Sphenochoanal Polyp: Radiological Diagnosis

Total Page:16

File Type:pdf, Size:1020Kb

Sphenochoanal Polyp: Radiological Diagnosis CASE REPOI~T swimming. Nasal endoscopy revealed a Sphenochoanal right sided solitary polypoid mass with a slender pedicle extending from the polyp: sphenoethmoidal recess to the choana. An unenhanced CT scan of paranasal sinuses (5 x 5 mm coronal radiological scans) was performed on a GE 8800 scanner (Milwaukee, USA). A soft tis- sue polyp extending from the right diagnosis sphenoid sinus/sphenoethmoidal recess to the right choana was demonstrated. MWPak* Abstract Chronic right sphenoid sinusitis with FRCS(Ed) A sphenochoanal reactive sclerosis was seen. Inside the J Kew# polyp is seen as an sphenoid sinus there was a convex up- FFRad, (D) SA isolated soft tissue per margin to the soft tissue which in- * Division of Otorhinolaryngology, dicated the presence of either a mucous Depal1ment of Surgery, density mass that retention cyst or a polyp. The other # Depal1ment of Diagnostic Radiology and arises from the Organ Imaging, Prince ofWa/es Hosp/ta/, paranasalsinuseswere clear (Figures1-4). Chinese University of Hong Kong sphenoid sinus and The clinical and radiological findings extends to the choana indicated a sphenochoanal polyp. The on computed patient was admitted for excision un- tomograph ic scans. der general anaesthesia. Under endo- Distinction from its scopic control, the anterior wall of the more cornrnon sphenoid sinus was opened and the counterpart, polyp, together with its sphenoidal com- antrochoanal polyp ponent, was removed. No recurrence vvbich arises from the was noted two years after surgery. maxillary sinus, is essential prior to Discussion surgery. A case is A choanal polyp results from pro- presented to iII ustrate lapsed mucosa of an isolated paranasal that CT scan of sinus and accounts for 3-6% of nasal paranasal sinus plays polyps.P Characteristically, it passes an important role in through the enlarged sinus ostium and the identification of protrudes into the choana leading to the sinus of origin. unilateral nasal obstruction, rhinorrhea and sinusitis. Case report Choanal polyps from sphenoid si- nus are rare but share the characteristic A 47-year-old male presented to similarity with the more common coun- Prince of Wales Hospital with a one terparts which arise from the maxillary year history of right sided progressive sinus. They are invariablyunilateralin dis- nasal obstruction following an episode tribution and common in males between of upper respiratory tract infection. The the second and fourth decades.'? obstruction was worse on forced expi- Contrary to conventional nasal polyps, ration and more noticeable during choanal polyps are believed to be topageB 7 SAJOURNAL OF RADIOLOGY. May 1998 (rom page 7 determine. If the sphenoid sinus is the only opaque sinus, a choanal polyp is prob- ably sphenochoanal, even if the connection cannot be demon- strated. If both the maxillary antrum and the sphenoid sinus are Figure 1: Coronal CT scan showing normal opaque, continuity be- maxillary and ethmoid sinuses. No nasal polyposis Figure 4: Coronal CT scan showing the polyp in the right choana. tween the polyp and IS eVident and the osteomeatal units are patent. polyp may arise from the blocked aci- the correct sinus of ori- nous mucous gland and present as an gin isimportant to document. In the case extension of a mucocele.' However, of an antrochoanal polyp, the polyp can more evidence has suggested that the be followed passing between the mid- polyp is an extension of an asympto- dle turbinate and the lateral wall of the matic intramural cyst from within a si- nasal cavity. With a sphenochoanal nus through its natural ostium.' polyp, the polyp is between the nasal The sinus of origin can be identified septum and middle turbinate. The dif- clinically and radiologically. With a ferential diagnosis of a soft tissue mass 4 mm, zero degree nasal endoscope, the in the sphenoethmoidal recess/choana sphenochoanal polyp is readily recog- could include nasal polyp with sphenoid nized asa solitary polypoid mass extend- sinusitis,nasopharyngeal carcinoma and Figure 2: Coronal CT scan through the posterior ing posteriorly from the recess between lymphoma. maxillary sinuses which are clear. A soft tissue As simple avulsion of the intranasal opacity with a convex upper margin is seen in the septum and middle turbinate to the sphenoid sinus (arrowhead). There is soft tissue in choana. Further identification of a long portion alone is associated with recur- the sphenoethmoldal recess representing the stalk of the polyp (arrow). pedicle protruding through the rence of at least 20% within two years, sphenoid ostium in the the polyp should be resected together sphenoethmoidal recess is with the pedicle and its intrasphenoidal essential to confirm the di- portion. 1·3 To decrease the morbidity agnosis.Apart from endos- associated with external approaches to copy, CT scans of paranasal the sphenoid sinus, endoscopic removal sinus is indispensable to the of the polyp together with evaluation of an isolated na- sphenoidotomy remains the treatment sal polyp of unknown ori- of choice. gin. The radiological find- References 1. Heck WE, Hallberg 0, Williams HL. Antrochoanal polyp. ings of sphenochoanal pol- Arch Otolaryngol1950, 52: 538·548. yps are characteristic. The 2. Sirola R. Choana I polyps. Acta Otolaryngol (Stockh) 1996; 61: 42·48. CT appearance of the polyp 3. Hardy G. The choanal polyp. Ann Oto Laryngol Rhinol is of a hypoattenuated mass 1957; 66: 306·326. Figure ~: The polyp (arrow) Is seen in the right nasopharynx. The right 4. Mills CP. Secretory cysts of the maxillary antrum and sphenoid SinUS IS opaque and there Is associated reactive osteitis. arising from an isolated their relation to the development of antrochoanal polyp J Laryngol Oto 1959; 52: 84-1 DO. opaque sphenoid sinus 5. Berg 0, Carenfelt C, Silfversward C, Sobin A. Origin of the choanal polyp. Arch Otolaryngol Head Neck Surg of inflammatory or infectious rather without evidence of bony erosion. The 1988; 114: 1270-1271. than allergic nature. 1·3 6. Hayes E, Lavelle W. Sphenochoanal polyp. CT findings natural ostium of the sphenoid sinus J Computer Assisted Tomography 1989; 13: 365-366.' The origin of the polyps is contro- is usually enlarged.ê? Occasionally, the 7. Weissman JK, Tabor EK, Curtin HD. Sphenochoanal polyps: Evaluation with CT and MR imaging. Radiology versial. Mills has suggested that the sinus of origin may be difficult to 1991; 178: 145-148. a SA JOURNAL OF RADIOLOGY. May 1998.
Recommended publications
  • Gross Anatomy Assignment Name: Olorunfemi Peace Toluwalase Matric No: 17/Mhs01/257 Dept: Mbbs Course: Gross Anatomy of Head and Neck
    GROSS ANATOMY ASSIGNMENT NAME: OLORUNFEMI PEACE TOLUWALASE MATRIC NO: 17/MHS01/257 DEPT: MBBS COURSE: GROSS ANATOMY OF HEAD AND NECK QUESTION 1 Write an essay on the carvernous sinus. The cavernous sinuses are one of several drainage pathways for the brain that sits in the middle. In addition to receiving venous drainage from the brain, it also receives tributaries from parts of the face. STRUCTURE ➢ The cavernous sinuses are 1 cm wide cavities that extend a distance of 2 cm from the most posterior aspect of the orbit to the petrous part of the temporal bone. ➢ They are bilaterally paired collections of venous plexuses that sit on either side of the sphenoid bone. ➢ Although they are not truly trabeculated cavities like the corpora cavernosa of the penis, the numerous plexuses, however, give the cavities their characteristic sponge-like appearance. ➢ The cavernous sinus is roofed by an inner layer of dura matter that continues with the diaphragma sellae that covers the superior part of the pituitary gland. The roof of the sinus also has several other attachments. ➢ Anteriorly, it attaches to the anterior and middle clinoid processes, posteriorly it attaches to the tentorium (at its attachment to the posterior clinoid process). Part of the periosteum of the greater wing of the sphenoid bone forms the floor of the sinus. ➢ The body of the sphenoid acts as the medial wall of the sinus while the lateral wall is formed from the visceral part of the dura mater. CONTENTS The cavernous sinus contains the internal carotid artery and several cranial nerves. Abducens nerve (CN VI) traverses the sinus lateral to the internal carotid artery.
    [Show full text]
  • Normal and Abnormal Findings in Rhinoscopy
    3/18/2016 Normal and Abnormal Findings in Rhinoscopy Brian C. Spector, MD Ear, Nose Throat and Plastic Surgery Associates Assistant Professor FSU College of Medicine Assistant Professor UCF College of Medicine Sixth Annual ENT for the PA-C | March 30 – April 3, 2016| Orlando, FL No Disclosures Sixth Annual ENT for the PA-C | March 30 – April 3, 2016| Orlando, FL Learning Objectives • Maximize diagnostic yield by understanding best technique for Rhinoscopy • Identify normal anatomy and variants of normal anatomy visualized in Rhinoscopy • Identify abnormal findings visualized in Rhinoscopy Sixth Annual ENT for the PA-C | March 30 – April 3, 2016| Orlando, FL 1 3/18/2016 Sixth Annual ENT for the PA-C | March 30 – April 3, 2016| Orlando, FL Nasal Septum Lateral Nasal Wall Sixth Annual ENT for the PA-C | March 30 – April 3, 2016| Orlando, FL 2 3/18/2016 Nasopharynx Mucosa Intact Sixth Annual ENT for the PA-C | March 30 – April 3, 2016| Orlando, FL Ehab Zayyan MD, PhD Anterior Rhinoscopy Non Dominant Hand. Index Finger on Nasal Tip. Keep open until fully removed to avoid pulling hairs. Headlight Illumination Nasal Septum: deviation, perforation, stigmata of recent or active bleeding Inferior Turbinates: color of mucosa, congestion, secretions Internal Nasal Valve ‐ Septum, floor, caudal border of upper lateral cartilage, anterior head of inferior turbinate. Narrowest part of nasal airway Middle Turbinates Mucosa Sixth Annual ENT for the PA-C | March 30 – April 3, 2016| Orlando, FL 3 3/18/2016 Nasal Endoscopy Flexible Nasal Endoscopy: Technique
    [Show full text]
  • Surgical Anatamic of Paranasal Sinuses
    SURGICAL ANATAMIC OF PARANASAL SINUSES DR. SEEMA MONGA ASSOCIATE PROFESSOR DEPARTMENT OF ENT-HNS HIMSR MIDDLE TURBINATE 1. Anterior attachment : vertically oriented, sup to the lateral border of cribriform plate. 2. Second attachment :Obliquely oriented- basal lamella/ ground lamella, Attached to the lamina papyracea ( medial wall of orbit anterior, posterior air cells, sphenopala‐ tine foramen 3. Posterior attachment :medial wall of maxillary sinus, horizontally oriented. , supreme turbinate 3. Occasionally 4. fourth turbinate, 5. supreme meatus, if present 6. drains posterior ethmoid drains inferior, middle, superior turbinates and, occasionally, the supreme turbinate, the fourth turbinate. e. Lateral to these turbinates are the corresponding meatuses divided per their drainage systems ANATOMICAL VARIATIONS OF THE TURBINATES 1. Concha bullosa, 24–55%, often bilateral, 2. Interlamellar cell of grunwald: pneumatization is limited to the vertical part of middle turbinate, usually not causing narrowing of the ostiomeatal unit 3. Paradoxic middle turbinate: 26%,. Occasionally, it can affect the patency of the ostiomeatal unit 4. Pneumatized basal lamella, falsely considered, posterior ethmoid air cell Missed basal lamella – attaches to lateral maxillary sinus wall Ostiomeatal unit Anterior ostiomeatal unit, maxillary, anterior ethmoid, frontal sinuses, (1) ethmoid infundibulum, (2) middle meatus, (3) hiatus semilunaris, (4) maxillaryOstium, (5) ethmoid bulla, (6) frontal recess, (7) uncinate process. , sphenoethmoidal recess Other draining osteomeatal unit, posterior in the nasal cavity, posterior ethmoid sinus, lateral to the superior turbinate, . sphenoid Sinus medial to the superior turbinate Uncinate Process Crescent‐shaped, thin individual bone inferiorly- ethmoidal process of inferior turbinate, anterior, lacrimal bone, posteriorly- hiatus Semilunaris, medial -ethmoid infundibulum, laterally, middle meatus superior attachment- variability, direct effect on frontal sinus drainage pathway.
    [Show full text]
  • Foley Catheter Action in the Nasopharynx a Cadaveric Study
    ORIGINAL ARTICLE Foley Catheter Action in the Nasopharynx A Cadaveric Study Wai Chung Lee, FRCS(ORL); Peter Ka Ming Ku, FRCSEd; Charles Andrew van Hasselt, FRCS Objectives: To determine the action of the Foley cath- eral side at appropriate inflation volumes in 17 (85%) of eter in the posterior nasal cavity in relation to balloon 20 nasal fossae. Complete sealing between volumes of 12 volume, and to deduce its implications in the treatment and 15 mL was achieved in 13 fossae (65%), between 11 of posterior epistaxis. and 15 mL in 10 nasal fossae (50%), and between 5 and 15 mL in 3 nasal fossae (15%). Failure to seal at any vol- Design: Human cadaveric study. ume occurred in 3 nasal fossae (15%). Bimodal seal (ie, complete seal at high [15 mL] and low volumes [4-7 mL], Materials: Twenty nasal fossae of 10 adult cadavers. but leakage in intermediate volumes) occurred in 3 na- sal fossae (15%). The balloon remained in the nasopha- Interventions: A Foley catheter (size 14) was inserted rynx under traction and did not slip past the choanal rim into the nasopharynx via each nostril. The catheter bal- to encroach on the middle and inferior turbinates until loon was inflated to its recommended maximum vol- the balloon volume was reduced to between 4 and 7 mL. ume with 15 mL of water. Firm traction was applied to The balloon slid out of the nose at a volume of 5 mL or the catheter. Colored liquid was instilled into the ipsi- less. The inflation volumes ranging from 8 to 12 mL were lateral aspect of the nasal cavity, and liquid leakage into statistically more effective in sealing the choana than lower the contralateral side was monitored using a nasoendo- volumes (4-7 mL) (P,.002, x2 test).
    [Show full text]
  • Download PDF (Inglês)
    Braz J Otorhinolaryngol. 2015;81(1 Supl. 1):S1-S49 Brazilian Journal of OTORHINOLARYNGOLOGY www.bjorl.org CONSENSUS Rhinosinusitis: evidence and experience October 18 and 19, 2013 - São Paulo Coordination Although VAS has only been validated for CRS in adults, Wilma T. Anselmo-Lima e Eulalia Sakano the European Position Paper on Rhinosinusitis and Nasal Polyps (EPOS) 20121 also recommends its use in ARS. There are sev- Participants eral specific questionnaires for rhinosinusitis, but in practice, 2-4 André Alencar, Atílio Fernandes, Edwin Tamashiro, most have limited application, particularly in acute cases. Elizabeth Araújo, Érica Ortiz, Fabiana Cardoso Pereira Valera, Fábio Pinna, Fabrizio Romano, Francini Padua, João Mello Jr., Acute rhinosinusitis João Teles Jr., José E. L. Dolci, Leonardo Balsalobre, Macoto Kosugi, Marcelo H. Sampaio, Márcio Nakanishi, Definition Marco César, Nilvano Andrade, Olavo Mion, Otávio Piltcher, Reginaldo Fujita, Renato Roithmann, Richard Voegels, ARS is an inflammatory process of the nasal mucosa of sud- Roberto E. Guimarães, Roberto Meireles, Shirley Pignatari, Victor Nakajima den onset, lasting up to 12 weeks. It may occur one or more times in a given period of time, but always with complete For the purpose of citation remission of signs and symptoms between episodes. Wilma Terezinha Anselmo Lima, Eulalia Sakano, Edwin Tamashiro, Elizabeth Araújo, Érica Ortiz, Fábio Pinna, Fabrizio Romano, Francini Padua, João Mello Jr., João Teles Jr., José E. L. Dolci, Classification Leonardo Balsalobre, Macoto Kosugi, Marcelo H. Sampaio, Márcio Nakanishi, Marco César, Nilvano Andrade, Olavo Mion, There are several classifications for RS. One of the most Otávio Piltcher, Reginaldo Fujita, Renato Roithmann, often used is the etiological classification, which is based Richard Voegels, Roberto E.
    [Show full text]
  • ABCDEF Checklist" Based on 3D Radiological Images for Preoperative Planning of Endoscopic Sinus Surgery*
    ORIGINAL CONTRIBUTION “ABCDEF Checklist" based on 3D radiological images for preoperative planning of endoscopic sinus surgery* 1 1 1 J.M. Maza-Solano , J. González-García , R. Moreno-Luna , J. Ambrosiani- Rhinology Online, Vol 1: 133 - 142, 2018 2 1 1 Fernández , E. Domínguez-Durán , S. Sánchez-Gómez http://doi.org/10.4193/RHINOL/18.054 1 Rhinology and Anterior Skull Base Department Section, University Hospital Virgen Macarena, Seville, Spain *Received for publication: 2 Department of Anatomy and Human Embryology, University of Seville, Seville, Spain August 21, 2018 Accepted: October 4, 2018 Published: October 6, 2018 Abstract Background: Endoscopic sinus surgery (ESS) is performed on endonasal landmarks that have great anatomical variability, there- fore a detailed preoperative study of these structures is necessary. Objective: To develop a checklist for the systematic identification of the paranasal sinuses and the skull base, based on 3D images that guide the planning and implementation of ESS to minimize complications and improve surgical outcomes. Methods: This study evaluates the usefulness of the “ABCDEF Checklist”, in a randomized study involving 30 otolaryngologists with more than 2 years of practical experience in ESS evaluating preoperative radiological examination and subsequent surgical performance in the sinus of 30 cadavers. Results: Differences between groups in identifying the essential anatomical references were significant in 9 of the 11 essential anatomical references for the Checklist Group Surgical procedures and surgical mistakes were performed systematically less often in the Checklist group but the differences did not reach significance after Bonferroni correction. Conclusions: The use of "ABCDEF Checklist" prior to ESS facilitates the identification of the essential anatomical references for the preoperative and systematized planning of the surgical procedures.
    [Show full text]
  • Radiographic Evaluation of the Nasal Cavity, Paranasal Sinuses and Nasopharynx for Sleep-Disordered Breathing
    RADIOGRAPHIC EVALUATION OF THE NASAL CAVITY, PARANASAL SINUSES AND NASOPHARYNX FOR SLEEP-DISORDERED BREATHING Dania Tamimi, BDS, DMSc Diplomate, American Board of Oral and Maxillofacial Radiology ROLE OF CBCT • To discover the anatomic truth DISCOVER FACTORS THAT • Lead to Abnormal Upper Airway Anatomy • Increase Resistance • Cause Turbulent or Laminar Air Flow • Increase Collapsibility • Airway lumen • Soft tissue component • Osseous component CHECKLIST – EVALUATE FOR • Nasal obstruction • Sinus pathology • Nasopharynx pathology • Oropharyngeal morphologic predisposing factors and pathology • Maxillary and mandible morphologic predisposing factors • TMJs • Hyoid bone position • Evaluate for Head position (false positive or negative) • C-spine for pathology • Cranial base CHECKLIST – EVALUATE FOR • Nasal obstruction • Sinus pathology • Nasopharynx pathology • Oropharyngeal morphologic predisposing factors and pathology • Maxillary and mandible morphologic predisposing factors • TMJs • Hyoid bone position • Evaluate for Head position (false positive or negative) • C-spine for pathology • Cranial base NASAL CAVITY AND SINUSES • Patency of external and internal nasal valves • Morphology of nasal septum • Morphology and symmetry of turbinates • Patency of sinus drainage pathways • Presence of sinonasal pathology THE NOSE HAS THREE MAJOR FUNCTIONS 1. Breathing 2. Olfaction 3. Conditioning the air THE NASAL VALVE • Turbulence distributes the air in the nasal fossa for conditioning and olfaction. • When there is stenosis of the nasal valve,
    [Show full text]
  • Evolution of the Nasal Structure in the Lower Tetrapods
    AM. ZOOLOCIST, 7:397-413 (1967). Evolution of the Nasal Structure in the Lower Tetrapods THOMAS S. PARSONS Department of Zoology, University of Toronto, Toronto, Ontario, Canada SYNOPSIS. The gross structure of the nasal cavities and the distribution of the various types of epithelium lining them are described briefly; each living order of amphibians and reptiles possesses a characteristic and distinctive pattern. In most groups there are two sensory areas, one lined by olfactory epithelium with nerve libers leading to the main olfactory bulb and the other by vomeronasal epithelium Downloaded from https://academic.oup.com/icb/article/7/3/397/244929 by guest on 04 October 2021 with fibers to the accessory bulb. All amniotes except turtles have the vomeronasal epithelium in a ventromedial outpocketing of the nose, the Jacobson's organ, and have one or more conchae projecting into the nasal cavity from the lateral wall. Although urodeles and turtles possess the simplest nasal structure, it is not possible to show that they are primitive or to define a basic pattern for either amphibians or reptiles; all the living orders are specialized and the nasal anatomy of extinct orders is unknown. Thus it is impossible, at present, to give a convincing picture of the course of nasal evolution in the lower tetrapods. Despite the rather optimistic title of this (1948, squamates), Stebbins (1948, squa- paper, I shall, unfortunately, be able to do mates), Bellairs and Boyd (1950, squa- iittle more than make a few guesses about mates), and Parsons (1959a, reptiles). Most the evolution of the nose. I can and will of the following descriptions are based on mention briefly the major features of the these works, although others, specifically nasal anatomy of the living orders of cited in various places, were also used.
    [Show full text]
  • NASAL ANATOMY Elena Rizzo Riera R1 ORL HUSE NASAL ANATOMY
    NASAL ANATOMY Elena Rizzo Riera R1 ORL HUSE NASAL ANATOMY The nose is a highly contoured pyramidal structure situated centrally in the face and it is composed by: ü Skin ü Mucosa ü Bone ü Cartilage ü Supporting tissue Topographic analysis 1. EXTERNAL NASAL ANATOMY § Skin § Soft tissue § Muscles § Blood vessels § Nerves ² Understanding variations in skin thickness is an essential aspect of reconstructive nasal surgery. ² Familiarity with blood supplyà local flaps. Individuality SKIN Aesthetic regions Thinner Thicker Ø Dorsum Ø Radix Ø Nostril margins Ø Nasal tip Ø Columella Ø Alae Surgical implications Surgical elevation of the nasal skin should be done in the plane just superficial to the underlying bony and cartilaginous nasal skeleton to prevent injury to the blood supply and to the nasal muscles. Excessive damage to the nasal muscles causes unwanted immobility of the nose during facial expression, so called mummified nose. SUBCUTANEOUS LAYER § Superficial fatty panniculus Adipose tissue and vertical fibres between deep dermis and fibromuscular layer. § Fibromuscular layer Nasal musculature and nasal SMAS § Deep fatty layer Contains the major superficial blood vessels and nerves. No fibrous fibres. § Periosteum/ perichondrium Provide nutrient blood flow to the nasal bones and cartilage MUSCLES § Greatest concentration of musclesàjunction of upper lateral and alar cartilages (muscular dilation and stenting of nasal valve). § Innervation: zygomaticotemporal branch of the facial nerve § Elevator muscles § Depressor muscles § Compressor
    [Show full text]
  • Nasal Cavity
    NASAL CAVITY Wedge shaped spaces; 5 cm in height, 5-7 cm in length Large inferior base- 1-5cm Narrow superior apex- 1-2 mm Anterior aperture- External nares- 1.5-2 cm ; 0.5-1 cm (flexible) posterior nasal apertures (choanae)– 2.5 by 1.3 cm (rigid) Separated from : each other- nasal septum oral cavity-hard palate cranial cavity-parts of frontal, ethmoid, sphenoid bones Lateral to nasal cavity- orbit each half- roof , floor medial wall, lateral wall three regions- vestibule respiratory region olfactory region Skeletal framework • Medial wall (nasal septum) Anterior - septal cartilage Vo m e r Perpendicular plate of ethmoid Minor contributions- nasal, frontal, sphenoid, maxilla, palatine bones • Often deflected • Lateral wall - Maxilla- anteroinferiorly Perpendicular plate of palatine Ethmoid labyrinth- superiorly & uncinate process Other bones- nasal, frontal process of maxilla, lacrimal Irregular projections- three conchae Superior concha- shortest, shallowest Middle concha- large, articulates with palatine Inferior concha- independent bone, articulates with maxilla Skeletal framework-contd. • Floor: Smooth, concave, wider than roof Palatine process of maxilla Horizontal plate of palatine (hard palate) Soft tissue • Roof: narrow, highest in the center Cribriform plate of ethmoid Anteriorly- nasal spine of frontal, nasal bones, septal cartilage, major alar cartilage Posteriorly: sphenoid, ala of vomer, palatine, medial pterygoid plate Roof is perforated by openings in the cribriform plate and a separate foramen for anterior ethmoidal Ns
    [Show full text]
  • Surgical Anatomy of the Paranasal Sinus M
    13674_C01.qxd 7/28/04 2:14 PM Page 1 1 Surgical Anatomy of the Paranasal Sinus M. PAIS CLEMENTE The paranasal sinus region is one of the most complex This chapter is divided into three sections: develop- areas of the human body and is consequently very diffi- mental anatomy, macroscopic anatomy, and endoscopic cult to study. The surgical anatomy of the nose and anatomy. A basic understanding of the embryogenesis of paranasal sinuses is published with great detail in most the nose and the paranasal sinuses facilitates compre- standard textbooks, but it is the purpose of this chapter hension of the complex and variable adult anatomy. In to describe those structures in a very clear and systematic addition, this comprehension is quite useful for an accu- presentation focused for the endoscopic sinus surgeon. rate evaluation of the various potential pathologies and A thorough knowledge of all anatomical structures their managements. Macroscopic description of the and variations combined with cadaveric dissections using nose and paranasal sinuses is presented through a dis- paranasal blocks is of utmost importance to perform cussion of the important structures of this complicated proper sinus surgery and to avoid complications. The region. A correlation with intricate endoscopic topo- complications seen with this surgery are commonly due graphical anatomy is discussed for a clear understanding to nonfamiliarity with the anatomical landmarks of the of the nasal cavity and its relationship to adjoining si- paranasal sinus during surgical dissection, which is con- nuses and danger areas. A three-dimensional anatomy is sequently performed beyond the safe limits of the sinus.
    [Show full text]
  • Imaging of Chronic and Exotic Sinonasal Disease: Review Arash K
    AJR Integrative Imaging LIFELONG LEARNING FOR RADIOLOGY Imaging of Chronic and Exotic Sinonasal Disease: Review Arash K. Momeni1, Catherine C. Roberts2, and Felix S. Chew3 Objective This review focuses on the anatomy, pathophysiology, mi- Chronic sinusitis is one of the most commonly diagnosed crobiology, and diagnosis of sinonasal disease, including illnesses in the United States. The educational objectives of chronic and fungal sinusitis, juvenile nasopharyngeal angio- this review article are for the participant to exercise, self- fibroma, inverted papilloma, and chondrosarcoma. assess, and improve his or her understanding of the imaging evaluation of sinonasal disease. Anatomy and Pathophysiology Understanding the normal anatomy and physiology of Conclusion the paranasal sinuses is important to understanding the This article describes the anatomy, pathophysiology, mi- pathogenesis of sinus disease. There are four pairs of sinuses crobiology, and diagnosis of sinonasal disease, including named for the bones of the skull they pneumatize. They are chronic and fungal sinusitis, juvenile nasopharyngeal angio- the maxillary, ethmoid, frontal, and sphenoid sinus air cells fibroma, inverted papilloma, and chondrosarcoma. and they are lined by pseudostratified columnar epithelium- bearing cilia. The mucosa contains goblet cells that secrete Introduction mucus, which aids in trapping inhaled particles and debris. Chronic sinusitis is one of the most commonly diagnosed The maxillary antrum consists of a roof, floor, and three illnesses in the United States. It is estimated to affect more walls: the medial, anterior, and posterolateral. The roof and than 30 million individuals and is increasing in incidence [1]. medial walls are shared with the orbit and nasal cavity, forming The number of office visits and the annual expenditures on the orbital floor and lateral wall of the nose, respectively [3].
    [Show full text]