Cottony Cushion Scale

Total Page:16

File Type:pdf, Size:1020Kb

Cottony Cushion Scale Cottony Cushion sCale Integrated Pest Management for Home Gardeners and Landscape Professionals Cottony cushion scale, Icerya purchasi, can infest a number of woody orna- mentals and certain crops (Figure 1). Common hosts in California are citrus, cocculus, nandina, and pit- tosporum. Its cottony egg sac and profuse honeydew production make cottony cushion scale easy to spot in the landscape. Figure 1. Colony of cottony cushion Figure 4. Each time a scale molts, it leaves IDENTIFICATION AND scale. behind its white, cottony molting skin. LIFE CYCLE The body of the female cottony cush- ion scale is orangish brown, but its most distinguishing feature is the elongated, fluted white cottony egg sac that is attached to its body. The egg sac contains 600 to 800 red eggs and may become two to three times as long as the body of the female; the resulting length of the female plus Figure 2. The actual size of female with Figure 5. Cottony cushion scale second- the egg sac can be almost 1/2 inch egg sac can be about 1⁄2 inch long. instar nymphs. (Figure 2). Eggs hatch into crawlers (Figure 3) in a few days during warm weather but take up to two months to hatch in winter. The crawlers are red with black legs and antennae. They settle along leaf veins and begin to produce the white cottony secretion they are known for. In order to increase in size, scales shed their outer skin (molt) and grow a new, larger covering. Figure 3. Cottony cushion scale crawlers. Figure 6. A third-instar nymph. Each time the scale molts, it leaves behind its white, cottony molting rarely seen, and females don’t need to scale, consult Stages of the Cottony skin (Figure 4). Immature scales look mate to reproduce young. Cushion Scale (Icerya purchasi) and reddish for a short period of time its Natural Enemy, the Vedalia Beetle before they begin producing more Cottony cushion scale has two to (Rodolia cardinalis) listed in References. cottony secretions. three generations a year. Unlike most DAMAGE Second-instar nymphs settle on twigs other scales, it retains its legs and its and leaves, usually along leaf veins mobility throughout its life. Cottony Like other scales, cottony cushion (Figure 5). Third-instar nymphs move cushion scale completes its life cycle scale decreases the vitality of its host to branches (Figure 6). Adults may be in three months during warm weather by sucking phloem sap from the found on branches or on the trunk of conditions. For additional photographs leaves, twigs, branches, and trunk. trees. The minute red-winged male is of each life stage of cottony cushion Feeding can result in defoliation and PEST NOTES Publication 7410 Statewide Integrated Pest Management Program February 2012 February 2012 Cottony Cushion Scale dieback of twigs and small branches when infestations are extremely heavy (Figure 7). Heavy populations can severely reduce the yield of citrus trees. Like soft scales, cottony cushion scale excretes honeydew, which is usually accompanied by blackish sooty mold growth and ants (Figure 8). Figure 7. Mature cottony cushion scale Figure 10. Mature vedalia beetle larva MANAGEMENT females on bark. feeding on cottony cushion scale. Unless disrupted by insecticides, dust, or ants, natural enemies provide excellent control of cottony cushion scale. An exception is on Cocculus laurifolius (laurel-leaf snailseed or laurel leaf cocculus); it is often highly infested with cottony cushion scale, especially when grown away from the coast, because scale-feeding vedalia beetles avoid this plant. Figure 8. Cottony cushion scale is usually Figure 11. Vedalia pupa. accompanied by blackish sooty mold Biological Control growth as show on these citrus leaves. Cottony cushion scale is usually well controlled by two introduced natural enemies. The most famous one is the vedalia beetle, Rodolia cardinalis, (Figure 9). This red and black lady beetle was introduced from Australia in the 1890s and saved California’s fledgling citrus industry from destruction by these prolific scales. Adult female beetles Figure 12. Adult parasitic fly lay their oblong red eggs underneath Cryptochaetum iceryae (left) and the female scale or attached to her egg Figure 9. Adult cottony cushion scale female cottony cushion scales with sac. The newly hatched reddish beetle female with an adult vedalia beetle parasite emergence holes (right). in the foreground and vedalia beetle larvae chew their way into the egg sac nymphs and eggs on its back. The adult and feed on scale eggs and crawlers. female beetle lays eggs underneath the beetle is also abundant in Southern Larvae molt two times and gradually scale or attached to scale egg sacs. The California desert regions and is the increase in size. larval and adult stages of the beetle predominant species in interior areas of feed on scale eggs and the adult scale. California. Both of these natural enemies Mature larvae (Figure 10) and adult can be extremely effective in controlling beetles feed on all scale stages. The The other important natural enemy, cottony cushion scale because of their fourth, and last, larval instar stops the parasitic fly Cryptochaetum iceryae short generation time (four to six weeks) feeding, crawls toward the outside of (Figure 12), deposits one to four eggs and host specificity, attacking only the tree, and attaches its posterior end inside each second-instar, third-instar, cottony cushion scale. to a leaf in preparation for pupation. or adult female scale body. The eggs Reddish beetle pupae develop within hatch into larvae that feed within Conserve natural enemies of cottony cushion scale by controlling ants and the grayish skin of the last larval instar the scale. After four molts, the larvae dust and by avoiding the use of persistent (Figure 11). The entire life cycle of the pupate inside the scale. When the insecticides. If you find cottony cushion vedalia beetle is five to six weeks in adult fly emerges, it creates a round scale, look for the vedalia beetle and its warm weather. For photographs of emergence hole, easily seen in the scale. red eggs and larvae on top of scale egg each life stage of vedalia, consult Stages The life cycle of the Cryptochaetum fly is sacs or look for the beetle’s pupal cases. of the Cottony Cushion Scale (Icerya about four weeks in warm weather. Inspect female scales for Cryptochaetum purchasi) and its Natural Enemy, the emergence holes. If you find evidence of Vedalia Beetle (Rodolia cardinalis) listed Both the vedalia beetle and Cryptochaetum these natural enemies, then insecticide in References. are active in coastal areas; the vedalia treatments aren’t necessary. ◆ 2 of 4 ◆ February 2012 Cottony Cushion Scale Controlling Ants Natural enemies are the best method for controlling cottony cushion scale, Ants protect scale insects from so look carefully for their presence and predators and parasites in order to farm the honeydew the scales produce. To avoid insecticides if you find evidence improve biological control, keep ants of natural enemies attacking cottony out of trees and shrubs by banding the cushion scale. If natural enemies are trunks with sticky substances such as absent, the infestation is intolerable, Tanglefoot or by using ant baits. Protect and the population is in the treatable young or sensitive trunks, especially crawler stage, the organophosphates citrus, from possible injury by wrapping malathion or acephate can be effective. the trunk with a collar of duct tape or Both of these materials can be quite fabric tree wrap and coating this with toxic to natural enemies, honey bees, the sticky material. Check the sticky and nontarget organisms; acephate is material every week or two and stir it allowed only for use on ornamentals. with a stick to prevent the material from Horticultural oil can also be applied to becoming covered with debris that ants manage the crawler stage and is least can cross. Alternatively, pesticide baits disruptive of natural enemies or bees. such as ant stakes may be placed near nests or on ant trails beneath plants. Do not apply imidacloprid (Merit or Bayer Advanced Citrus Fruit and For the most effective and economical Vegetables) for cottony cushion scale control, treat in early spring when ant control. Although imidacloprid has populations are active but before they scale insects listed on the label, it become heavy. For more information, doesn’t kill cottony cushion scale. To see Pest Notes: Ants, listed in References. make matters worse, imidacloprid is very toxic to vedalia beetles. The Chemical Control beetles are poisoned when they feed Although adult females with their white, on cottony cushion scale that have ridged egg sacs are the most obvious ingested imidacloprid. Cottony cushion stage, insecticides don’t control adults scale outbreaks have been observed well. The females and their eggs are following use of this insecticide protected by both the cottony egg sac and because the vedalia beetles were their position inside the canopy of the removed and the insecticide didn’t tree, making this pest difficult to treat. If control the pest. scales can’t be tolerated, apply narrow range horticultural oil to deciduous REFERENCES hosts during the dormant season or spray foliage with insecticides when the Dreistadt, S. H., J. K. Clark, and M. L. females are dead and the tiny reddish Flint. 2004. Pests of Landscape Trees and scale crawlers and younger instars are Shrubs: An Integrated Pest Management infesting the leaves (spring or fall). Guide, 2nd ed. Oakland: Univ. Calif. Agric. Nat. Res. Publ. 3359. You can use traps made of double-sided sticky tape to determine when crawlers Grafton-Cardwell, E. E. 2002. Stages are hatching. Before crawlers begin to of the Cottony Cushion Scale (Icerya emerge in spring, tightly encircle several purchasi) and its Natural Enemy, the twigs or branches near adult female scale Vedalia Beetle (Rodolia cardinalis).
Recommended publications
  • BIOLOGICAL CONTROL of CITRUS SCALE PESTS in JAPAN M. Takagi Faculty of Agriculture, Kyushu University, Fukuoka, Japan
    __________________________________________ Biological control of citrus scale pests in Japan 351 BIOLOGICAL CONTROL OF CITRUS SCALE PESTS IN JAPAN M. Takagi Faculty of Agriculture, Kyushu University, Fukuoka, Japan INTRODUCTION There were no serious citrus pests in Japan before 1867 because there was little international trade in Japan when it was a closed country during the Edo period. After Japan opened up as a country, many adventive agricultural pests were accidentally introduced. Many serious citrus scale pests were intro- duced into Japan around 1900. Classical biological control was very effective against those adventive pests, which are still well controlled by introduced natural enemies. However, the history of these biological control projects varies significantly among these pests. The first attempt to introduce foreign natural enemies into Japan to control a citrus pest was the importation of the vedalia beetle, Rodolia cardinalis (Mulsant), against the cottony cushion scale, Icerya purchasi Maskell. This attempt was very quickly carried out and was successful, as in many other countries. The second successful project was the biological control of the red wax scale, Ceroplastes rubens Maskell, by the encrytid, Anicetus beneficus Ishii et Yasumatu. In this case, the effective natural enemy invaded Japan without any intentional introduction from foreign countries. The last successful citrus scale biological control project in Japan was of arrowhead scale, Unaspis yanonensis (Kuwana), by the aphelinids, Aphytis yanonensis DeBach et Rosen and Coccobius fulvus (Compere et Annecke). In this case, it was nearly 80 years between the pest’s invasion and the successful introduction of the effective natural enemies. Here I review the history of the accidental introduction of these citrus scale pests and the efforts and successes of the classical biological control of these adventive citrus scale pests in Japan.
    [Show full text]
  • Coccidology. the Study of Scale Insects (Hemiptera: Sternorrhyncha: Coccoidea)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Ciencia y Tecnología Agropecuaria (E-Journal) Revista Corpoica – Ciencia y Tecnología Agropecuaria (2008) 9(2), 55-61 RevIEW ARTICLE Coccidology. The study of scale insects (Hemiptera: Takumasa Kondo1, Penny J. Gullan2, Douglas J. Williams3 Sternorrhyncha: Coccoidea) Coccidología. El estudio de insectos ABSTRACT escama (Hemiptera: Sternorrhyncha: A brief introduction to the science of coccidology, and a synopsis of the history, Coccoidea) advances and challenges in this field of study are discussed. The changes in coccidology since the publication of the Systema Naturae by Carolus Linnaeus 250 years ago are RESUMEN Se presenta una breve introducción a la briefly reviewed. The economic importance, the phylogenetic relationships and the ciencia de la coccidología y se discute una application of DNA barcoding to scale insect identification are also considered in the sinopsis de la historia, avances y desafíos de discussion section. este campo de estudio. Se hace una breve revisión de los cambios de la coccidología Keywords: Scale, insects, coccidae, DNA, history. desde la publicación de Systema Naturae por Carolus Linnaeus hace 250 años. También se discuten la importancia económica, las INTRODUCTION Sternorrhyncha (Gullan & Martin, 2003). relaciones filogenéticas y la aplicación de These insects are usually less than 5 mm códigos de barras del ADN en la identificación occidology is the branch of in length. Their taxonomy is based mainly de insectos escama. C entomology that deals with the study of on the microscopic cuticular features of hemipterous insects of the superfamily Palabras clave: insectos, escama, coccidae, the adult female.
    [Show full text]
  • Highlights in the History of Entomology in Hawaii 1778-1963
    Pacific Insects 6 (4) : 689-729 December 30, 1964 HIGHLIGHTS IN THE HISTORY OF ENTOMOLOGY IN HAWAII 1778-1963 By C. E. Pemberton HONORARY ASSOCIATE IN ENTOMOLOGY BERNICE P. BISHOP MUSEUM PRINCIPAL ENTOMOLOGIST (RETIRED) EXPERIMENT STATION, HAWAIIAN SUGAR PLANTERS' ASSOCIATION CONTENTS Page Introduction 690 Early References to Hawaiian Insects 691 Other Sources of Information on Hawaiian Entomology 692 Important Immigrant Insect Pests and Biological Control 695 Culex quinquefasciatus Say 696 Pheidole megacephala (Fabr.) 696 Cryptotermes brevis (Walker) 696 Rhabdoscelus obscurus (Boisduval) 697 Spodoptera exempta (Walker) 697 Icerya purchasi Mask. 699 Adore tus sinicus Burm. 699 Peregrinus maidis (Ashmead) 700 Hedylepta blackburni (Butler) 700 Aedes albopictus (Skuse) 701 Aedes aegypti (Linn.) 701 Siphanta acuta (Walker) 701 Saccharicoccus sacchari (Ckll.) 702 Pulvinaria psidii Mask. 702 Dacus cucurbitae Coq. 703 Longuiungis sacchari (Zehnt.) 704 Oxya chinensis (Thun.) 704 Nipaecoccus nipae (Mask.) 705 Syagrius fulvitarsus Pasc. 705 Dysmicoccus brevipes (Ckll.) 706 Perkinsiella saccharicida Kirk. 706 Anomala orientalis (Waterhouse) 708 Coptotermes formosanus Shiraki 710 Ceratitis capitata (Wiedemann) 710 690 Pacific Insects Vol. 6, no. 4 Tarophagus proserpina (Kirk.) 712 Anacamptodes fragilaria (Grossbeck) 713 Polydesma umbricola Boisduval 714 Dacus dorsalis Hendel 715 Spodoptera mauritia acronyctoides (Guenee) 716 Nezara viridula var. smaragdula (Fab.) 717 Biological Control of Noxious Plants 718 Lantana camara var. aculeata 119 Pamakani,
    [Show full text]
  • Feeding Range Studies of Rodolia Cardinalis (Mulsant), a Candidate Biological Control Agent of Icerya Purchasi Maskell in the Galaapagos Islands
    Biological Control 29 (2004) 315–325 www.elsevier.com/locate/ybcon Feeding range studies of Rodolia cardinalis (Mulsant), a candidate biological control agent of Icerya purchasi Maskell in the Galaapagos islands Charlotte E. Causton,* Maria Piedad Lincango, and Thomas G.A. Poulsom Department of Terrestrial Invertebrates, Charles Darwin Research Station, A.P. 17-01-3891, Quito, Ecuador Received 21 February 2002; accepted 27 July 2003 Abstract The immediate threat of the cottony cushion scale, Icerya purchasi Maskell (Homoptera: Margarodidae), to the conservation of endangered flora in the Galaapagos islands prompted conservation groups to assess the risks associated with the introduction of its natural enemy, Rodolia cardinalis (Mulsant) (Coleoptera: Coccinellidae). Although R. cardinalis has been widely used for controlling this exotic pest, little information was found to confirm its presumed narrow feeding range. Consequently, studies were deemed necessary to determine whether the introduction of R. cardinalis would harm the islandÕs native invertebrate fauna, in particular rare or threatened species. Using no-choice trials, we tested neonate and third instar larvae of R. cardinalis against 16 and 11 potential prey species, respectively. Adults with prior feeding experience on I. purchasi were tested against eight non-target species and na€ııve adults (those that had not fed on I. purchasi) were tested against six. These trials included up to 35% of the Homoptera species of conservation value presumed to have the highest risk of being preyed upon by R. cardinalis. To maximize the range of species exposed to R. cardinalis, feeding trials were also carried out with some introduced species representative of groups containing potential non-target species that were not located for testing.
    [Show full text]
  • Series I. Correspondence, 1871-1894 Box 1 Folder 1 Darwin to Riley
    Special Collections at the National Agricultural Library: Charles Valentine Riley Collection Series I. Correspondence, 1871-1894 Box 1 Folder 1 Darwin to Riley. June 1, 1871. Letter from Charles Darwin to Riley thanking him for report and instructions on noxious insects. Downs, Beckerham, Kent (England). (handwritten copy of original). Box 1 Folder 2 Koble to Riley. June 30, 1874. Letter from John C. Koble giving physical description of chinch bugs and explaining how the bugs are destroying corn crops in western Kentucky. John C. Koble of L. S. Trimble and Co., Bankers. Box 1 Folder 3 Saunders to Riley. Nov. 12, 1874. William Saunders receipt to C. V. Riley for a copy of descriptions of two insects that baffle the vegetable carnivora. William Saunders, Department of Agriculture, Washington, D. C. Box 1 Folder 4 Young to Riley. Dec. 13, 1874. William Young describes the flat-headed borer and its effects on orchards during summer and winter seasons. From Palmyra Gate Co., Nebraska. Box 1 Folder 5 Saunders to Riley. Dec. 22, 1874. William Saunders receipt of notes of investigation on the insects associated with Sarracenia. William Saunders, Department of Agriculture, Washington, D.C. Box 1 Folder 6 Bonhaw to Riley. Jan. 19, 1875. L. N. Bonhaw requesting a copy of his Missouri report, for him to establish a manual or handbook on entomology, and to find out about an insect that deposits eggs. Subject: tomato worm, hawk moth. 1 http://www.nal.usda.gov/speccoll/ Special Collections at the National Agricultural Library: Charles Valentine Riley Collection Box 1 Folder 7 Holliday to Riley.
    [Show full text]
  • Snout Scale, a Potential Pest of Citrus in Florida
    FDACS-P-01929 PEST ALERT Pest Alert created September 2020. Florida Department of Agriculture and Consumer Services Division of Plant Industry Fiorinia proboscidaria Green (Hemiptera: Diaspididae), snout scale, a potential pest of Citrus in Florida Muhammad Z. Ahmed, Ph.D., Ian C. Stocks, Ph.D.; Bureau of Entomology, Nematology and Plant Pathology [email protected] or 1-888-397-1517 INTRODUCTION The first continental record of Fiorinia proboscidaria Green, snout scale, was collected on December 17, 2013, by JoAnn Hoffman (UF) from Hillsborough County and identified by Dr. Ian Stocks (Stocks 2015). There are at least 24 records after its first detection in Florida from five counties including Hillsborough, Flagler, Pinellas, Putnam and Santa Rosa. The most recent record was from Flagler County (E2020-2353), identified by Dr. Zee Ahmed as a new county record. The genus Fiorinia contains several major pest species. Snout scale is considered to be an important pest of Citrus (Stocks 2015). A recent sample and three follow-up samples from the last year on Citrus were heavily infested. All snout scale samples were collected from residential areas. This updated Pest Alert is aimed at preventing its introduction to and establishment in commercial Citrus growing areas in Florida. DIAGNOSTICS In old infestations, multiple stages of snout scale were found commingled on the lower surface of the leaves (Fig. 1a), causing chlorotic yellow patches (Fig. 1d). The presence of multiple stages suggests multiple generations each year. In early infestations, yellow-colored first instars (crawlers) (Fig. 1b, c) and second-instar males with white wax (Fig. 1b, e, f) were commonly observed on the lower surface of leaves.
    [Show full text]
  • The Abundance and Mechanical Control of Icerya Purchasi (Maskell) (Hemiptera: Monophlebidae) on Mangifera Indica in Dhaka, Bangladesh
    Bangladesh J. Zool. 47(1): 89-96, 2019 ISSN: 0304-9027 (print) 2408-8455 (online) THE ABUNDANCE AND MECHANICAL CONTROL OF ICERYA PURCHASI (MASKELL) (HEMIPTERA: MONOPHLEBIDAE) ON MANGIFERA INDICA IN DHAKA, BANGLADESH Samiha Nowrin, Murshida Begum*, Mousumi Khatun and Moksed Ali Howlader Department of Zoology, University of Dhaka, Dhaka-1000, Bangladesh Abstract: The cottony cushion scale, Icerya purchasi, one of the devastating pests of citrus and ornamentals distributed all over the world. A study was conducted on the biology, abundance and mechanical control of this pest on mango plants from at two locations of Dhaka, Bangladesh. Simple linear regression lines were produced on the lengths and widths of different nymphal instars and adult of this pest. It was proved that body lengths and widths were highly correlated with the successive changing of the nymphal instars from 1st, 2nd and 3rd to adults. The maximum abundance of the I. purchasi on mango leaves was 310 ± 21 in March, 2016. The results of the mechanical control method by hand crushing showed that it was highly effective to control this insect. Abundances of this insect before and after treatment were significantly different (p < 0.05). Abundances of insects in different sampling times were showed different by Tukey’s HSD test (p < 0.05). Key words: Icerya purchasi, Mangifera indica, abundance, mechanical control INTRODUCTION The cottony cushion scale, Icerya purchasi, distributed widely throughout the world and attacks a variety of host plants which has great economic importance (Hale 1970). This is cosmopolitan, abundant in the tropical and subtropical regions in the world. Being euryphagous, their feeding was dependent on a large variety of plants viz., Citrus spp.
    [Show full text]
  • First Record of the Cottony Cushion Scale Icerya Purchasi (Hemiptera, Monophlebidae) in Slovakia – Short Communication
    Plant Protect. Sci. Vol. 52, 2016, No. 3: 217–219 doi: 10.17221/23/2016-PPS First Record of the Cottony Cushion Scale Icerya purchasi (Hemiptera, Monophlebidae) in Slovakia – Short Communication Ján KOLLÁR 1, Ladislav BAKAY 1 and Michal PÁSTOR 2 1Horticulture and Landscape Engineering Faculty, Slovak University of Agriculture in Nitra, Nitra, Slovakia; 2Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, Zvolen, Slovak Republic Abstract Kollár J., Bakay L., Pástor M. (2016): First record of the cottony cushion scale Icerya purchasi (Hemiptera, Monophlebidae) in Slovakia – short communication. Plant Protect. Sci., 52: 217–219. Damage by the cottony cushion scale Icerya purchasi (Hemiptera: Coccoidea: Monophlebidae: Iceryini) was found on Rosmarinus officinalis at the locality Suchohrad in Slovakia. Icerya purchasi is a cosmopolitan plant pest of warmer climates. In Central Europe it is a pest of glasshouses. It is the first observation of the cottony cushion scale (at least short-term) occurrence in the outdoor conditions in Slovakia. Keywords: Icerya purchasi; Coccoidea; insect pest; Monophlebidae The cottony cushion scale, Icerya purchasi Maskell, from where it can escape outdoors and survive in 1878 (Hemiptera: Coccoidea: Monophlebidae: Iceryini) favourable conditions even in colder climates. is a cosmopolitan plant pest native to Australia and The cottony cushion scale can be distinguished possibly New Zealand, known on over 200 differ- easily from other scale insects. The mature females ent plant species (Caltagirone & Doutt 1989; (actually parthenogenetic) have bright orange-red, Causton 2001). It has been introduced into other yellow, or brown bodies (Ebeling 1959). The body is parts of the world through global trade.
    [Show full text]
  • Reports on Scale Insects J
    This is a reproduction of a library book that was digitized by Google as part of an ongoing effort to preserve the information in books and make it universally accessible. https://books.google.com ENTOMOLOGY, FISHERIES AND WILDLIFE LIBRARY lepartmwtt of Agrtrttltur* Ohum 5"£f 5". 7 5" look I j MARCH. 1916 BULLETIN 372 CORNELL UNIVERSITY AGRICULTURAL EXPERIMENT STATION OF THE NEW YORK STATE COLLEGE OF AGRICULTURE Beverly T. Galloway. Director Department of Entomology REPORTS ON SCALE INSECTS By John henry comstock Professor of F.ntomology, Emeritus, in Cornell University, and formerly Entomologist of the United States Department of Agriculture PUBLISHED BY THE UNIVERSITY ITHACA. NEW YORK CORNELL UNIVERSITY AGRICULTURAL EXPERIMENT STATION Experimenting Staff BEVERLY T. GALLOWAY, B.Agr.Sc, LL.D., Director. HENRY H. WING, M.S. in Agr., Animal Husbandry. T. LYTTLETON LYON, Ph.D., Soil Technology. JOHN L. STONE, B.Agr., Farm Practice. JAMES E. RICE, B.S.A., Poultry Husbandry. GEORGE W. CAVANAUGH, B.S., Agricultural Chemistry. HERBERT H. WHETZEL, M.A., Plant Pathology. ELMER O. FIPPIN, B.S.A., Soil Technology. G. F. WARREN, Ph.D., Farm Management. WILLIAM A. STOCKING, Jr., M.S.A., Dairy Industry. WILFORD M. WILSON, M.D., Meteorology. RALPH S. HOSMER, B.A.S., M.F., Forestry. JAMES G. NEEDHAM, Ph.D., Entomology and Limnology. ROLLINS A. EMERSON, D.Sc, Plant Breeding. HARRY H. LOVE, Ph.D., Plant Breeding. ARTHUR W. GILBERT, Ph.D., Plant Breeding. DONALD REDDICK, Ph.D., Plant Pathology. EDWARD G. MONTGOMERY, M.A., Farm Crops. WILLIAM A. RILEY, Ph.D., Entomology. MERRITT W. HARPER, M.S., Animal Husbandry.
    [Show full text]
  • Integrated Control in Citrus Fruit Crops”
    WORKING GROUP “INTEGRATED CONTROL IN CITRUS FRUIT CROPS” F. Garcia-Marí Universitat Politècnica de València (Spain) 40º Mediterranean California China 20º Florida 20º Brazil Australia 40º Argentina Southafrica Icerya purchasi Rodolia cardinalis ÖThe Citrus Working Group of the IOBC/WPRS started in the 70’s as group on biological control of Scales and Whiteflies in citrus. ÖIn 1983 it became group of Integrated Control in Citrus Fruit Crops, ÖMeetings in 1985 in Acireale (Italy), 1986 in Cagliari (Italy), 1988 in Tel Aviv (Israel), 1992 in Acireale (Italy), 1994 in Antibes (France) and 1996 in Firenze (Italy). ÖCeased its activities and by 2001 it was about to be closed. Planococcus citri Cryptolaemus montrouzieri ÖIn 2002 Mohamed Besri (liaison officer) and F. Garcia-Marí (organizer), were appointed by the Executive Committee with the objective of revitalizing the group: ÖFirst meeting held in Valencia (Spain) in October, 2002, ÖGuidelines for Integrated Production in Citrus completed (meeting in Rome (Italy) in July, 2002), ÖSecond meeting in Lisbon (Portugal) in September 2005. Meetings communications locality date participants oral poster published Valencia October 2002 64 26 15 28 Lisbon September 2005 90 27 38 - Meeting of Valencia (2002) Main pests •Citrus leafminer Phyllocnistis citrella (biological control with natives or introduced NE) •Medfly Ceratitis capitata (altenatives to chemical control, attractants) •Citrus red scale Aonidiella aurantii (control strategies) Main topics •Census of Pests or Natural Enemies •Biological control •Population dynamics, sampling methods Research highlights Citrus is especially susceptible to invasions of new pests •14 new citrus pests arrived to peninsular Spain in the last 40 years. •Expansion of Citrus Leafminer Phyllocnistis citrella 1993-95.
    [Show full text]
  • Scale Insects
    Scale Insects Various genus and species Coccidae family Hemiptera order Courtesy Agriculture WA Red Scale (Aonidiella aurantii) on Lemons Courtesy Agriculture WA Hard Wax Scale (Ceroplastes sinensis). Courtesy Agriculture WA Aphytis wasp laying eggs in red scale Courtesy Agriculture WA Gumtree Scale (Eriococcus coriaceus) Courtesy Agriculture WA Courtesy Agriculture WA . Table 1. Scale species found in WA citrus* Biological Common name (Scientific name) Description Distribution Action level control Soft scales Soft Brown Scale (Coccus hesperidum) Size: 3-4 mm All citrus 15% or more of green growing areas. twigs infested. Nymph: yellow-green, yellow-brown, Not common in flat & oval. northern WA. Adult: brown, sometimes mottled, oval. Black Scale (Saissetia oleae) Size: 3-5 mm Most WA citrus 10% or more of green growing areas. twigs infested with 1 or yellow-green, flat, oval; later Nymph: Also a major pest more scales; instars have ‘H-pattern’ on back of olives. mandarins: 5% or more of Adult: black, dome-shaped, green twigs infested. ‘H-pattern’ not present in older scale. Citricola Scale (Coccus pseudomagnoliarum) Size: 3-4 mm Not common in 15% or more of green WA citrus. twigs infested with 1 or Nymph: translucent, yellow-green, more scales. flat, oval. No H-pattern on back Adult: grey-brown, mottled, oval Cottony Cushion Scale (Icerya purchasi) Size: 5 mm Common in citrus, 5% or more of green twigs rarely causes infested with 1 or more Nymph: orange-red body damage. scales Adult: red-brown, females may be covered by a mealy secretion; distinctive egg sac (photo left) Green coffee scale (Coccus viridis) Size: 3-4 mm Rare.
    [Show full text]
  • Identification, Biology, & Control of Aboveground Pests in FL Citrus
    Identification, Biology, & Control of Aboveground Pests in FL Citrus January 23, 2019 • What is IPM? • What kind of information do you need to develop an IPM program? Managing pests effectively requires knowledge of their population, phenology, and host association(s) Citrus Production in FL • Perennial crop • Historically stable ecosystem regarding insect management • Low insecticide inputs prior to ACP • Retention of beneficial species (e.g. lady beetles) within/near crops • More cases of successful biological control than any other cropping system • ACP + higher insecticide inputs: • T.B.D. Introduction of invasive citrus pests 1964- Diaprepes root weevil 1993- Citrus Leafminer (CLM) 1995- Brown citrus aphid L. Buss UF/IFAS 1998- Asian citrus psyllid (ACP) Arthropod Pests Affecting Florida Citrus Production Vedalia lady beetle (Rodolia cardinalis) • Introduced into California in 1888 • First outstanding success in the field of classical biological control • Successfully repeated in Florida in 1899 Cottony cushion scale (Icerya purchasi) Arthropod aboveground impacts on citrus • Fruit damage • Cosmetic vs destructive damage • Foliage damage • Reduces photosynthetic capacity • Reduces new growth • Disease vectors • Insects that move diseases between hosts Fruit Damage Direct damage to fruit Damage to peel • Feeding reduces fruit quality, • Largely cosmetic shape, or size • Problem for fresh market • Reduction in yield or cause fruit to drop • Problem for fruit grown for fresh & processed markets Damage from leaf-footed bug feeding. Thrips feeding damage on peel. Weeks UF/IFAS CREC UF/IFAS CREC Stinkbugs and Leaf-footed bugs Weeks UF/IFAS CREC Weeks UF/IFAS CREC Weeks UF/IFAS CREC Weeks UF/IFAS CREC Use piercing-sucking mouthpart to puncture fruit & feed.
    [Show full text]