the Australasian Association of Cancer Registries, all Australian State and Territory Cancer Registries, the Australian Institute of Health and Welfare and the treating hospitals listed below for their support of the Australian Childhood Cancer Registry and of this project: Lady Cilento Children’s Hospital, Brisbane Sydney Children’s Hospital, Sydney The Children’s Hospital at Westmead, Sydney John Hunter Hospital, Newcastle Royal Children’s Hospital, Melbourne Monash Medical Centre, Melbourne The Women’s and Children’s Hospital, Adelaide Princess Margaret Hospital for Children, Perth Royal Hobart Hospital, Hobart Suggested citation Aitken JF, Youlden DR, Moore AS, Baade PD, Ward LJ, Thursfield VJ, Valery PC, Green AC, Gupta S, Frazier AL. Childhood cancer staging for population registries according to the Toronto Childhood Cancer Stage Guidelines. Cancer Council Queensland and Cancer Australia: Brisbane, Australia; 2017. Available at https://cancerqld.blob.core.windows.net/content/docs/childhood-cancer-staging-for- population-registries.pdf. Childhood cancer staging for population registries – November 2017 2 Table of contents Acknowledgements ........................................................................................................................................ -
Mature B-Cell Neoplasms
PEARLS OF LABORATORY MEDICINE Mature B-cell Neoplasms Michael Moravek, MD Kamran M. Mirza, MD, PhD Loyola University Chicago Stritch School of Medicine DOI: 10.15428/CCTC.2018.287706 © Clinical Chemistry The Lymphoid System Bone Marrow Stem Cell • Mature B-cell lymphomas comprise approximately 75% of all lymphoid neoplasms • Genetic alterations lead to deregulation of cell T cell Immature NK cell proliferation or apoptosis B cell • Low-grade lymphomas typically present as painless B cell lymphadenopathy, hepatosplenomegaly, or incidental lymphocytosis • High-grade lymphomas typically present with a rapidly enlarging mass and “B” symptoms (fever, weight loss, night sweats) Plasma cell 2 B-Cell Maturation antigen Naïve B cell Post- Germinal Center Germinal Center Marginal Zone DLBCL (some) FL, BL, some DLBCL, CLL/SLL Mantle Cell Hodgkin lymphoma MZL MALT Lymphoma Plasma cell myeloma CD5 + CD10 + CD5/CD10 Neg 3 Frequency among mature B-cell neoplasms DLBCL 27.6% CLL/SLL 19.4% Mature B-cell neoplasms Chronic lymphocytic leukemia/small lymphocytic lymphoma Primary cutaneous follicle center lymphoma Follicular Lymphoma -Monoclonal B-12.2%cell lymphocytosis Mantle cell lymphoma Marginal Zone LymphomaB-cell prolymphocytic 3.7% leukemia -Leukemic non-nodal mantle cell lymphoma Splenic marginal zone lymphoma -In situ mantle cell neoplasia Mantle Cell LymphomaHairy cell leukemia1.9% Diffuse large B-cell lymphoma (DLBCL), NOS Splenic B-cell lymphoma/leukemia, unclassifiable -Germinal center B-cell type Burkitt Lymphoma -Splenic diffuse1.3% red pulp -
Burkitt Lymphoma
Board Review- Part 2B: Malignant HemePath 4/25/2018 Small Lymphocytic Lymphoma SLL: epidemiology SLL: 6.7% of non-Hodgkin lymphoma. Majority of patients >50 y/o (median 65). M:F ratio 2:1. Morphology • Lymph nodes – Effacement of architecture, pseudofollicular pattern of pale areas of large cells in a dark background of small cells. Occasionally is interfollicular. – The predominant cell is a small lymphocyte with clumped chromatin, round nucleus, ocassionally a nucleolus. – Mitotic activity usually very low. Morphology - Pseudofollicles or proliferation centers contain small, medium and large cells. - Prolymphocytes are medium-sized with dispersed chromatin and small nucleoli. - Paraimmunoblasts are medium to large cells with round to oval nuclei, dispersed chromatin, central eosinophilic nucleoli and slightly basophilic cytoplasm. Small Lymphocytic Lymphoma Pseudo-follicle Small Lymphocytic Lymphoma Prolymphocyte Paraimmunoblast Immunophenotype Express weak or dim surface IgM or IgM and IgD, CD5, CD19, CD20 (weak), CD22 (weak), CD79a, CD23, CD43, CD11c (weak). CD10-, cyclin D1-. FMC7 and CD79b negative or weak. Immunophenotype Cases with unmutated Ig variable region genes are reported to be CD38+ and ZAP70+. Immunophenotype Cytoplasmic Ig is detectable in about 5% of the cases. CD5 and CD23 are useful in distinguishing from MCL. Rarely CLL is CD23-. Rarely MCL is CD23+. Perform Cyclin D1 in CD5+/CD23- cases. Some cases with typical CLL morphology may have a different profile (CD5- or CD23-, FMC7+ or CD11c+, or strong sIg, or CD79b+). Genetics Antigen receptor genes: Ig heavy and light chain genes are rearranged. Suggestion of 2 distinct types of SLL defined by the mutational status of the IgVH genes: 40-50% show no somatic mutations of their variable region genes (naïve cells, unmutated). -
Non-Hodgkin Lymphoma
Non-Hodgkin Lymphoma Tom, non-Hodgkin lymphoma survivor Support for this publication provided by Revised 2016 A Message from Louis J. DeGennaro, PhD President and CEO of The Leukemia & Lymphoma Society The Leukemia & Lymphoma Society (LLS) is the world’s largest voluntary health organization dedicated to finding cures for blood cancer patients. Our research grants have funded many of today’s most promising advances; we are the leading source of free blood cancer information, education and support; and we advocate for blood cancer patients and their families, helping to ensure they have access to quality, affordable and coordinated care. Since 1954, we have been a driving force behind nearly every treatment breakthrough for blood cancer patients. We have invested more than $1 billion in research to advance therapies and save lives. Thanks to research and access to better treatments, survival rates for many blood cancer patients have doubled, tripled and even quadrupled. Yet we are far from done. Until there is a cure for cancer, we will continue to work hard—to fund new research, to create new patient programs and services, and to share information and resources about blood cancer. This booklet has information that can help you understand non-Hodgkin lymphoma, prepare your questions, find answers and resources, and communicate better with members of your healthcare team. Our vision is that, one day, all people with non-Hodgkin lymphoma will be cured or will be able to manage their disease so that they can experience a great quality of life. Today, we hope that our sharing of expertise, knowledge and resources will make a difference in your journey. -
Seer Research Data Record Description 2019
SEER RESEARCH DATA RECORD DESCRIPTION CASES DIAGNOSED IN 1975-2016* Submission: November 2018 Follow-up Cutoff Date: December 31, 2016 Documentation Version: April 2019 Diagnosis Years: 1975-2016 * This documentation describes the data files in the incidence/yr1975_2016.seer9, yr1992_2016.sj_lx_rg_ak, yr2000_2016.gc_ky_la_nj_gg , and yr2005.la_2nd_half directories. Refer to individual variable definitions to determine the differences between the directory files. Starting with November 2017 submission, all cervix in situ cases have been removed. In prior submissions, cervix in situ cases were included for 1975-1995 diagnoses Starting with November 2018 submission, all 1973-1974 diagnosed cases have been removed. 2 SEER Research Data Record Description April 2019 TABLE OF CONTENTS PATIENT ID NUMBER ........................................................................................................... 10 REGISTRY ID .......................................................................................................................... 10 MARITAL STATUS AT DX..................................................................................................... 11 RACE / ETHNICITY ................................................................................................................ 12 SEX .......................................................................................................................................... 13 AGE AT DIAGNOSIS ............................................................................................................. -
Burkitt's Lymphoma Vs High - Grade B - Cell Lymphoma • PET - CT with Evidence of Lung and GI Metastases Consistent with Stage IV Disease
LYMPHOMA CASE REPORT Samantha Epstein Radiology and Pathology Correlation CLINICAL PRESENTATION • CC: 38 yo M presenting with rapidly growing right neck mass • HPI: First noticed about a month ago, presented to OSH with hematemesis and melena • OSH CT scan showed neck mass, labs showed hypothyroidism • Started on levothyroxine, omeprazole, and famotidine • M ood and lethargy improved, no further bleeding • N ow having difficulty swallowing and breathing • PMH: Hypothyroidism • Soc Hx : smoker, ETOH abuse CLINICAL PRESENTATION • Physical: VSS, right neck mass, strained voice, no other LAD • Labs: Macrocytic anemia, elevated TSH with normal T4, elevated LDH • Flexible laryngoscopy: Mass effect with glottis and trachea displacement IMAGING IMAGING PROCEDURE • US - guided FNA: 22 gauge - 3.5 inch FNAs x2 • Cytopathologic evaluation of the FNA demonstrated adequate cellular material but was insufficient for definitive characterization • Core biopsy was requested: Temno evolution 20 gauge - 6 cm core biopsies x3 FURTHER IMAGING FURTHER IMAGING PATHOLOGY • Flow cytometry: MONOTYPIC KAPPA RESTRICTED B - CELL POPULATION POSITIVE FOR CD10 • Final biopsy report is still pending; however, the morphology of the sample and present immunohistochemistry/cytogenetics are most consistent with Burkitt's lymphoma vs high - grade B - cell lymphoma • PET - CT with evidence of lung and GI metastases consistent with stage IV disease . BURKITT’S LYMPHOMA • Commonly caused by (8,14) translocation • Increased expression of c - myc • Also associated with EBV infection -
Paediatric Cancer Stage in Population-Based Cancer Registries: the Toronto Consensus Principles and Guidelines
Review Paediatric cancer stage in population-based cancer registries: the Toronto consensus principles and guidelines Sumit Gupta, Joanne F Aitken, Ute Bartels, James Brierley, Mae Dolendo, Paola Friedrich, Soad Fuentes-Alabi, Claudia P Garrido, Gemma Gatta, Mary Gospodarowicz, Thomas Gross, Scott C Howard, Elizabeth Molyneux, Florencia Moreno, Jason D Pole, Kathy Pritchard-Jones, Oscar Ramirez, Lynn A G Ries, Carlos Rodriguez-Galindo, Hee Young Shin, Eva Steliarova-Foucher, Lillian Sung, Eddy Supriyadi, Rajaraman Swaminathan, Julie Torode, Tushar Vora, Tezer Kutluk, A Lindsay Frazier Population-based cancer registries generate estimates of incidence and survival that are essential for cancer Lancet Oncol 2016; 17: e163–72 surveillance, research, and control strategies. Although data on cancer stage allow meaningful assessments of Division of Haematology/ changes in cancer incidence and outcomes, stage is not recorded by most population-based cancer registries. Oncology, Hospital for Sick The main method of staging adult cancers is the TNM classifi cation. The criteria for staging paediatric cancers, Children, Toronto, ON, Canada (S Gupta PhD, U Bartels MD, however, vary by diagnosis, have evolved over time, and sometimes vary by cooperative trial group. Consistency in the L Sung PhD); Department of collection of staging data has therefore been challenging for population-based cancer registries. We assembled key Paediatrics, Faculty of experts and stakeholders (oncologists, cancer registrars, epidemiologists) and used a modifi ed Delphi approach to Medicine, University of establish principles for paediatric cancer stage collection. In this Review, we make recommendations on which Toronto, Toronto, ON, Canada (S Gupta, U Bartels, L Sung); staging systems should be adopted by population-based cancer registries for the major childhood cancers, including Cancer Council Queensland, adaptations for low-income countries.