(Pta) 2021-2023

Total Page:16

File Type:pdf, Size:1020Kb

(Pta) 2021-2023 Allegato alla deliberazione del CdA n. 9/2021 del 10 marzo 2021 Allegato alla deliberazione del CdA n. 9/2021 del 10 marzo 2021 Piano Triennale delle Attività 2021-2023 SEZIONE A – IL PIANO DELLE ATTIVITA’ .................................................................. 3 1 INTRODUZIONE E EXECUTIVE SUMMARY ......................................................... 4 2 NORMATIVA E DOCUMENTI DI RIFERIMENTO .................................................. 7 3 STRATEGIE E POLITICHE INDUSTRIALI ............................................................... 8 Lo scenario e il DVSS .................................................................................................................................... 8 Gli stakeholders dell’ASI .............................................................................................................................. 9 La Space Economy ..................................................................................................................................... 15 Finanza innovativa e partecipazioni societarie ........................................................................................... 18 Il contributo agli obiettivi dei Sustainable Development Goals ................................................................... 26 L’integrazione dei documenti programmatici - Il Piano triennale della Performance ................................... 27 4 ATTIVITÀ PREVISTE NEL PERIODO 2021-2023 ................................................. 29 Telecomunicazioni, Osservazione della Terra e Navigazione (S1) ................................................................ 30 Studio dell’Universo (S2) ........................................................................................................................... 66 Accesso allo Spazio (S3) ............................................................................................................................. 77 Volo sub-orbitale e piattaforme stratosferiche (S4) .................................................................................... 85 In-Orbit Servicing (S5) ................................................................................................................................ 87 Esplorazione robotica (S6) ......................................................................................................................... 88 Esplorazione umana dello spazio (S7) ........................................................................................................ 97 SSA/SST Space Situational Awareness (S8) ............................................................................................... 102 Relazioni e cooperazione internazionali (S9) ............................................................................................ 104 Ingegneria, Innovazione e Valorizzazione Tecnologica (S10) ..................................................................... 114 1 di 186 Allegato alla deliberazione del CdA n. 9/2021 del 10 marzo 2021 Piano Triennale delle Attività 2021-2023 Space Economy, Finanza e Partecipazioni Societarie (S11) ........................................................................ 135 Sviluppo e valorizzazione della ricerca e della conoscenza spaziale (S12) .................................................. 136 Supporto Tecnico e infrastrutture (S13) ................................................................................................... 145 SEZIONE B - IL PIANO DI FABBISOGNO DEL PERSONALE ..................................... 156 5 MIGLIORAMENTO ORGANIZZATIVO ............................................................. 157 La macro-organizzazione ......................................................................................................................... 157 Il programma Common Assessment Framework (CAF) in ASI .................................................................... 158 Benessere organizzativo, valorizzazione e politiche inclusive .................................................................... 158 Informatizzazione e digitalizzazione ......................................................................................................... 160 Digitalizzazione dei processi e degli iter procedimentali ........................................................................... 162 6 RISORSE UMANE .......................................................................................... 163 Gestione delle risorse umane .................................................................................................................. 163 Fabbisogno di personale .......................................................................................................................... 168 SEZIONE C – LE RISORSE FINANZIARIE ................................................................ 177 7 RISORSE FINANZIARIE .................................................................................. 178 Le risorse finanziarie ................................................................................................................................ 178 Quadro finanziario complessivo e programmazione di spesa .................................................................... 180 8 ELENCO DELLE TABELLE ................................................................................ 185 9 ELENCO DELLE FIGURE .................................................................................. 186 2 di 186 Allegato alla deliberazione del CdA n. 9/2021 del 10 marzo 2021 Piano Triennale delle Attività 2021-2023 SEZIONE A – IL PIANO DELLE ATTIVITA’ 3 di 186 Allegato alla deliberazione del CdA n. 9/2021 del 10 marzo 2021 Piano Triennale delle Attività 2021-2023 1 INTRODUZIONE E EXECUTIVE SUMMARY L’Agenzia Spaziale Italiana (ASI), in coerenza con il Documento di Visione Strategica per lo Spazio (DVSS) e tenuto conto dei compiti e delle responsabilità previsti dalla normativa vigente, adotta un Piano Triennale di Attività (PTA) ai fini della pianificazione operativa. Tale Piano, redatto in base alle prescrizioni del suo Statuto, descrive gli obiettivi generali da conseguire nel triennio 2021-2023, le attività svolte, quelle da realizzare (in corso o nuove), definendo, inoltre, le risorse impiegate e le modalità operative. In particolare il PTA definisce gli obiettivi e la pianificazione temporale dei programmi e delle attività e costituisce la base per la predisposizione del bilancio preventivo e del Piano della Performance dell’Agenzia. Il PTA, che viene aggiornato annualmente, determina anche la consistenza e le variazioni dell’organico e del piano di fabbisogno del personale. Le attività pianificate e messe in atto dall’ASI nel corso degli ultimi anni seguendo le finalità statutarie, hanno consentito di raggiungere l’attuale posizione di eccellenza in un settore di importanza strategica per il Paese. L’Italia oggi dispone di una filiera di conoscenze, di tecnologie, di prodotti e di sistemi completa nel settore spaziale che si contraddistingue anche per un’ampia gamma di applicazioni in ambito civile e militare, un forte posizionamento tecnico scientifico internazionale, una proficua interazione tra ricerca di base, ricerca applicata e imprese. Con il presente Piano Triennale l’ASI, in accordo con la normativa vigente, orienta il suo impegno, tenendo conto delle nuove recentissime tendenze, sia dal punto di vista scientifico e tecnologico che nell’ambito della mutata situazione del settore a livello internazionale, in primis con l’obiettivo di rafforzare la sua partecipazione ai più importanti programmi e per lo sviluppo di servizi in cui lo spazio è componente abilitante. Al fine di fornire tutte le informazioni necessarie per delineare le attività previste nel triennio di riferimento, il documento è così strutturato: ad un primissimo capitolo dedicato alle strategie e all’inquadramento delle politiche industriali per il Paese, segue un’articolazioni che propone, per ogni Settore Programmatico e Abilitante, delle schede di dettaglio nelle quali sono descritte le attività previste per il periodo di riferimento. Una sezione è inoltre dedicata al miglioramento organizzativo, tema centrale che l’Agenzia sta affrontando con vigore dall’insediamento dell’attuale CdA e che nel 2020 ha visto raggiungere un traguardo importante con il varo della nuova organizzazione dell’Agenzia, orientata ad una razionalizzazione ed ammodernamento delle sue funzioni, supportata anche da azioni che finalmente consentiranno un aumento significativo dell’organico, presentato in dettaglio in questo documento, che si completa, infatti, con le sezioni dedicate alle risorse umane e finanziare necessarie per lo svolgimento delle attività programmate. Lo spazio, al di là del suo ben noto contributo al progresso scientifico ed allo sviluppo della conoscenza, rappresenta un ambito strategico dal marcato carattere trasversale, che l’Unione Europea e i singoli Stati Membri possono utilizzare a beneficio di molteplici settori di primario interesse per gli stati ed i cittadini come i trasporti, la sicurezza, l’agricoltura, i beni culturali, il monitoraggio dei cambiamenti climatici, ecc. A livello globale, la revisione del PTA del 2021 ha tenuto in conto: (a) la situazione mondiale derivante dalla pandemia COVID-19, (b) l’evoluzione della strategia di alcuni principali attori della scena spaziale mondiale (eg USA); (c) il consolidamento del bilancio UE relativo al periodo 2021-2027 (Multiannual Financial Framework – MFF) che include i futuri programmi della UE
Recommended publications
  • Comet Interceptor: a Proposed ESA Mission to a Dynamically New Comet
    EPSC Abstracts Vol. 13, EPSC-DPS2019-1679-1, 2019 EPSC-DPS Joint Meeting 2019 c Author(s) 2019. CC Attribution 4.0 license. Comet Interceptor: A proposed ESA Mission to a Dynamically New Comet Geraint H. Jones(1,2), Colin Snodgrass(3), and The Comet Interceptor Consortium (see www.cometinterceptor.space ) (1) UCL Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, RH5 6NT, UK ([email protected]) (2) The Centre for Planetary Sciences at UCL/Birkbeck, London, UK (3) University of Edinburgh, United Kingdom ([email protected]) Abstract allow valuable multi-point measurements of the solar wind over different lengtH-scales as tHese craft In response to the recent European Space Agency’s separate. call for proposals for a Fast (F) Mission, a multi- spacecraft project has been submitted to ESA to For the comet encounter, the primary spacecraft, encounter a dynamically new comet or interstellar planned to also act as the primary communication object. SucH an encounter with a comet approacHing point for the whole constellation, would be targetted the Sun for the first time would provide valuable data to pass outside the hazardous inner coma, on the to complement that from all previous comet missions, sunward side of tHe comet. At least one sub-spacecraft whicH Have by necessity studied sHort-period comets would be targetted for tHe nucleus/inner coma region. that Have evolved from their original condition during The various component spacecraft will carry a range their time orbiting near the Sun. of miniaturised instruments for remote and in situ studies of tHe object’s composition, nucleus, coma, The mission’s primary science goal is to cHaracterise, and plasma environment.
    [Show full text]
  • JUICE Red Book
    ESA/SRE(2014)1 September 2014 JUICE JUpiter ICy moons Explorer Exploring the emergence of habitable worlds around gas giants Definition Study Report European Space Agency 1 This page left intentionally blank 2 Mission Description Jupiter Icy Moons Explorer Key science goals The emergence of habitable worlds around gas giants Characterise Ganymede, Europa and Callisto as planetary objects and potential habitats Explore the Jupiter system as an archetype for gas giants Payload Ten instruments Laser Altimeter Radio Science Experiment Ice Penetrating Radar Visible-Infrared Hyperspectral Imaging Spectrometer Ultraviolet Imaging Spectrograph Imaging System Magnetometer Particle Package Submillimetre Wave Instrument Radio and Plasma Wave Instrument Overall mission profile 06/2022 - Launch by Ariane-5 ECA + EVEE Cruise 01/2030 - Jupiter orbit insertion Jupiter tour Transfer to Callisto (11 months) Europa phase: 2 Europa and 3 Callisto flybys (1 month) Jupiter High Latitude Phase: 9 Callisto flybys (9 months) Transfer to Ganymede (11 months) 09/2032 – Ganymede orbit insertion Ganymede tour Elliptical and high altitude circular phases (5 months) Low altitude (500 km) circular orbit (4 months) 06/2033 – End of nominal mission Spacecraft 3-axis stabilised Power: solar panels: ~900 W HGA: ~3 m, body fixed X and Ka bands Downlink ≥ 1.4 Gbit/day High Δv capability (2700 m/s) Radiation tolerance: 50 krad at equipment level Dry mass: ~1800 kg Ground TM stations ESTRAC network Key mission drivers Radiation tolerance and technology Power budget and solar arrays challenges Mass budget Responsibilities ESA: manufacturing, launch, operations of the spacecraft and data archiving PI Teams: science payload provision, operations, and data analysis 3 Foreword The JUICE (JUpiter ICy moon Explorer) mission, selected by ESA in May 2012 to be the first large mission within the Cosmic Vision Program 2015–2025, will provide the most comprehensive exploration to date of the Jovian system in all its complexity, with particular emphasis on Ganymede as a planetary body and potential habitat.
    [Show full text]
  • The Artemis Accords: Employing Space Diplomacy to De-Escalate a National Security Threat and Promote Space Commercialization
    American University National Security Law Brief Volume 11 Issue 2 Article 5 2021 The Artemis Accords: Employing Space Diplomacy to De-Escalate a National Security Threat and Promote Space Commercialization Elya A. Taichman Follow this and additional works at: https://digitalcommons.wcl.american.edu/nslb Part of the National Security Law Commons Recommended Citation Elya A. Taichman "The Artemis Accords: Employing Space Diplomacy to De-Escalate a National Security Threat and Promote Space Commercialization," American University National Security Law Brief, Vol. 11, No. 2 (2021). Available at: https://digitalcommons.wcl.american.edu/nslb/vol11/iss2/5 This Response or Comment is brought to you for free and open access by the Washington College of Law Journals & Law Reviews at Digital Commons @ American University Washington College of Law. It has been accepted for inclusion in American University National Security Law Brief by an authorized editor of Digital Commons @ American University Washington College of Law. For more information, please contact [email protected]. The Artemis Accords: Employing Space Diplomacy to De-Escalate a National Security Threat and Promote Space Commercialization Elya A. Taichman* “Those who came before us made certain that this country rode the first waves of the industrial revolutions, the first waves of modern invention, and the first wave of nuclear power, and this generation does not intend to founder in the backwash of the coming age of space. We mean to be a part of it—we mean to lead it. For the eyes of the world now look into space, to the Moon and to the planets beyond, and we have vowed that we shall not see it governed by a hostile flag of conquest, but by a banner of freedom and peace.
    [Show full text]
  • Enceladus, Moon of Saturn
    National Aeronautics and and Space Space Administration Administration Enceladus, Moon of Saturn www.nasa.gov Enceladus (pronounced en-SELL-ah-dus) is an icy moon of Saturn with remarkable activity near its south pole. Covered in water ice that reflects sunlight like freshly fallen snow, Enceladus reflects almost 100 percent of the sunlight that strikes it. Because the moon reflects so much sunlight, the surface temperature is extremely cold, about –330 degrees F (–201 degrees C). The surface of Enceladus displays fissures, plains, corrugated terrain and a variety of other features. Enceladus may be heated by a tidal mechanism similar to that which provides the heat for volca- An artist’s concept of Saturn’s rings and some of the icy moons. The ring particles are composed primarily of water ice and range in size from microns to tens of meters. In 2004, the Cassini spacecraft passed through the gap between the F and G rings to begin orbiting Saturn. noes on Jupiter’s moon Io. A dramatic plume of jets sprays water ice and gas out from the interior at ring material, coating itself continually in a mantle Space Agency. The Jet Propulsion Laboratory, a many locations along the famed “tiger stripes” at of fresh, white ice. division of the California Institute of Technology, the south pole. Cassini mission data have provided manages the mission for NASA. evidence for at least 100 distinct geysers erupting Saturn’s Rings For images and information about the Cassini on Enceladus. All of this activity, plus clues hidden Saturn’s rings form an enormous, complex struc- mission, visit — http://saturn.jpl.nasa.gov/ in the moon’s gravity, indicates that the moon’s ture.
    [Show full text]
  • Arxiv:2005.12932V1 [Astro-Ph.EP] 26 May 2020 with Eccentricity, E = 1.2, ‘Oumuamua Encountered the Solar System with V∞ = 26 Km S
    Draft version May 28, 2020 Typeset using LATEX default style in AASTeX63 Evidence that 1I/2017 U1 (`Oumuamua) was composed of molecular hydrogen ice. Darryl Seligman1 and Gregory Laughlin2 1 Dept. of the Geophysical Sciences, University of Chicago, Chicago, IL 60637 2Dept. of Astronomy, Yale University, New Haven, CT 06517 (Received April 14, 2020; Revised May 22, 2020; Accepted May 28, 2020) Submitted to ApJL ABSTRACT `Oumuamua (I1 2017) was the first macroscopic (l ∼ 100 m) body observed to traverse the inner solar system on an unbound hyperbolic orbit. Its light curve displayed strong periodic variation, and it showed no hint of a coma or emission from molecular outgassing. Astrometric measurements indicate that 'Oumuamua experienced non-gravitational acceleration on its outbound trajectory, but energy balance arguments indicate this acceleration is inconsistent with a water ice sublimation-driven jet of the type exhibited by solar system comets. We show that all of `Oumaumua's observed properties can be explained if it contained a significant fraction of molecular hydrogen (H2) ice. H2 sublimation at a rate proportional to the incident solar flux generates a surface-covering jet that reproduces the observed acceleration. Mass wasting from sublimation leads to monotonic increase in the body axis ratio, explaining `Oumuamua's shape. Back-tracing `Oumuamua's trajectory through the Solar System permits calculation of its mass and aspect ratio prior to encountering the Sun. We show that H2-rich bodies plausibly form in the coldest dense cores of Giant Molecular Clouds, where number densities are of order n ∼ 105, and temperatures approach the T = 3 K background.
    [Show full text]
  • Alien Life Could Thrive in a Place Like Saturn's Icy Moon Enceladus
    Alien life could thrive in a place like Saturn’s icy moon Enceladus, expe... https://www.washingtonpost.com/news/speaking-of-science/wp/2018/02/... by Ben Guarino A plume of ice and water vapor from the south polar region of Saturn's moon Enceladus. (NASA/JPL/Space Science Institute) Life as we know it needs three things: energy, water and chemistry. Saturn's icy moon Enceladus has them all, as NASA spacecraft Cassini confirmed in the final years of its mission to that planet. While Cassini explored the Saturnian neighborhood, its sensors detected gas geysers that spewed from Enceladus's southern poles. Within those plumes exists a chemical buffet of carbon dioxide, ammonia and organic compounds such as methane. Crucially, the jets also contained molecular hydrogen — two hydrogen atoms bound as one unit. This is a coin of the microbial realm that Earth organisms can harness for energy. Beneath Enceladus's ice shell is a liquid ocean. Astronauts looking for a cosmic vacation destination would be disappointed. The moon is oxygen-poor. There is darkness down below, too, because the moon's ice sheets reflect 90 percent of the incoming sunlight. Despite frigid temperatures at the surface, the water is thought to reach up to 194 degrees Fahrenheit at the bottom. Speaking of Science newsletter 1 von 3 03.03.2018, 15:33 Alien life could thrive in a place like Saturn’s icy moon Enceladus, expe... https://www.washingtonpost.com/news/speaking-of-science/wp/2018/02/... The latest and greatest in science news. As harsh as the moon’s conditions are, a recent experiment suggests that Enceladus could support organisms like those that thrive on Earth.
    [Show full text]
  • Espinsights the Global Space Activity Monitor
    ESPInsights The Global Space Activity Monitor Issue 2 May–June 2019 CONTENTS FOCUS ..................................................................................................................... 1 European industrial leadership at stake ............................................................................ 1 SPACE POLICY AND PROGRAMMES .................................................................................... 2 EUROPE ................................................................................................................. 2 9th EU-ESA Space Council .......................................................................................... 2 Europe’s Martian ambitions take shape ......................................................................... 2 ESA’s advancements on Planetary Defence Systems ........................................................... 2 ESA prepares for rescuing Humans on Moon .................................................................... 3 ESA’s private partnerships ......................................................................................... 3 ESA’s international cooperation with Japan .................................................................... 3 New EU Parliament, new EU European Space Policy? ......................................................... 3 France reflects on its competitiveness and defence posture in space ...................................... 3 Germany joins consortium to support a European reusable rocket.........................................
    [Show full text]
  • Report on Czech COSPAR-Related Activities in 2019
    Report on Czech COSPAR-related activities in 2019 This report summarizes selected results of five Czech institutions represented in the Czech National Committee of COSPAR, namely the Institute of Atmospheric Physics (IAP) of the Czech Academy of Sciences (CAS), the Astronomical Institute (AI) of CAS, the Faculty of Mathematics and Physics of the Charles University (FMP CU), BBT - Materials Processing, and the Czech Space Office. Both selected scientific results and Czech participation in space experiments are reported. There are also significant outreach/PR activities. Participation in space experiments Solar Orbiter (AI CAS, IAP CAS, FMP CU, IPP CAS - TOPTEC) The Solar Orbiter (SOLO) satellite, project ESA-NASA, was successfully launched from Florida on February 10, 2020 at 05:03 CET. Czech institutions have been participating in four out of ten scientific instruments on board of SOLO (STIX, Metis, RPW, and SWA/PAS). Czech commitment to the STIX (remote sensing X-ray telescope led by Switzerland) instrument was fully accomplished. Figure: STIX telescope Another instrument on board the Solar Orbiter is the coronagraph Metis led by Italian PI, with Germany and Czech Republic as Co-PIs. Metis will observe the solar corona in UV in the hydrogen Lyman- line and simultaneously in the visible light. The main optics (two mirrors) were designed and manufactured in the Czech Republic by TOPTEC (section of the Institute of Plasma Physics (IPP) of CAS). The third instrument called RPW (Radio and Plasma Waves) has PI in France, with participation of the AI and IAP CAS. The team at IAP CAS developed and delivered the Time Domain Sampler (TDS) subsystem which will characterize the processes of beam-plasma interactions responsible for generation of Langmuir waves and their conversion to radio emissions.
    [Show full text]
  • Inquiry Into Developing Australia's Space Industry Submission 55
    Standing Committee on Industry, Innovation, Science and Resources Inquiry into developing Australia’s space industry Submission by the Department of Industry, Science, Energy and Resources (Australian Space Agency) With input from the Department of Defence; the Department of Foreign Affairs and Trade; and the Department of Infrastructure, Transport, Regional Development and Communications, and their portfolio agencies January 2021 space.gov.au Contents Executive summary 4 Space benefits all Australians and the economy 5 Case studies 5 Opportunities for developing Australia’s space industry 7 Growth of the global space sector 7 Leverage and strengthen comparative advantages and adjacent capabilities 8 Creating jobs across the economy 9 Impacts of COVID-19 10 Advancing Space: Australian Civil Space Strategy 2019-2028 12 National Civil Space Priority Areas 12 Strategic Space Pillars 13 Growing national capability 13 Opening doors internationally 16 Being responsible and safe 19 Inspiring the nation and a future workforce 21 Australian Space Agency 23 Establishment of the Agency 23 Agency Charter 24 Statement of Expectations 24 Evaluation and statutory basis of the Agency 25 Other industry and science programs available to the space sector 26 AusIndustry 26 Cooperative Research Centres Program 27 Geoscience Australia 28 CSIRO 28 International astronomy partnerships 31 Research and development 32 Australian Space Agency Parliamentary inquiry on space 2 National security 32 Measuring progress 33 Defining the Australian space sector 33 Targets
    [Show full text]
  • PAC March 9 10 2020 Report
    NASA ADVISORY COUNCIL PLANETARY SCIENCE ADVISORY COMMITTEE March 9-10, 2020 NASA Headquarters Washington, DC MEETING REPORT _____________________________________________________________ Anne Verbiscer, Chair ____________________________________________________________ Stephen Rinehart, Executive Secretary Table of Contents Opening and Announcements, Introductions 3 PSD Update and Status 3 PSD R&A Status 5 Planetary Protection 7 Discussion 8 Mars Exploration Program 8 Lunar Exploration Program 9 PDCO 11 Planetary Data System 12 PDS at Headquarters 13 Findings and Discussion 13 General Comments 13 Exoplanets in Our Backyard 14 AP Assets for Solar System Observations 15 Solar System Science with JWST 16 Mercury Group 17 VEXAG 17 SBAG 18 OPAG 19 MEPAG 19 MAPSIT 20 LEAG 21 CAPTEM 21 Discussion 22 Findings and Recommendations Discussion 23 Appendix A- Attendees Appendix B- Membership roster Appendix C- Agenda Appendix D- Presentations Prepared by Joan M. Zimmermann Zantech, Inc. 2 Opening, Announcements, Around the Table Identification Executive Secretary of the Planetary Science Advisory Committee (PAC), Dr. Stephen Rinehart, opened the meeting and made administrative announcements. PAC Chair, Dr. Anne Verbiscer, welcomed everyone to the virtual meeting. Announcements were made around the table and on Webex. PSD Status Report Dr. Lori Glaze, Director of the Planetary Science Division, gave a status report. First addressing the President’s Budget Request (PBR) for Fiscal Year 2021 (FY21) for the Science Mission Directorate (SMD), Dr. Glaze noted that it was one of the strongest science budgets in NASA history, representing a 12% increase over the enacted FY20 budget. The total PBR keeps NASA on track to land on the Moon by 2024; and to help prepare for human exploration at Mars.
    [Show full text]
  • Arxiv:1701.02125V1 [Astro-Ph.EP] 9 Jan 2017 These Bounds Are Set by Earth’S Moon and Charon, the Large Satellite of the Dwarf Planet Pluto
    September 3, 2018 15:6 Advances in Physics Barr2016-3R To appear in Astronomical Review Vol. 00, No. 00, Month 20XX, 1{32 REVIEW Formation of Exomoons: A Solar System Perspective Amy C. Barr∗ Planetary Science Institute, 1700 East Ft. Lowell Rd., Suite 106, Tucson AZ 85719 USA (Submitted Sept 15, 2016, Revised October 31, 2016) Satellite formation is a natural by-product of planet formation. With the discovery of nu- merous extrasolar planets, it is likely that moons of extrasolar planets (exomoons) will soon be discovered. Some of the most promising techniques can yield both the mass and radius of the moon. Here, I review recent ideas about the formation of moons in our Solar System, and discuss the prospects of extrapolating these theories to predict the sizes of moons that may be discovered around extrasolar planets. It seems likely that planet-planet collisions could create satellites around rocky or icy planets which are large enough to be detected by currently available techniques. Detectable exomoons around gas giants may be able to form by co-accretion or capture, but determining the upper limit on likely moon masses at gas giant planets requires more detailed, modern simulations of these processes. Keywords: Satellite formation, Moon, Jovian satellites, Saturnian satellites, Exomoons 1. Introduction The discovery of a bounty of extrasolar planets has raised the question of whether any of these planets might harbor moons. The mass and radius of a moon (or moons) of an extrasolar planet (exomoon) and its host planet can offer a unique window into the timing, duration, and dynamical environment of planet formation, just as the moons in our Solar System have yielded clues about the formation of our planets [1{5].
    [Show full text]
  • State of the Space Industrial Base 2020 Report
    STATE OF THE SPACE INDUSTRIAL BASE 2020 A Time for Action to Sustain US Economic & Military Leadership in Space Summary Report by: Brigadier General Steven J. Butow, Defense Innovation Unit Dr. Thomas Cooley, Air Force Research Laboratory Colonel Eric Felt, Air Force Research Laboratory Dr. Joel B. Mozer, United States Space Force July 2020 DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited. DISCLAIMER The views expressed in this report reflect those of the workshop attendees, and do not necessarily reflect the official policy or position of the US government, the Department of Defense, the US Air Force, or the US Space Force. Use of NASA photos in this report does not state or imply the endorsement by NASA or by any NASA employee of a commercial product, service, or activity. USSF-DIU-AFRL | July 2020 i ​ ​ ABOUT THE AUTHORS Brigadier General Steven J. Butow, USAF Colonel Eric Felt, USAF Brig. Gen. Butow is the Director of the Space Portfolio at Col. Felt is the Director of the Air Force Research the Defense Innovation Unit. Laboratory’s Space Vehicles Directorate. Dr. Thomas Cooley Dr. Joel B. Mozer Dr. Cooley is the Chief Scientist of the Air Force Research Dr. Mozer is the Chief Scientist at the US Space Force. Laboratory’s Space Vehicles Directorate. ACKNOWLEDGEMENTS FROM THE EDITORS Dr. David A. Hardy & Peter Garretson The authors wish to express their deep gratitude and appreciation to New Space New Mexico for hosting the State of the Space Industrial Base 2020 Virtual Solutions Workshop; and to all the attendees, especially those from the commercial space sector, who spent valuable time under COVID-19 shelter-in-place restrictions contributing their observations and insights to each of the six working groups.
    [Show full text]