Ancyrocephalidae (Monogenea)

Total Page:16

File Type:pdf, Size:1020Kb

Ancyrocephalidae (Monogenea) Contributions to Zoology, 84 (1) 25-38 (2015) Ancyrocephalidae (Monogenea) of Lake Tanganyika: Does the Cichlidogyrus parasite fauna of Interochromis loocki (Teleostei, Cichlidae) reflect its host’s phylogenetic affinities? Antoine Pariselle1, 2, Maarten Van Steenberge3, 4, Jos Snoeks3, 4, Filip A.M. Volckaert3, Tine Huyse3, 4, Maarten P.M. Vanhove3, 4, 5, 6, 7 1 Institut des Sciences de l’Évolution, IRD-CNRS-Université Montpellier 2, CC 063, Place Eugène Bataillon, 34095 Montpellier cedex 05, France 2 Present address: Institut de Recherche pour le Développement, ISE-M, B.P. 1857, Yaoundé, Cameroon 3 Biology Department, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium 4 Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Charles Debériotstraat 32, B-3000 Leuven, Belgium 5 Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic 6 Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, 46.7 km Athens- Sounio Avenue, PO Box 712, Anavyssos GR-190 13, Greece 7 E-mail: [email protected] Key words: Africa, Dactylogyridea, Petrochromis, Platyhelminthes, species description, Tropheini Abstract Contents The faunal diversity of Lake Tanganyika, with its fish species Introduction ....................................................................................... 25 flocks and its importance as a cradle and reservoir of ancient Material and methods ..................................................................... 27 fish lineages seeding other radiations, has generated a consider- Results ................................................................................................ 27 able scientific interest in the fields of evolution and biodiversity. Discussion ......................................................................................... 28 The Tropheini, an endemic Tanganyikan cichlid tribe, fills a Acknowledgements ......................................................................... 29 peculiar phylogenetic position, being closely related to the References ......................................................................................... 30 haplochromine radiations of Lakes Malawi and Victoria. Sev- Appendix ........................................................................................... 33 eral problems remain regarding their genus-level classification. For example, the monotypic genus Interochromis is phyloge- netically nested within Petrochromis; its only representative, I. Introduction loocki, has often been reclassified. As monogenean flatworms are useful markers for fish phylogeny and taxonomy, the mono- genean fauna of Interochromis loocki was examined and com- Lake Tanganyika is, with an estimated age of 9-12 million pared to that of other tropheine cichlids. Three new monoge- years (Cohen et al., 1997), the oldest of the East African nean species belonging to Cichlidogyrus are described from Great Lakes. Although less species-rich than Lakes Interochromis loocki: Cichlidogyrus buescheri Pariselle and Victoria and Malawi, its 250 endemic cichlids form the Vanhove, sp. nov., Cichlidogyrus schreyenbrichardorum Pari- morphologically, behaviourally and phylogenetically selle and Vanhove, sp. nov. and Cichlidogyrus vealli Pariselle and Vanhove, sp. nov. Their haptoral anchors remind more of most diverse lacustrine cichlid fauna (Snoeks, 2000) congeners infecting species of Petrochromis than of all Cichli­ which acted as an evolutionary reservoir from which dogyrus spp. hitherto described from other tropheine cichlids. other lineages evolved (Salzburger et al., 2005). The Attachment organ morphology has been proven to mirror the lake’s cichlids are grouped into 14 to 17 tribes (Poll, 1986; phylogenetic affinities of Cichlidogyrus lineages. Therefore the Takahashi, 2003; Koblmüller et al., 2008). One of these monogenean parasite fauna of I. loocki reflects this host’s posi- tribes, the Tropheini, is nested within the haplochro- tion within Petrochromis. Moreover, I. loocki differs in habitat choice from Petrochromis spp. This study hence confirms that mines, which contains the mega-diverse cichlid flocks host range and host-specificity in Cichlidogyrus spp. parasitiz- of Lake Malawi and Lake Victoria (Salzburger et al., ing tropheines is determined by the host’s phylogenetic position, 2005). In comparison to these radiations, tropheines are rather than by a shared ecological niche. relatively species-poor, as they currently only comprise Downloaded from PubFactory at 11/25/2020 10:05:54AM via free access 26 Pariselle et al. – Cichlidogyrus monogenean parasites of the cichlid Interochromis loocki 24 species classified in nine genera (Poll, 1986; Taka- The main difference between Interochromis and hashi, 2003; Takahashi and Koblmüller, 2014). Petrochromis is that the outer oral teeth of I. loocki are Traditionally, generic definitions of Lake Tanganyika bicuspid, whereas species belonging to the latter genus cichlids are largely based on oral tooth morphology (Poll, have tricuspid outer teeth. The similarity in diet between 1986). For many tribes, this has proven to be an over- I. loocki and Petrochromis spp. was also observed after simplification (Sturmbauer et al., 2010). Yet, in tropheine stomach analyses (Muschick et al. 2012). Konings cichlids, phylogenetic reconstructions to a large extent (1998) observed that juvenile I. loocki collect algae from support the grouping of species based on similarities in plants, just as Petrochromis species collect these from oral morphology (Koblmüller et al. 2010; Van Steen- rocks. Interochromis and Petrochromis were also shown berge, 2014). One tropheine species, Interochromis to be closely related in a nuclear phylogeny of Tro- loocki (Poll, 1949), has, however, been particularly dif- pheini (Koblmüller et al. 2010). Here, I. loocki rendered ficult to classify and its generic placement has changed Petrochromis paraphyletic as it was sister to two Petro­ frequently. chromis species: P. orthognathus Matthes, 1959 and P. Interochromis loocki was described based on 13 fasciolatus Boulenger, 1914. This is in agreement with specimens collected at Kigoma (Tanzania) (type local- Yamaoka (1997), who described the feeding behaviour ity) and Kalemie (Democratic Republic of Congo). Poll of different Petrochromis species and who noticed the (1949) originally described the species as belonging to similarity between these two Petrochromis species and Limnotilapia Regan, 1920, which he considered to rep- I. loocki. resent a ‘limnetic’ form of Tilapia Smith 1840. The In this study, we explore another perspective with species was later transferred to Simochromis Boulenger, regard to the question of the relationships of I. loocki. 1898 when Greenwood (1978) synonymised Limnotila- To this end, we investigate the monogenean gill parasite pia with Simochromis. This decision was motivated in fauna infecting this species. Monogenean flatworms a subsequent paper in which Greenwood (1979) stated exhibit considerable potential for improving our under- that, although the type species of both genera, S. dia- standing of their hosts’ biogeography, phylogeny and gramma (Günther, 1894) and L. dardennii (Boulenger, taxonomy (Guégan and Lambert, 1990, Paugy et al., 1899), differ greatly in osteological characters, I. loocki 1990; Pariselle, 1996; Boeger and Kritsky, 2003; Barson is intermediate between the two. Poll (1986) resurrected et al., 2010; Pariselle et al., 2011; Vanhove, 2012; Van- Limnotilapia; yet, as he did not refute Greenwood’s hove et al., 2013, 2014). Given their simple single-host (1979) observations, I. loocki remained in Simochromis. lifecycle, high species diversity and relatively high host- This was justified as Poll (1986) considered I. loocki specificity, these flatworms are good markers for closer to Simochromis than to Limnotilapia. Moreover, studying biodiversity and speciation in groups of he claimed that the osteological similarities between closely related fishes (Pariselle et al., 2003b). The most both genera were also shared with other representatives species-rich genus on African cichlids is Cichlidogyrus of the Tropheini (Poll, 1986). Paperna, 1960 (Pariselle and Euzet, 2009). This genus Interochromis Yamaoka, Hori and Kuwamura, 1998 is usually considered a member of the Ancyrocephalidae, was erected by Yamaoka et al. (1998) as a monotypic although studies have suggested the group to be non- genus to harbour I. loocki. The reason for describing the monophyletic. In that case its representatives should be genus was based on the morphological and ecological considered to belong to the Dactylogyridae (Kritsky and similarities between I. loocki and species of Petro- Boeger, 1989; Šimková et al., 2003, 2006; Plaisance et chromis Boulenger, 1898 (Yamaoka et al., 1998) and the al., 2005). Cichlidogyrus spp. are common parasites of differences between I. loocki and species of Simo- Tanganyikan cichlids (Vanhove et al., 2011a; Raeymae­ chromis. Yamaoka et al. (1998) argued that, whereas kers et al., 2013); thirteen new species have recently been members of Tropheus Boulenger, 1898, Simochromis, described from Lake Tanganyika (Vanhove et al., 2011b; Pseudosimochromis Nelissen, 1977 and Limnotilapia Gillardin et al., 2012; Muterezi Bukinga et al., 2012; are browsers that use their firmly set teeth to cut of Pariselle et al., 2014). strands of filamentous algae,
Recommended publications
  • The Effects of Land Use Disturbance Vary with Trophic Position in Littoral Cichlid Fish Communities from Lake Tanganyika
    Received: 28 March 2018 | Revised: 24 January 2019 | Accepted: 5 February 2019 DOI: 10.1111/fwb.13287 ORIGINAL ARTICLE The effects of land use disturbance vary with trophic position in littoral cichlid fish communities from Lake Tanganyika Adam W. Britton1,2 | David J. Murrell1,2 | Rona A. R. McGill3 | Christopher J. Doble1,2 | Calum I. Ramage1 | Julia J. Day1,2 1Department of Genetics, Environment and Evolution, University College London, Abstract London, U.K. 1. Impacts of anthropogenic disturbance are especially severe in freshwater ecosys- 2 Centre for Biodiversity and Environmental tems. In particular, land use disturbance can lead to increased levels of pollution, Research, University College London, London, U.K. including elevated nutrient and sediment loads whose negative impacts range 3NERC Life Sciences Mass Spectrometry from the community to the individual level. However, few studies have investi- Facility, Scottish Universities Environmental Research Centre, East Kilbride, U.K. gated if these impacts are uniform across species represented by multiple trophic levels. To address this knowledge gap, we focused on Lake Tanganyika cichlid Correspondence Adam W. Britton and Julia J. Day, fishes, which comprise hundreds of species representing a wide range of feeding Department of Genetics, Environment strategies. Cichlids are at their most diverse within the near-shore environment; and Evolution, University College London, Gower Street, London, U.K. however, land use disturbance of this environment has led to decreasing diversity, Emails: [email protected]; particularly in herbivores. We therefore tested if there is a uniform effect of pol- [email protected] lution across species and trophic groups within the hyper-diverse rocky shore Funding information cichlid fish community.
    [Show full text]
  • Parasites of Coral Reef Fish: How Much Do We Know? with a Bibliography of Fish Parasites in New Caledonia
    Belg. J. Zool., 140 (Suppl.): 155-190 July 2010 Parasites of coral reef fish: how much do we know? With a bibliography of fish parasites in New Caledonia Jean-Lou Justine (1) UMR 7138 Systématique, Adaptation, Évolution, Muséum National d’Histoire Naturelle, 57, rue Cuvier, F-75321 Paris Cedex 05, France (2) Aquarium des lagons, B.P. 8185, 98807 Nouméa, Nouvelle-Calédonie Corresponding author: Jean-Lou Justine; e-mail: [email protected] ABSTRACT. A compilation of 107 references dealing with fish parasites in New Caledonia permitted the production of a parasite-host list and a host-parasite list. The lists include Turbellaria, Monopisthocotylea, Polyopisthocotylea, Digenea, Cestoda, Nematoda, Copepoda, Isopoda, Acanthocephala and Hirudinea, with 580 host-parasite combinations, corresponding with more than 370 species of parasites. Protozoa are not included. Platyhelminthes are the major group, with 239 species, including 98 monopisthocotylean monogeneans and 105 digeneans. Copepods include 61 records, and nematodes include 41 records. The list of fish recorded with parasites includes 195 species, in which most (ca. 170 species) are coral reef associated, the rest being a few deep-sea, pelagic or freshwater fishes. The serranids, lethrinids and lutjanids are the most commonly represented fish families. Although a list of published records does not provide a reliable estimate of biodiversity because of the important bias in publications being mainly in the domain of interest of the authors, it provides a basis to compare parasite biodiversity with other localities, and especially with other coral reefs. The present list is probably the most complete published account of parasite biodiversity of coral reef fishes.
    [Show full text]
  • Monopisthocotylean Monogeneans) Inferred from 28S Rdna Sequences
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 2002 Phylogenetic Positions of the Bothitrematidae and Neocalceostomatidae (Monopisthocotylean Monogeneans) Inferred from 28S rDNA Sequences Jean-Lou Justine Richard Jovelin Lassâd Neifar Isabelle Mollaret L.H. Susan Lim See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Jean-Lou Justine, Richard Jovelin, Lassâd Neifar, Isabelle Mollaret, L.H. Susan Lim, Sherman S. Hendrix, and Louis Euzet Comp. Parasitol. 69(1), 2002, pp. 20–25 Phylogenetic Positions of the Bothitrematidae and Neocalceostomatidae (Monopisthocotylean Monogeneans) Inferred from 28S rDNA Sequences JEAN-LOU JUSTINE,1,8 RICHARD JOVELIN,1,2 LASSAˆ D NEIFAR,3 ISABELLE MOLLARET,1,4 L. H. SUSAN LIM,5 SHERMAN S. HENDRIX,6 AND LOUIS EUZET7 1 Laboratoire de Biologie Parasitaire, Protistologie, Helminthologie, Muse´um National d’Histoire Naturelle, 61 rue Buffon, F-75231 Paris Cedex 05, France (e-mail: [email protected]), 2 Service
    [Show full text]
  • View/Download
    CICHLIFORMES: Cichlidae (part 5) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 10.0 - 11 May 2021 Order CICHLIFORMES (part 5 of 8) Family CICHLIDAE Cichlids (part 5 of 7) Subfamily Pseudocrenilabrinae African Cichlids (Palaeoplex through Yssichromis) Palaeoplex Schedel, Kupriyanov, Katongo & Schliewen 2020 palaeoplex, a key concept in geoecodynamics representing the total genomic variation of a given species in a given landscape, the analysis of which theoretically allows for the reconstruction of that species’ history; since the distribution of P. palimpsest is tied to an ancient landscape (upper Congo River drainage, Zambia), the name refers to its potential to elucidate the complex landscape evolution of that region via its palaeoplex Palaeoplex palimpsest Schedel, Kupriyanov, Katongo & Schliewen 2020 named for how its palaeoplex (see genus) is like a palimpsest (a parchment manuscript page, common in medieval times that has been overwritten after layers of old handwritten letters had been scraped off, in which the old letters are often still visible), revealing how changes in its landscape and/or ecological conditions affected gene flow and left genetic signatures by overwriting the genome several times, whereas remnants of more ancient genomic signatures still persist in the background; this has led to contrasting hypotheses regarding this cichlid’s phylogenetic position Pallidochromis Turner 1994 pallidus, pale, referring to pale coloration of all specimens observed at the time; chromis, a name
    [Show full text]
  • Comparative Parasitology
    January 2000 Number 1 Comparative Parasitology Formerly the Journal of the Helminthological Society of Washington A semiannual journal of research devoted to Helminthology and all branches of Parasitology BROOKS, D. R., AND"£. P. HOBERG. Triage for the Biosphere: Hie Need and Rationale for Taxonomic Inventories and Phylogenetic Studies of Parasites/ MARCOGLIESE, D. J., J. RODRIGUE, M. OUELLET, AND L. CHAMPOUX. Natural Occurrence of Diplostomum sp. (Digenea: Diplostomatidae) in Adult Mudpiippies- and Bullfrog Tadpoles from the St. Lawrence River, Quebec __ COADY, N. R., AND B. B. NICKOL. Assessment of Parenteral P/agior/iync^us cylindraceus •> (Acatithocephala) Infections in Shrews „ . ___. 32 AMIN, O. M., R. A. HECKMANN, V H. NGUYEN, V L. PHAM, AND N. D. PHAM. Revision of the Genus Pallisedtis (Acanthocephala: Quadrigyridae) with the Erection of Three New Subgenera, the Description of Pallisentis (Brevitritospinus) ^vietnamensis subgen. et sp. n., a Key to Species of Pallisentis, and the Description of ,a'New QuadrigyridGenus,Pararaosentis gen. n. , ..... , '. _. ... ,- 40- SMALES, L. R.^ Two New Species of Popovastrongylns Mawson, 1977 (Nematoda: Gloacinidae) from Macropodid Marsupials in Australia ."_ ^.1 . 51 BURSEY, C.,R., AND S. R. GOLDBERG. Angiostoma onychodactyla sp. n. (Nematoda: Angiostomatidae) and'Other Intestinal Hehninths of the Japanese Clawed Salamander,^ Onychodactylns japonicus (Caudata: Hynobiidae), from Japan „„ „..„. 60 DURETTE-DESSET, M-CL., AND A. SANTOS HI. Carolinensis tuffi sp. n. (Nematoda: Tricho- strongyUna: Heligmosomoidea) from the White-Ankled Mouse, Peromyscuspectaralis Osgood (Rodentia:1 Cricetidae) from Texas, U.S.A. 66 AMIN, O. M., W. S. EIDELMAN, W. DOMKE, J. BAILEY, AND G. PFEIFER. An Unusual ^ Case of Anisakiasis in California, U.S.A.
    [Show full text]
  • Monogenea: Ancyrocephalidae
    Parasitology Open Endoparasitic Paradiplectanotrema klimpeli sp. nov. (Monogenea: Ancyrocephalidae) from the cambridge.org/pao Greater Lizardfish Saurida tumbil (Teleostei: Synodontidae) in Indonesia Research Article 1 1,2 1 1,3 Cite this article: Theisen S, Palm HW, Stolz H, Stefan Theisen , Harry W Palm , Hendrik Stolz , Sarah H Al-Jufaili Al-Jufaili SH, Kleinertz S (2018). Endoparasitic and Sonja Kleinertz1,4 Paradiplectanotrema klimpeli sp. nov. (Monogenea: Ancyrocephalidae) from the 1 2 Greater Lizardfish Saurida tumbil (Teleostei: Aquaculture and Sea-Ranching, University of Rostock, Rostock, Germany; Centre for Studies in Animal Diseases, 3 Synodontidae) in Indonesia. Parasitology Open Udayana University, Denpasar, Indonesia; Laboratory of Microbiology Analysis, Fishery Quality Control Center, 4 4,e13,1–11. https://doi.org/10.1017/ Ministry of Agriculture and Fisheries Wealth, Al Bustan, Sultanate of Oman and Faculty of Fisheries and Marine pao.2018.8 Sciences, Bogor Agricultural University, Bogor, Indonesia Received: 3 January 2018 Revised: 26 February 2018 Abstract Accepted: 26 February 2018 A new endoparasitic monogenean of Paradiplectanotrema Gerasev, Gayevskaya & Kovaleva, 1987, Paradiplectanotrema klimpeli sp. nov., is described from the southern Balinese coast, Key words: Three-dimensional confocal microscopy; co- Indonesia. The new species is much larger, wider and characterized by the longest dorsal evolution; common grinner; Dactylogyridae; anchors compared with the congeners. Ventral anchors and ventral bars are the smallest in Diplectanotrema group; LSU 28S rDNA the genus, with a distinct ratio of 1:1. This is the first species with a gladiator breast-plate- sequence genotyping; phylogeny; shaped dorsal bar, with a length:width ratio of 1:1. Oesophagi of the Common Grinner Pseudempleurosoma haywardi; zoogeography Saurida tumbil (Bloch, 1795) (Synodontidae) were infected (prevalence = 17%) at an intensity Author for correspondence: of 12 (1–21).
    [Show full text]
  • A Phylogeny of Cichlidogyrus Spp. (Monogenea, Dactylogyridea)
    A phylogeny of Cichlidogyrus spp. (Monogenea, Dactylogyridea) clarifies a host-switch between fish families and reveals an adaptive component to attachment organ morphology of this parasite genus Françoise Messu Mandeng, Charles Bilong Bilong, Antoine Pariselle, Maarten Vanhove, Arnold Bitja Nyom, Jean-François Agnèse To cite this version: Françoise Messu Mandeng, Charles Bilong Bilong, Antoine Pariselle, Maarten Vanhove, Arnold Bitja Nyom, et al.. A phylogeny of Cichlidogyrus spp. (Monogenea, Dactylogyridea) clarifies a host-switch between fish families and reveals an adaptive component to attachment organ morphology ofthis parasite genus. Parasites and Vectors, BioMed Central, 2015, 8 (1), 10.1186/s13071-015-1181-y. hal-01923290 HAL Id: hal-01923290 https://hal.archives-ouvertes.fr/hal-01923290 Submitted on 8 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Messu Mandeng et al. Parasites & Vectors (2015) 8:582 DOI 10.1186/s13071-015-1181-y RESEARCH Open Access A phylogeny of Cichlidogyrus spp. (Monogenea, Dactylogyridea) clarifies a host-switch between fish families and reveals an adaptive component to attachment organ morphology of this parasite genus Françoise D.
    [Show full text]
  • Depth Segregation and Diet Disparity Revealed by Stable Isotope Analyses
    Hata et al. Zoological Letters (2015) 1:15 DOI 10.1186/s40851-015-0016-1 RESEARCH ARTICLE Open Access Depth segregation and diet disparity revealed by stable isotope analyses in sympatric herbivorous cichlids in Lake Tanganyika Hiroki Hata1*, Jyunya Shibata2,3, Koji Omori2, Masanori Kohda4 and Michio Hori5 Abstract Background: Lake Tanganyika in the African Great Rift Valley is known as a site of adaptive radiation in cichlid fishes. Diverse herbivorous fishes coexist on a rocky littoral of the lake. Herbivorous cichlids have acquired multiple feeding ecomorphs, including grazer, browser, scraper, and scooper, and are segregated by dietary niche. Within each ecomorph, however, multiple species apparently coexist sympatrically on a rocky slope. Previous observations of their behavior show that these cichlid species inhabit discrete depths separated by only a few meters. In this paper, using carbon (C) and nitrogen (N) stable isotope ratios as markers, we followed the nutritional uptake of cichlid fishes from periphyton in their feeding territories at various depths. Results: δ15N of fish muscles varied among cichlid ecomorphs; this was significantly lower in grazers than in browsers and scoopers, although δ15N levels in periphyton within territories did not differ among territorial species. This suggests that grazers depend more directly on primary production of periphyton, while others ingest animal matter from higher trophic levels. With respect to δ13C, only plankton eaters exhibited lower values, suggesting that these fishes depend on production of phytoplankton, while the others depend on production of periphyton. Irrespective of cichlid ecomorph, δ13C of periphyton correlated significantly with habitat depth, and decreased as habitat depth became deeper.
    [Show full text]
  • Testing the Potential of Environmental DNA Methods for Surveying Lake Tanganyika's Highly Diverse Fish Communities Christopher J
    Testing the potential of environmental DNA methods for surveying Lake Tanganyika's highly diverse fish communities Christopher James Doble A thesis submitted for the degree of Doctor of Philosophy Department of Genetics, Evolution and Environment University College London April 2020 1 Declaration I, Christopher James Doble, confirm the work presented in this thesis is my own. Where information has been derived from other sources, I confirm this has been indicated in the thesis. Christopher James Doble Date: 27/04/2020 2 Statement of authorship I planned and undertook fieldwork to the Kigoma region of Lake Tanganyika, Tanzania in 2016 and 2017. This included obtaining research permits, collecting environmental DNA samples and undertaking fish community visual survey data used in Chapters three and four. For Chapter two, cichlid reference database sequences were sequenced by Walter Salzburger’s research group at the University of Basel. I extracted required regions from mitochondrial genome alignments during a visit to Walter’s research group. Other reference sequences were obtained by Sanger sequencing. I undertook the DNA extractions and PCR amplifications for all samples, with the clean-up and sequencing undertaken by the UCL Sequencing facility. I undertook the method development, DNA extractions, PCR amplifications and library preparations for each of the next generation sequencing runs in Chapters three and four at the NERC Biomolecular Analysis Facility Sheffield. Following training by Helen Hipperson at the NERC Biomolecular Analysis Facility in Sheffield, I undertook the bioinformatic analysis of sequence data in Chapters three and four. I also carried out all the data analysis within each chapter. Chapters two, three and parts of four have formed a manuscript recently published in Environmental DNA (Doble et al.
    [Show full text]
  • Diversity, Origin and Intra- Specific Variability
    Contributions to Zoology, 87 (2) 105-132 (2018) Monogenean parasites of sardines in Lake Tanganyika: diversity, origin and intra- specific variability Nikol Kmentová1, 15, Maarten Van Steenberge2,3,4,5, Joost A.M. Raeymaekers5,6,7, Stephan Koblmüller4, Pascal I. Hablützel5,8, Fidel Muterezi Bukinga9, Théophile Mulimbwa N’sibula9, Pascal Masilya Mulungula9, Benoît Nzigidahera†10, Gaspard Ntakimazi11, Milan Gelnar1, Maarten P.M. Vanhove1,5,12,13,14 1 Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic 2 Biology Department, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080, Tervuren, Belgium 3 Operational Directorate Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000 Brussels, Belgium 4 Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria 5 Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium 6 Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway 7 Faculty of Biosciences and Aquaculture, Nord University, N-8049 Bodø, Norway 8 Flanders Marine Institute, Wandelaarkaai 7, 8400 Oostende, Belgium 9 Centre de Recherche en Hydrobiologie, Département de Biologie, B.P. 73 Uvira, Democratic Republic of Congo 10 Office Burundais pour la Protection de l‘Environnement, Centre de Recherche en Biodiversité, Avenue de l‘Imprimerie Jabe 12, B.P.
    [Show full text]
  • Monogenean Parasites of Fish 1 Peggy Reed, Ruth Francis-Floyd, Ruthellen Klinger, and Denise Petty2
    FA28 Monogenean Parasites of Fish 1 Peggy Reed, Ruth Francis-Floyd, RuthEllen Klinger, and Denise Petty2 Introduction of water, may increase the density of parasites on wild fish and consequently result in disease. In addition, the release Monogeneans are a class of parasitic flatworms that are of monogenean-infested fishes to the natural environment commonly found on fishes and lower aquatic invertebrates. can have potentially devastating effects. One example is the Most monogeneans are browsers that move about freely on movement of resistant Atlantic salmon Salmo salar from the fish’s body surface feeding on mucus and epithelial cells Sweden that is suspected to be the source of Gyrodactylus of the skin and gills; however, a few adult monogeneans will salaris that caused heavy losses of susceptible salmon in remain permanently attached to a single site on the host. Norwegian rivers. Another example is the introduction of Some monogenean species invade the rectal cavity, ureter, monogenean-infested stellate sturgeon Acipenser stellatus body cavity, and even the blood vascular system. Between from the Caspian Sea into Lake Aral that decimated the 4,000 and 5,000 species of monogeneans have been ship sturgeon Acipenser nudiventris population, which was described. They are found on fishes in fresh and salt water not resistant to the monogenean. and in a wide range of water temperatures. Morbidity and mortality epidemics caused by excessive Classification and Identification of parasite loads are not uncommon in captive fishes and Monogeneans have also occurred in wild fishes. Captive fishes are usually held in more crowded conditions than fishes in the natural Though the terms “monogenetic trematodes” and “flukes” environment.
    [Show full text]
  • Vital but Vulnerable: Climate Change Vulnerability and Human Use of Wildlife in Africa’S Albertine Rift
    Vital but vulnerable: Climate change vulnerability and human use of wildlife in Africa’s Albertine Rift J.A. Carr, W.E. Outhwaite, G.L. Goodman, T.E.E. Oldfield and W.B. Foden Occasional Paper for the IUCN Species Survival Commission No. 48 The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN or the compilers concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN or other participating organizations. Published by: IUCN, Gland, Switzerland Copyright: © 2013 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: Carr, J.A., Outhwaite, W.E., Goodman, G.L., Oldfield, T.E.E. and Foden, W.B. 2013. Vital but vulnerable: Climate change vulnerability and human use of wildlife in Africa’s Albertine Rift. Occasional Paper of the IUCN Species Survival Commission No. 48. IUCN, Gland, Switzerland and Cambridge, UK. xii + 224pp. ISBN: 978-2-8317-1591-9 Front cover: A Burundian fisherman makes a good catch. © R. Allgayer and A. Sapoli. Back cover: © T. Knowles Available from: IUCN (International Union for Conservation of Nature) Publications Services Rue Mauverney 28 1196 Gland Switzerland Tel +41 22 999 0000 Fax +41 22 999 0020 [email protected] www.iucn.org/publications Also available at http://www.iucn.org/dbtw-wpd/edocs/SSC-OP-048.pdf About IUCN IUCN, International Union for Conservation of Nature, helps the world find pragmatic solutions to our most pressing environment and development challenges.
    [Show full text]