Diagnosis and Treatment of Wilson Disease: an Update
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Iron Dysregulation in Movement Disorders
Neurobiology of Disease 46 (2012) 1–18 Contents lists available at SciVerse ScienceDirect Neurobiology of Disease journal homepage: www.elsevier.com/locate/ynbdi Review Iron dysregulation in movement disorders Petr Dusek a,c, Joseph Jankovic a,⁎, Weidong Le b a Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA b Parkinson's Disease Research Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA c Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic article info abstract Article history: Iron is an essential element necessary for energy production, DNA and neurotransmitter synthesis, myelination Received 9 November 2011 and phospholipid metabolism. Neurodegeneration with brain iron accumulation (NBIA) involves several genetic Revised 22 December 2011 disorders, two of which, aceruloplasminemia and neuroferritinopathy, are caused by mutations in genes directly Accepted 31 December 2011 involved in iron metabolic pathway, and others, such as pantothenate-kinase 2, phospholipase-A2 and fatty acid Available online 12 January 2012 2-hydroxylase associated neurodegeneration, are caused by mutations in genes coding for proteins involved in phospholipid metabolism. Phospholipids are major constituents of myelin and iron accumulation has been linked Keywords: Iron to myelin derangements. Another group of NBIAs is caused by mutations in lysosomal enzymes or transporters Neurodegeneration such as ATP13A2, mucolipin-1 and possibly also β-galactosidase and α-fucosidase. Increased cellular iron uptake Dystonia in these diseases may be caused by impaired recycling of iron which normally involves lysosomes. -
Partnering with Your Transplant Team the Patient’S Guide to Transplantation
Partnering With Your Transplant Team The Patient’s Guide to Transplantation U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Health Resources and Services Administration This booklet was prepared for the Health Resources and Services Administration, Healthcare Systems Bureau, Division of Transplantation by the United Network for Organ Sharing (UNOS). PARTNERING WITH YOUR TRANSPLANT TEAM THE PATIENT’S GUIDE TO TRANSPLANTATION U.S. Department of Health and Human Services Health Resources and Services Administration Public Domain Notice All material appearing in this document, with the exception of AHA’s The Patient Care Partnership: Understanding Expectations, Rights and Responsibilities, is in the public domain and may be reproduced without permission from HRSA. Citation of the source is appreciated. Recommended Citation U.S. Department of Health and Human Services (2008). Partnering With Your Transplant Team: The Patient’s Guide to Transplantation. Rockville, MD: Health Resources and Services Administration, Healthcare Systems Bureau, Division of Transplantation. DEDICATION This book is dedicated to organ donors and their families. Their decision to donate has given hundreds of thousands of patients a second chance at life. CONTENTS Page INTRODUCTION.........................................................................................................................1 THE TRANSPLANT EXPERIENCE .........................................................................................3 The Transplant Team .......................................................................................................................4 -
Nutrient Deficiency and Drug Induced Cardiac Injury and Dysfunction
Editorial Preface to Hearts Special Issue “Nutrient Deficiency and Drug Induced Cardiac Injury and Dysfunction” I. Tong Mak * and Jay H. Kramer * Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, Washington DC, WA 20037, USA * Correspondence: [email protected] (I.T.M.); [email protected] (J.H.K.) Received: 30 October 2020; Accepted: 1 November 2020; Published: 3 November 2020 Keywords: cardiac injury/contractile dysfunction; micronutrient deficiency; macromineral deficiency or imbalance; impact by cardiovascular and/or anti-cancer drugs; systemic inflammation; oxidative/nitrosative stress; antioxidant defenses; supplement and/or pathway interventions Cardiac injury manifested as either systolic or diastolic dysfunction is considered an important preceding stage that leads to or is associated with eventual heart failure (HF). Due to shifts in global age distribution, as well as general population growth, HF is the most rapidly growing public health issue, with an estimated prevalence of approximately 38 million individuals globally, and it is associated with considerably high mortality, morbidity, and hospitalization rates [1]. According to the US Center for Disease Control and The American Heart Association, there were approximately 6.2 million adults suffering from heart failure in the United States from 2013 to 2016, and heart failure was listed on nearly 380,000 death certificates in 2018 [2]. Left ventricular systolic heart failure means that the heart is not contracting well during heartbeats, whereas left ventricular diastolic failure indicates the heart is not able to relax normally between beats. Both types of left-sided heart failure may lead to right-sided failure. There have been an increasing number of studies recognizing that the deficiency and/or imbalance of certain essential micronutrients, vitamins, and macrominerals may be involved in the pathogenesis of cardiomyopathy/cardiac injury/contractile dysfunction. -
The President Woodrow Wilson House Is a National Historic Landmark and House Museum
Autumn Newsletter 2013 The President Woodrow Wilson House is a national historic landmark and house museum. The museum promotes a greater awareness of President Wilson’s public life and ideals for future generations through guided tours, exhibitions and educational programs. Above photo: Back garden evening party at The President Woodrow Wilson House. The museum also serves as a community CELEBRATING THE PRESIDENT’S Woodrow Wilson’s legacy, preservation model and resource, dedicated to one hundred years later the stewardship and CENTENNIAL presentation of an Why should anyone care about the President Wilson revived the practice, authentic collection and President Woodrow Wilson House? abandoned for more than a century, of the property. That is a fair question to consider in President delivering the State of the Union 2013, the first of eight years marking the message in person before Congress. He centennial of President Wilson’s term in regularly appeared at the Capitol to The President office, 1913–1921. promote his legislative initiatives. In a Woodrow Wilson “President Wilson imagined the world recent interview, WILSON biographer A. House is a property of at peace and proposed a plan to achieve Scott Berg noted, “There's a room in the National Trust that vision,” answers Robert A. Enholm, Congress called the President's Room. No for Historic executive director of the Woodrow Wilson president has used it since Woodrow Preservation, a House in Washington, D.C. “The Wilson. No president used it before privately funded, non- challenge he issued almost a century ago Woodrow Wilson. He used it regularly.” profit corporation, remains largely unanswered today.” Before President Wilson the national helping people protect, During this centennial period, the government played a smaller role in the enhance and enjoy the Woodrow Wilson House will be developing everyday lives of Americans than is true places that matter to exhibitions and programs to explore the today. -
Syllabus METAL ION EXCESS TOXICITY
Syllabus Metalionexcesstoxicity-Feexcesstoxicity-Africansiderosis,hemosiderosis, hemochromatosis(bronzediabetes)anddetoxification.Cuexcesstoxicity:Wilson’sdisease andtreatment. Heavymetaliontoxicity:Hg,Pb,Cd,Astoxiceffects–mechanismoftoxiceffects.Heavy metaltoxicitytreatment-chelationtherapy:chelatingagentsforHg,Pb,Cd,Astoxicity. Metalcomplexesasdrugs:cis-plainasanticanceragent:mechanismofactionandside effects;goldcomplexesasantiarthriticdrugs-chrysotherapy.Metalcomplexesindiagnosis- Gdcomplexesinmagneticresonanceimaging(MRI). METALIONEXCESSTOXICITY Ironexcesstoxicity ü ItisduetoaccidentalintakeofFeSO4tabletscausingerosionofthegastrointestinal tract. ü Hemochomatosisisageneticdisorder,depositionofironoccursinvitalorganslike liver,spleen,pancreas,skinetc.Itleadstobronzepigmentationontheskiniscalled bronzediabetes. ü Siderosis(depositionofFeOdustinthelungs)isassociatedwithexcessofiron. ü AfricansiderosisisanironoverloaddisorderfirstobservedamongpeopleofSouthern AfricaandCentralAfrica.Dietaryironoverloadistheconsumptionoflargeamount ofhome-brewedbeerwithhighamountofironcontentinit. Detoxification : Siderophore desferrioxamine is a chelating antidote used for Fe removal Coppertoxicity Copper is a principal component of several metalloproteins and some naturally occurring pigments.Ahealthyadultpossessescopperbetween200to300mgandthehighestamountis concentratedin the locus of brain. Wilson’sdiseaseand Menkes’ kinky hair syndromeare associatedwithageneticdisorderinthemetabolismofcopper. Wilson’sdisease ü In Wilson'sdisease,the copper-content -
Secondary Hemochromatosis As a Result of Acute Transfusion-Induced Iron Overload in a Burn Patient Michael Amatto1 and Hernish Acharya2*
Amatto and Acharya Burns & Trauma (2016) 4:10 DOI 10.1186/s41038-016-0034-z CASE REPORT Open Access Secondary hemochromatosis as a result of acute transfusion-induced iron overload in a burn patient Michael Amatto1 and Hernish Acharya2* Abstract Background: Red blood cell transfusions are critical in burn management. The subsequent iron overload that can occur from this treatment can lead to secondary hemochromatosis with multi-organ damage. Case Presentation: While well recognized in patients receiving chronic transfusions, we present a case outlining the acute development of hemochromatosis secondary to multiple transfusions in a burn patient. Conclusions: Simple screening laboratory measures and treatment options exist which may significantly reduce morbidity; thus, we believe awareness of secondary hemochromatosis in those treating burn patients is critical. Keywords: Secondary hemochromatosis, Transfusion, Iron overload, Burn patients Background of parental iron or RBC transfusions, neonatal iron over- Acute and chronic treatment of the severely burned indi- load, aceruloplasminemia, and African iron overload [6, 7]. vidual is often complex due to many physical and psycho- Hemochromatosis is a disease characterized by iron logical factors [1, 2]. Resuscitation involving packed red accumulation in tissues. Initial symptoms and signs in- blood cell (RBC) transfusion is often essential [3]. How- clude skin pigmentation, fatigue, erectile dysfunction, ever, RBC transfusion carries potential risks including and arthralgia while later stages of the disease result in hemolytic reactions and infections, as well as other com- cardiomyopathy, diabetes mellitus, hypogonadism, hypo- plications that are often overlooked such as iron overload pituitarism, and hypoparathyroidism, as well as liver fi- [4, 5]. Each unit of RBCs contains 200–250 mg of iron, brosis and cirrhosis which can lead to hepatocellular and with no physiologic excretion mechanism, multiple carcinoma [6]. -
Chelation Therapy
Corporate Medical Policy Chelation Therapy File Name: chelation_therapy Origination: 12/1995 Last CAP Review: 2/2021 Next CAP Review: 2/2022 Last Review: 2/2021 Description of Procedure or Service Chelation therapy is an established treatment for the removal of metal toxins by converting them to a chemically inert form that can be excreted in the urine. Chelation therapy comprises intravenous or oral administration of chelating agents that remove metal ions such as lead, aluminum, mercury, arsenic, zinc, iron, copper, and calcium from the body. Specific chelating agents are used for particular heavy metal toxicities. For example, desferroxamine (not Food and Drug Administration [FDA] approved) is used for patients with iron toxicity, and calcium-ethylenediaminetetraacetic acid (EDTA) is used for patients with lead poisoning. Note that disodium-EDTA is not recommended for acute lead poisoning due to the increased risk of death from hypocalcemia. Another class of chelating agents, called metal protein attenuating compounds (MPACs), is under investigation for the treatment of Alzheimer’s disease, which is associated with the disequilibrium of cerebral metals. Unlike traditional systemic chelators that bind and remove metals from tissues systemically, MPACs have subtle effects on metal homeostasis and abnormal metal interactions. In animal models of Alzheimer’s disease, they promote the solubilization and clearance of β-amyloid protein by binding to its metal-ion complex and also inhibit redox reactions that generate neurotoxic free radicals. MPACs therefore interrupt two putative pathogenic processes of Alzheimer’s disease. However, no MPACs have received FDA approval for treating Alzheimer’s disease. Chelation therapy has also been investigated as a treatment for other indications including atherosclerosis and autism spectrum disorder. -
Nr 1. Each Patient Suffering from Acute Coronary Syndrome Must Be Treated With
SED - 3 - VERSION I February 2009 Nr 1. Each patient suffering from acute coronary syndrome must be treated with: A. Acetylsalicylic acid (ASA). B. ASA or clopidogrel. C. ASA and clopidogrel. D. depending on the type of myocardial infarction – ASA and clopidogrel or ASA only. E. depending on the mode of treatment (invasive vs noninvasive) – ASA and clopidogrel or ASA only. Nr 2. A patient in the class IV of Killip-Kimball classification has: A. pulmonary oedema. B. cardiogenic shock. C. blood retention (haemostasis) below the level of inferior angles of scapulae. D. no signs of heart insufficiency. E. chronic heart insufficiency, previously at least in NYHA class III. Nr 3. Schőnlein-Henoch purpura is a vasculitis that: A. is characterized by nephritic syndrome with cANCA antibodies. B. may present as rapidly progressive glomerulonephritis. C. is often accompanied by granulomas in the lungs. D. is typically treated by a surgical excision of granuloma. E. is typically treated by nephrectomy of the kidney with granulomas. Nr 4. Which of the below given drugs can cause hyperkalemia? 1) angiotensin converting enzyme inhibitors. 2) loop diuretics. 3) aldosterone antagonist. 4) thiazide. 5) indapamide. The correct answer is: A. 1,3. B. 1,2,3. C. 1,3,4. D. 1,3,5. E. all of the above. Nr 5. Which of the below is an absolute contraindication to thrombolytic therapy in acute myocardial infarction: A. age above 75. B. suspected dissecting aortic aneurysm. C. past cerebral stroke 2 years ago. D. high blood pressure >175/110 mmHg. E. invasive cardiology unit available on duty, which can be reached within 90 minutes. -
A Curated Gene List for Reporting Results of Newborn Genomic Sequencing
© American College of Medical Genetics and Genomics ORIGINAL RESEARCH ARTICLE A curated gene list for reporting results of newborn genomic sequencing Ozge Ceyhan-Birsoy, PhD1,2,3, Kalotina Machini, PhD1,2,3, Matthew S. Lebo, PhD1,2,3, Tim W. Yu, MD3,4,5, Pankaj B. Agrawal, MD, MMSC3,4,6, Richard B. Parad, MD, MPH3,7, Ingrid A. Holm, MD, MPH3,4, Amy McGuire, PhD8, Robert C. Green, MD, MPH3,9,10, Alan H. Beggs, PhD3,4, Heidi L. Rehm, PhD1,2,3,10; for the BabySeq Project Purpose: Genomic sequencing (GS) for newborns may enable detec- of newborn GS (nGS), and used our curated list for the first 15 new- tion of conditions for which early knowledge can improve health out- borns sequenced in this project. comes. One of the major challenges hindering its broader application Results: Here, we present our curated list for 1,514 gene–disease is the time it takes to assess the clinical relevance of detected variants associations. Overall, 954 genes met our criteria for return in nGS. and the genes they impact so that disease risk is reported appropri- This reference list eliminated manual assessment for 41% of rare vari- ately. ants identified in 15 newborns. Methods: To facilitate rapid interpretation of GS results in new- Conclusion: Our list provides a resource that can assist in guiding borns, we curated a catalog of genes with putative pediatric relevance the interpretive scope of clinical GS for newborns and potentially for their validity based on the ClinGen clinical validity classification other populations. framework criteria, age of onset, penetrance, and mode of inheri- tance through systematic evaluation of published evidence. -
Revisiting Hemochromatosis: Genetic Vs
731 Review Article on Unresolved Basis Issues in Hepatology Page 1 of 16 Revisiting hemochromatosis: genetic vs. phenotypic manifestations Gregory J. Anderson1^, Edouard Bardou-Jacquet2 1Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute and School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia; 2Liver Disease Department, University of Rennes and French Reference Center for Hemochromatosis and Iron Metabolism Disease, Rennes, France Contributions: (I) Conception and design: Both authors; (II) Administrative support: None; (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: None; (V) Data analysis and interpretation: None; (VI) Manuscript writing: Both authors; (VII) Final approval of manuscript: Both authors. Correspondence to: Gregory J. Anderson. Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, Queensland 4006, Australia. Email: [email protected]. Abstract: Iron overload disorders represent an important class of human diseases. Of the primary iron overload conditions, by far the most common and best studied is HFE-related hemochromatosis, which results from homozygosity for a mutation leading to the C282Y substitution in the HFE protein. This disease is characterized by reduced expression of the iron-regulatory hormone hepcidin, leading to increased dietary iron absorption and iron deposition in multiple tissues including the liver, pancreas, joints, heart and pituitary. The phenotype of HFE-related hemochromatosis is quite variable, with some individuals showing little or no evidence of increased body iron, yet others showing severe iron loading, tissue damage and clinical sequelae. The majority of genetically predisposed individuals show at least some evidence of iron loading (increased transferrin saturation and serum ferritin), but a minority show clinical symptoms and severe consequences are rare. -
A Feminist Criticism of House
Lutzker 1 House is a medical drama based on the fictitious story of Dr . Gregory House, a cruelly sarcastic, yet brilliant, doctor . Dr . House works as a diagnostician at the Princeton-Plainsboro Hospital where he employs a team of young doctors who aspire to achieve greater success in their careers . Being a member of House’s team is a privilege, yet the team members must be able to tolerate Dr . House’s caustic sense of humor . Because of Dr . House’s brilliance, his coworkers and bosses alike tend to overlook his deviant and childish behaviors . Even though Dr . House’s leg causes him to be in severe pain every day, and has contributed to his negative outlook on life, both his patients and coworkers do not have much sympathy for him . The main goals of House’s outlandish behaviors are to solve the puzzle of his patients’ medical cases . Dr . House handpicks the patients whom he finds have interesting medical quandaries and attempts to diagnose them . By conferring with his team, and “asking” for permission from Dr . Lisa Cuddy, Dr . House is able to treat the patients as he sees fit . He usually does not diagnose the patients correctly the first time . However, with each new symptom, a new piece of the puzzle unfolds, giving a clearer view of the cause of illness . Dr . House typically manages to save the lives of his patients by the end of the episode, usually without having any physical contact with the patient . Dr . House has an arrogant and self-righteous personality . Some of the lines that are written for Dr . -
Central Nervous System Involvement in a Rare Genetic Iron Overload Disorder
Case report Central nervous system involvement in a rare genetic iron overload disorder C. Bethlehem*, B. van Harten, M. Hoogendoorn Department of Internal Medicine, Medical Center Leeuwarden, Leeuwarden, the Netherlands, *corresponding author: tel.: +31 (0)58-286 38 12, e-mail: [email protected] a b s t r a C t in most genetic iron overload disorders the diagnosis can what was known on this topic? be rejected when transferrin saturation is low. we describe The diagnostic approach in patients suspected a patient and her family with hyperferritinaemia and for hereditary haemochromatosis is focused low transferrin saturation with iron accumulation in the on hyperferritinaemia and a high transferrin central nervous system (CNS) and liver due to hereditary saturation due to the high frequency of HFE-related aceruloplasminaemia. in this rare genetic iron overload haemochromatosis. disorder oxidation of iron is disturbed, resulting in storage of iron in the CNS and visceral organs. what does this add? Hyperferritinaemia in combination with a low transferrin saturation does not always exclude K e y w o r d s an iron overload disorder. Particularly when neurological symptoms occur in the presence Iron overload disorder, hereditary aceruloplasminaemia, of persistent hyperferritinaemia, hereditary hereditary haemochromatosis aceruloplasminaemia needs to be excluded. C a s e r e p o r t A 59-year-old woman presented at the neurology accumulation in the liver was proven with MRI, showing department with ataxia, involuntary movements and an iron concentration of 350 mmol/g (normal <36 mmol/g) mild cognitive impairment. Her medical history was according to the protocol of Gandon (University of Rennes, notable for chronic obstructive pulmonary disease and France) and liver biopsy (grade 4 iron accumulation).