Inborn Errors of Metabolism Associated with Hyperglycaemic Ketoacidosis and Diabetes Mellitus: Narrative Review Majid Alfadhel* (1,2), Amir Babiker (2,3)

Total Page:16

File Type:pdf, Size:1020Kb

Inborn Errors of Metabolism Associated with Hyperglycaemic Ketoacidosis and Diabetes Mellitus: Narrative Review Majid Alfadhel* (1,2), Amir Babiker (2,3) SUDANESE JOURNAL OF PAEDIATRICS 2018; Vol 18, Issue No. 1 REVIEW ARTICLE Inborn errors of metabolism associated with hyperglycaemic ketoacidosis and diabetes mellitus: narrative review Majid Alfadhel* (1,2), Amir Babiker (2,3) (1) Genetics Division, Department of Paediatrics, King Abdullah Specialized Children’s Hospital, Riyadh, Saudi Arabia (2) King Abdullah International Medical Research Centre and King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, King Abdulaziz Medical City, Riyadh, Saudi Arabia (3) Endocrinology Division, Department of Paediatrics, King Abdullah Specialized Children’s Hospital, Riyadh, Saudi Arabia ABSTRACT megaloblastic anaemia) and congenital disorders of glycosylation type Ia. Clinical approach will Inborn errors of metabolism (IEM) are help in ready diagnosis and treatment for IEM heterogeneous group of disorders that might disorders in early detection of diabetes. In this present in the clinics or emergency departments in review, we will discuss the differential diagnosis, different phenotypes, and one of these is a diabetes clinical features and diagnostic approaches of scenario. Diabetes is the most common endocrine IEM presenting as hyperglycaemic ketoacidosis disorder among children. The mechanism of how and diabetes. IEM could lead to diabetes is unclear; however, the postulated pathogenesis consists of three KEYWORDS: mechanisms: 1) accumulation of toxic substance Aceruloplasminemia; Congenital disorders in the gland, ruining structure and normal of glycosylation; Cystinosis; Diabetes functionality, 2) disturbing energy availability mellitus; Hemochromatosis; Inborn errors required for hormone synthesis and 3) defect of of metabolism; Mitochondrial disorders; complex molecules. The differential diagnosis of Organic aciduria; Rogers syndrome. IEM associated with hyperglycaemic ketoacidosis and diabetes include: organic acidemias specifically propionic acidemia, methylmalonic acidemia, INTRODUCTION isovaleric acidemia, hereditary hemochromatosis, Inborn errors are genetic disorders affecting aceruloplasminemia, holocarboxylase synthetase the biochemical processes of the cells. Most deficiency, β-ketothiolase deficiency and finally, inborn errors of metabolism (IEM) are caused cystinosis, Rogers syndrome (thiamine-responsive Correspondence to: How to cite this article: Majid Alfadhel Alfadhel M, Babiker A. Inborn errors of Division of Genetics, Department of Paediatrics, metabolism associated with hyperglycaemic King Saud bin Abdulaziz University for Health ketoacidosis and diabetes mellitus: narrative Sciences, King Abdulaziz Medical City, Riyadh, review. Sudan J Paediatr. 2018;18(1):10–23. Saudi Arabia https://doi.org/10.24911/SJP.2018.1.3 Email: [email protected] Received: 27 April 2018 | Accepted: 29 May 2018 10 http://www.sudanjp.org https://www/sudanjp.com SUDANESE JOURNAL OF PAEDIATRICS 2018; Vol 18, Issue No. 1 by enzymes defects, which result in insufficient brain or other tissues. These disorders can be or absent end products. In many cases, the sub divided into mitochondrial and cytoplasmic accumulation of toxic substances generated energy deficiencies. Mitochondrial defects along the processes causes serious consequences lead to congenital lactic acidemia (Krebs cycle [1]. Garrod et al. in the year 1909 were the first enzymes) and mitochondrial respirator chain to report on genetic and biochemical natures disorders (respiratory chain, impaired synthesis of albinism, cystinuria and alkaptonuria by of coenzyme Q10) are the most severe and developing a concept of chemical individuality. untreatable. Cytoplasmic disorders are less Different classes of IEM’s have been expanding severe and treatable such as defects in glycolysis, into huge diversity of biochemical disorders glycogen metabolism and gluconeogenesis and that fall into IEM category. The online resource hyperinsulinism. Symptoms of disorders involving of metabolic and molecular bases of inherited energy metabolism include hypoglycaemia, diseases describes more than 90 chapters hyperlactatemia, severe generalised hypotonia, discussing such disorders related to IEMs [2]. hepatomegaly, cardiomyopathy, failure to thrive, myopathy, sudden death in infancy and impaired The classification of IEM is challenging. Several brain development. classifications currently exist. The favourable classification is to small molecules diseases such C. Disorders involving complex molecules: as carbohydrate, protein, lipid and nucleic acids are related to synthesis or catabolism of cellular and large molecules diseases such as lysosomes, organelles like lysosome, peroxisome and mitochondria, peroxisomes and cytoplasm [3]. mitochondria. Another classification is based on the affected Diabetes mellitus (DM) is one of the metabolic metabolic process or enzymes involved in endocrine disorders which has main characteristic generating toxic substances such as the individual of elevated levels of glucose in blood disorders of amino acid, urea cycle, organic (hyperglycaemia) and deficiency of insulin secreted acid, carbohydrate, protein glycosylation as well by the pancreas inside the human body [5]. as lysosomal and peroxisomal disorders and The number of people with diabetes has increased mitochondrial diseases. from 108 million in 1980 to 422 million in 2014. Based on pathophysiology, perspective IEMs are The world prevalence of diabetes among adults divided into three sub groups, i.e., disorders that over 18 years of age has risen from 4.7% in 1980 cause intoxication, disorders of energy metabolism to 8.5% in 2014 [6]. There are three major types of and disorders of complex molecules [4]. diabetes: type 1 diabetes (T1DM), type 2 diabetes (T2DM) and gestational diabetes [6]. A. Intoxication causing disorders: can lead to acute or progressive intoxication, which A single IEM could present as hyperglycaemic involves IEMs such as amino acid metabolism ketoacidosis and may display several endocrine (phenylketonuria, homocystinuria, maple syrup disorders. Among the most frequent disorders urine disease etc.), urea cycle defects, sugar associated with IEM are DM, followed by intolerances (hereditary fructose intolerance, hypogonadism and thyroid dysfunction [7]. galactosemia), organic acidurias, metal T1DM is an autoimmune disease. It is caused intoxication and phorphyrias. All of these by autoimmune destruction of insulin- diseases share similar clinical features such as producing beta cells of the pancreas, which vomiting, coma, liver failure and thromboembolic leads to lack of insulin resulting in an increase complications in acute phase, developmental of glucose levels in blood and urine. Disorders delay and failure to thrive, in chronic stage. requiring anabolism and prevention of protein B. Disorders involving energy metabolism: are degradation represent a threat by accumulating usually related to deficiency of energy production toxic metabolites that can affect the pancreas or utilisation in liver, muscle, myocardium, leading to or complicating non-autoimmune http://www.sudanjp.org 11 https://www/sudanjp.com SUDANESE JOURNAL OF PAEDIATRICS 2018; Vol 18, Issue No. 1 T1DM. In addition, disorders requiring SUMMARY OF INBORN ERRORS glucose stabilisation, glycogen degradation OF METABOLISM (IEM) DISEASES and gluconeogenesis can cause hypoglycaemia ASSOCIATED WITH DIABETES complicating the management of T1DM. In addition to insulinopenia, the dysfunction in MELLITUS liver and muscles in IEMs may lead to insulin resistance and T2DM. Organic aciduria In this review, we will discuss the differential Organic aciduria is a group of disorders caused diagnosis, clinical features and diagnostic by abnormal metabolism of proteins, fats or approaches of IEM presenting as hyperglycaemic carbohydrates which leads to an unexpected ketoacidosis and DM. accumulation of particular acids known as organic acids, and is characterised by noticeable metabolic acidosis with ketosis. Aciduria disorder MECHANISM OF IEM LEADING may be life threatening as such build up causes TO DIABETES MELLITUS severe damage to the tissues and organs. Various genes and huge number of mutations variants Hormones are essential in coordinating are involved in organic aciduria, depending on various functions such as growth, metabolism, the impaired organic acid metabolism. Statistic reproduction and energy equilibrium. studies have shown that 1 in 50,000 to 250,000 Hormonal impairments could contribute to IEM people was diagnosed with this genetic disorder complications. The endocrine coordination also [2,4,8]. However, the prevalence of these has autocrine and paracrine systems and is closely disorders is higher in certain parts of the world connected with central nervous system and such as Saudi Arabia [9,10]. immunology networks through neuromodulators and cytokines. In case of diabetes, insulin Few organic acidemia were reported to present hormone is the major player and insulinopenia is with DM in the form of diabetes ketoacidosis. the main cause of IEM related diabetes, although These include methylmalonic acidemia (MMA), insulin resistance could also be implicated propionic acidemia (PA), isovaleric acidemia (Table 1). Beta cells of the pancreas produce the (IVA), β-ketothiolase deficiency (BKT) and peptide hormone, insulin, which is considered holocarboxylase synthetase deficiency (HCSD) the main anabolic hormone in the body. [11,12]. The mechanism is generally unclear; however, it seems to be due to accumulation of The three known mechanisms
Recommended publications
  • Cystinosis, Has Been Reported Previomly in 3 Patients Using (1
    , PKU GENE - WSSIBLE CAUSE OF NON-SPECIFIC UENTAL RE- RARE PHENOTYPES OF PLACENTAL ALKALINE PHOSPHATASE: AN 523 TARDATION. Atsuko Fujimoto and Samuel P. Bes-n, ANALYSIS OF RELATIONSHIPS WITH SOME NEONATAL AND b USC Hed. Sch., Dept. Pediatrics, Los Angeles MATERNAL VARIABLES. F. Gloria-Bottini, A. Polzonetti, The Justification Hypothesis (J. Ped. 81:834, 1972) proposes . Bentivoglia, P. Lucarelli and E. Bottini (Spon. by C.D. Cook). that deficiencies in non-essential amino acids might cause mental Jniv. of Camerino, Dept. of Genetics and Computer Center and retardation. The mother heterozygous for synthesis of any one of Jniv. of Rome, Dept. of Pediatrics. the non-essential amino acids would deprive her fetus partially The large number (>15) and frequency (-2%) of rare placental and the heterozygous or homozygous fetus would be more or less alkaline phosphatase (PI) alleles represent a very special case unable to make up for the deficiency. Berman and Ford (Lancet i: among polymorphic enzymes. Since the PI gene is active only dur- 767, 1977) showed that such concatenation of heterozygous mother ing intrauterine life, the allelic diversity and its maintenance and heterozygous fetus is associated with significantly lower IQ. nay be connected with intrauterine environment and with fetal Our own wark has verified this finding. The possibility that development. 1700 newborn infants ( 1271 Caucasians, 337 Negroes heterozygosity for PKU in mother and fetus might be a cause of a and 92 Puerto Ricans), collected at Yale-New Haven Hospital from 1arq.e amount of "non-specific" mental retardation was tested by 1968-1971, were studied. An analysis of the relationship between looking for associated heterozygosity for PKU in mother and child rare PI phenotype and the following 14variableswas carried out: among.12 families in a genetic clinic.
    [Show full text]
  • Effect of Propionic Acid on Fatty Acid Oxidation and U Reagenesis
    Pediat. Res. 10: 683- 686 (1976) Fatty degeneration propionic acid hyperammonemia propionic acidemia liver ureagenesls Effect of Propionic Acid on Fatty Acid Oxidation and U reagenesis ALLEN M. GLASGOW(23) AND H. PET ER C HASE UniversilY of Colorado Medical Celller, B. F. SlOlillsky LaboralOries , Denver, Colorado, USA Extract phosphate-buffered salin e, harvested with a brief treatment wi th tryps in- EDTA, washed twice with ph os ph ate-buffered saline, and Propionic acid significantly inhibited "CO z production from then suspended in ph os ph ate-buffe red saline (145 m M N a, 4.15 [I-"ejpalmitate at a concentration of 10 11 M in control fibroblasts m M K, 140 m M c/, 9.36 m M PO" pH 7.4) . I n mos t cases the cells and 100 11M in methyl malonic fibroblasts. This inhibition was we re incubated in 3 ml phosph ate-bu ffered sa lin e cont aining 0.5 similar to that produced by 4-pentenoic acid. Methylmalonic acid I1Ci ll-I4Cj palm it ate (19), final concentration approximately 3 11M also inhibited ' 'C0 2 production from [V 'ejpalmitate, but only at a added in 10 II I hexane. Increasing the amount of hexane to 100 II I concentration of I mM in control cells and 5 mM in methyl malonic did not impair palmit ate ox id ation. In two experiments (Fig. 3) the cells. fibroblasts were in cub ated in 3 ml calcium-free Krebs-Ringer Propionic acid (5 mM) also inhibited ureagenesis in rat liver phosphate buffer (2) co nt ain in g 5 g/ 100 ml essent iall y fatty ac id slices when ammonia was the substrate but not with aspartate and free bovine se rum albumin (20), I mM pa lm itate, and the same citrulline as substrates.
    [Show full text]
  • Iron Dysregulation in Movement Disorders
    Neurobiology of Disease 46 (2012) 1–18 Contents lists available at SciVerse ScienceDirect Neurobiology of Disease journal homepage: www.elsevier.com/locate/ynbdi Review Iron dysregulation in movement disorders Petr Dusek a,c, Joseph Jankovic a,⁎, Weidong Le b a Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA b Parkinson's Disease Research Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA c Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic article info abstract Article history: Iron is an essential element necessary for energy production, DNA and neurotransmitter synthesis, myelination Received 9 November 2011 and phospholipid metabolism. Neurodegeneration with brain iron accumulation (NBIA) involves several genetic Revised 22 December 2011 disorders, two of which, aceruloplasminemia and neuroferritinopathy, are caused by mutations in genes directly Accepted 31 December 2011 involved in iron metabolic pathway, and others, such as pantothenate-kinase 2, phospholipase-A2 and fatty acid Available online 12 January 2012 2-hydroxylase associated neurodegeneration, are caused by mutations in genes coding for proteins involved in phospholipid metabolism. Phospholipids are major constituents of myelin and iron accumulation has been linked Keywords: Iron to myelin derangements. Another group of NBIAs is caused by mutations in lysosomal enzymes or transporters Neurodegeneration such as ATP13A2, mucolipin-1 and possibly also β-galactosidase and α-fucosidase. Increased cellular iron uptake Dystonia in these diseases may be caused by impaired recycling of iron which normally involves lysosomes.
    [Show full text]
  • Incidence of Inborn Errors of Metabolism by Expanded Newborn
    Original Article Journal of Inborn Errors of Metabolism & Screening 2016, Volume 4: 1–8 Incidence of Inborn Errors of Metabolism ª The Author(s) 2016 DOI: 10.1177/2326409816669027 by Expanded Newborn Screening iem.sagepub.com in a Mexican Hospital Consuelo Cantu´-Reyna, MD1,2, Luis Manuel Zepeda, MD1,2, Rene´ Montemayor, MD3, Santiago Benavides, MD3, Hector´ Javier Gonza´lez, MD3, Mercedes Va´zquez-Cantu´,BS1,4, and Hector´ Cruz-Camino, BS1,5 Abstract Newborn screening for the detection of inborn errors of metabolism (IEM), endocrinopathies, hemoglobinopathies, and other disorders is a public health initiative aimed at identifying specific diseases in a timely manner. Mexico initiated newborn screening in 1973, but the national incidence of this group of diseases is unknown or uncertain due to the lack of large sample sizes of expanded newborn screening (ENS) programs and lack of related publications. The incidence of a specific group of IEM, endocrinopathies, hemoglobinopathies, and other disorders in newborns was obtained from a Mexican hospital. These newborns were part of a comprehensive ENS program at Ginequito (a private hospital in Mexico), from January 2012 to August 2014. The retrospective study included the examination of 10 000 newborns’ results obtained from the ENS program (comprising the possible detection of more than 50 screened disorders). The findings were the following: 34 newborns were confirmed with an IEM, endocrinopathies, hemoglobinopathies, or other disorders and 68 were identified as carriers. Consequently, the estimated global incidence for those disorders was 3.4 in 1000 newborns; and the carrier prevalence was 6.8 in 1000. Moreover, a 0.04% false-positive rate was unveiled as soon as diagnostic testing revealed negative results.
    [Show full text]
  • Novel Insights Into the Pathophysiology of Kidney Disease in Methylmalonic Aciduria
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2017 Novel Insights into the Pathophysiology of Kidney Disease in Methylmalonic Aciduria Schumann, Anke Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-148531 Dissertation Published Version Originally published at: Schumann, Anke. Novel Insights into the Pathophysiology of Kidney Disease in Methylmalonic Aciduria. 2017, University of Zurich, Faculty of Medicine. Novel Insights into the Pathophysiology of Kidney Disease in Methylmalonic Aciduria Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Anke Schumann aus Deutschland Promotionskommission Prof. Dr. Olivier Devuyst (Vorsitz und Leitung der Dissertation) Prof. Dr. Matthias R. Baumgartner Prof. Dr. Stefan Kölker Zürich, 2017 DECLARATION I hereby declare that the presented work and results are the product of my own work. Contributions of others or sources used for explanations are acknowledged and cited as such. This work was carried out in Zurich under the supervision of Prof. Dr. O. Devuyst and Prof. Dr. M.R. Baumgartner from August 2012 to August 2016. Peer-reviewed publications presented in this work: Haarmann A, Mayr M, Kölker S, Baumgartner ER, Schnierda J, Hopfer H, Devuyst O, Baumgartner MR. Renal involvement in a patient with cobalamin A type (cblA) methylmalonic aciduria: a 42-year follow-up. Mol Genet Metab. 2013 Dec;110(4):472-6. doi: 10.1016/j.ymgme.2013.08.021. Epub 2013 Sep 17. Schumann A, Luciani A, Berquez M, Tokonami N, Debaix H, Forny P, Kölker S, Diomedi Camassei F, CB, MK, Faresse N, Hall A, Ziegler U, Baumgartner M and Devuyst O.
    [Show full text]
  • Disease Reference Book
    The Counsyl Foresight™ Carrier Screen 180 Kimball Way | South San Francisco, CA 94080 www.counsyl.com | [email protected] | (888) COUNSYL The Counsyl Foresight Carrier Screen - Disease Reference Book 11-beta-hydroxylase-deficient Congenital Adrenal Hyperplasia .................................................................................................................................................................................... 8 21-hydroxylase-deficient Congenital Adrenal Hyperplasia ...........................................................................................................................................................................................10 6-pyruvoyl-tetrahydropterin Synthase Deficiency ..........................................................................................................................................................................................................12 ABCC8-related Hyperinsulinism........................................................................................................................................................................................................................................ 14 Adenosine Deaminase Deficiency .................................................................................................................................................................................................................................... 16 Alpha Thalassemia.............................................................................................................................................................................................................................................................
    [Show full text]
  • What Disorders Are Screened for by the Newborn Screen?
    What disorders are screened for by the newborn screen? Endocrine Disorders The endocrine system is important to regulate the hormones in our bodies. Hormones are special signals sent to various parts of the body. They control many things such as growth and development. The goal of newborn screening is to identify these babies early so that treatment can be started to keep them healthy. To learn more about these specific disorders please click on the name of the disorder below: English: Congenital Adrenal Hyperplasia Esapnol Hiperplasia Suprarrenal Congenital - - http://www.newbornscreening.info/Parents/otherdisorders/CAH.html - http://www.newbornscreening.info/spanish/parent/Other_disorder/CAH.html - Congenital Hypothyroidism (Hipotiroidismo Congénito) - http://www.newbornscreening.info/Parents/otherdisorders/CH.html - http://www.newbornscreening.info/spanish/parent/Other_disorder/CH.html Hematologic Conditions Hemoglobin is a special part of our red blood cells. It is important for carrying oxygen to the parts of the body where it is needed. When people have problems with their hemoglobin they can have intense pain, and they often get sick more than other children. Over time, the lack of oxygen to the body can cause damage to the organs. The goal of newborn screening is to identify babies with these conditions so that they can get early treatment to help keep them healthy. To learn more about these specific disorders click here (XXX). - Sickle Cell Anemia (Anemia de Célula Falciforme) - http://www.newbornscreening.info/Parents/otherdisorders/SCD.html - http://www.newbornscreening.info/spanish/parent/Other_disorder/SCD.html - SC Disease (See Previous Link) - Sickle Beta Thalassemia (See Previous Link) Enzyme Deficiencies Enzymes are special proteins in our body that allow for chemical reactions to take place.
    [Show full text]
  • Standards of Care
    Dedicated to a Cure. Committed to Our Community. Infantile Nephropathic Cystinosis STANDARDS OF CARE A Reference for People with Infantile Nephropathic Cystinosis, their Families, and Medical Team Galina Nesterova, MD and William A. Gahl, MD, PhD, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland June 2012 Preface The Cystinosis Standards of Care were written to help individuals with infantile nephropathic Cystinosis, their families, and their medical team. The information presented here is intended to add to conversations with physicians and other health care providers. No document can replace individual interactions and advice with respect to treatment. One of our primary goals is to give affected individuals and their families greater confidence in the future. With early diagnosis and appropriate treatment, there is more hope today for families with Cystinosis than ever before. Research has led to better methods of diagnosis and treat- ment. Knowledge is increasing rapidly by virtue of the open sharing of information throughout the world among families, health professionals and the research community. We acknowledge the important contributions to the Standards of Care of Dr. Galina Nesterova and Dr. William Gahl of the National Institutes of Health and the members of the Cystinosis Research Network’s Medical and Scientific Review Boards. Cystinosis Research Network 302 Whytegate Court, Lake Forest, IL 60045 USA Phone: 847-735-0471 Toll Free: 866-276-3669 Fax: 847-235-2773 www.cystinosis.org E-mail: [email protected] The Cystinosis Research Network is an all-volunteer, non-profit organization dedicated to supporting and advocating research, providing family assistance and educating the public and medical communities about Cystinosis.
    [Show full text]
  • Secondary Hemochromatosis As a Result of Acute Transfusion-Induced Iron Overload in a Burn Patient Michael Amatto1 and Hernish Acharya2*
    Amatto and Acharya Burns & Trauma (2016) 4:10 DOI 10.1186/s41038-016-0034-z CASE REPORT Open Access Secondary hemochromatosis as a result of acute transfusion-induced iron overload in a burn patient Michael Amatto1 and Hernish Acharya2* Abstract Background: Red blood cell transfusions are critical in burn management. The subsequent iron overload that can occur from this treatment can lead to secondary hemochromatosis with multi-organ damage. Case Presentation: While well recognized in patients receiving chronic transfusions, we present a case outlining the acute development of hemochromatosis secondary to multiple transfusions in a burn patient. Conclusions: Simple screening laboratory measures and treatment options exist which may significantly reduce morbidity; thus, we believe awareness of secondary hemochromatosis in those treating burn patients is critical. Keywords: Secondary hemochromatosis, Transfusion, Iron overload, Burn patients Background of parental iron or RBC transfusions, neonatal iron over- Acute and chronic treatment of the severely burned indi- load, aceruloplasminemia, and African iron overload [6, 7]. vidual is often complex due to many physical and psycho- Hemochromatosis is a disease characterized by iron logical factors [1, 2]. Resuscitation involving packed red accumulation in tissues. Initial symptoms and signs in- blood cell (RBC) transfusion is often essential [3]. How- clude skin pigmentation, fatigue, erectile dysfunction, ever, RBC transfusion carries potential risks including and arthralgia while later stages of the disease result in hemolytic reactions and infections, as well as other com- cardiomyopathy, diabetes mellitus, hypogonadism, hypo- plications that are often overlooked such as iron overload pituitarism, and hypoparathyroidism, as well as liver fi- [4, 5]. Each unit of RBCs contains 200–250 mg of iron, brosis and cirrhosis which can lead to hepatocellular and with no physiologic excretion mechanism, multiple carcinoma [6].
    [Show full text]
  • A Curated Gene List for Reporting Results of Newborn Genomic Sequencing
    © American College of Medical Genetics and Genomics ORIGINAL RESEARCH ARTICLE A curated gene list for reporting results of newborn genomic sequencing Ozge Ceyhan-Birsoy, PhD1,2,3, Kalotina Machini, PhD1,2,3, Matthew S. Lebo, PhD1,2,3, Tim W. Yu, MD3,4,5, Pankaj B. Agrawal, MD, MMSC3,4,6, Richard B. Parad, MD, MPH3,7, Ingrid A. Holm, MD, MPH3,4, Amy McGuire, PhD8, Robert C. Green, MD, MPH3,9,10, Alan H. Beggs, PhD3,4, Heidi L. Rehm, PhD1,2,3,10; for the BabySeq Project Purpose: Genomic sequencing (GS) for newborns may enable detec- of newborn GS (nGS), and used our curated list for the first 15 new- tion of conditions for which early knowledge can improve health out- borns sequenced in this project. comes. One of the major challenges hindering its broader application Results: Here, we present our curated list for 1,514 gene–disease is the time it takes to assess the clinical relevance of detected variants associations. Overall, 954 genes met our criteria for return in nGS. and the genes they impact so that disease risk is reported appropri- This reference list eliminated manual assessment for 41% of rare vari- ately. ants identified in 15 newborns. Methods: To facilitate rapid interpretation of GS results in new- Conclusion: Our list provides a resource that can assist in guiding borns, we curated a catalog of genes with putative pediatric relevance the interpretive scope of clinical GS for newborns and potentially for their validity based on the ClinGen clinical validity classification other populations. framework criteria, age of onset, penetrance, and mode of inheri- tance through systematic evaluation of published evidence.
    [Show full text]
  • AMERICAN ACADEMY of PEDIATRICS Reimbursement For
    AMERICAN ACADEMY OF PEDIATRICS POLICY STATEMENT Organizational Principles to Guide and Define the Child Health Care System and/or Improve the Health of All Children Committee on Nutrition Reimbursement for Foods for Special Dietary Use ABSTRACT. Foods for special dietary use are recom- DEFINITION OF FOODS FOR SPECIAL mended by physicians for chronic diseases or conditions DIETARY USE of childhood, including inherited metabolic diseases. Al- The US Food and Drug Administration, in the though many states have created legislation requiring Code of Federal Regulations,2 defines special dietary reimbursement for foods for special dietary use, legisla- use of foods as the following: tion is now needed to mandate consistent coverage and reimbursement for foods for special dietary use and re- a. Uses for supplying particular dietary needs that lated support services with accepted medical benefit for exist by reason of a physical, physiologic, patho- children with designated medical conditions. logic, or other condition, including but not limited to the conditions of diseases, convalescence, preg- ABBREVIATION. AAP, American Academy of Pediatrics. nancy, lactation, allergic hypersensitivity to food, [and being] underweight and overweight; b. Uses for supplying particular dietary needs which BACKGROUND exist by reason of age, including but not limited to pecial foods are recommended by physicians to the ages of infancy and childhood; foster normal growth and development in some c. Uses for supplementing or fortifying the ordinary or usual diet with any vitamin, mineral, or other children and to prevent serious disability and S dietary property. Any such particular use of a even death in others. Many of these special foods are food is a special dietary use, regardless of whether technically specialized formulas for which there may such food also purports to be or is represented for be a relatively small market, which makes them more general use.
    [Show full text]
  • Central Nervous System Involvement in a Rare Genetic Iron Overload Disorder
    Case report Central nervous system involvement in a rare genetic iron overload disorder C. Bethlehem*, B. van Harten, M. Hoogendoorn Department of Internal Medicine, Medical Center Leeuwarden, Leeuwarden, the Netherlands, *corresponding author: tel.: +31 (0)58-286 38 12, e-mail: [email protected] a b s t r a C t in most genetic iron overload disorders the diagnosis can what was known on this topic? be rejected when transferrin saturation is low. we describe The diagnostic approach in patients suspected a patient and her family with hyperferritinaemia and for hereditary haemochromatosis is focused low transferrin saturation with iron accumulation in the on hyperferritinaemia and a high transferrin central nervous system (CNS) and liver due to hereditary saturation due to the high frequency of HFE-related aceruloplasminaemia. in this rare genetic iron overload haemochromatosis. disorder oxidation of iron is disturbed, resulting in storage of iron in the CNS and visceral organs. what does this add? Hyperferritinaemia in combination with a low transferrin saturation does not always exclude K e y w o r d s an iron overload disorder. Particularly when neurological symptoms occur in the presence Iron overload disorder, hereditary aceruloplasminaemia, of persistent hyperferritinaemia, hereditary hereditary haemochromatosis aceruloplasminaemia needs to be excluded. C a s e r e p o r t A 59-year-old woman presented at the neurology accumulation in the liver was proven with MRI, showing department with ataxia, involuntary movements and an iron concentration of 350 mmol/g (normal <36 mmol/g) mild cognitive impairment. Her medical history was according to the protocol of Gandon (University of Rennes, notable for chronic obstructive pulmonary disease and France) and liver biopsy (grade 4 iron accumulation).
    [Show full text]