Computation of cubical homology, cohomology, and (co)homological operations via chain contraction Paweł Pilarczyk · Pedro Real Abstract We introduce algorithms for the computation of homology, cohomology, and related operations on cubical cell complexes, using the technique based on a chain contraction from the original chain complex to a reduced one that represents its homology. This work is based on previous results for simplicial complexes, and uses Serre’s diagonalization for cubical cells. An implementation in C++ of the intro-duced algorithms is available at http://www.pawelpilarczyk.com/chaincon/ together with some examples. The paper is self-contained as much as possible, and is written at a very elementary level, so that basic knowledge of algebraic topology should be sufficient to follow it. Keywords Algorithm · Software · Homology · Cohomology · Computational homology · Cup product · Alexander-Whitney coproduct · Chain homotopy · Chain contraction · Cubical complex Mathematics Subject Classification (2010) 55N35 · 52B99 · 55U15 · 55U30 · 55-04 Communicated by: D. N. Arnold P. Pilarczyk () Universidade do Minho, Centro de Matema´tica, Campus de Gualtar, 4710-057 Braga, Portugal e-mail:
[email protected] URL: http://www.pawelpilarczyk.com/ P. Real Departamento de Matema´ ticaAplicadaI,E.T. S.de Ingenier´ı a Informatica,´ Universidad de Sevilla, Avenida Reina Mercedes s/n, 41012 Sevilla, Spain e-mail:
[email protected] URL: http://investigacion.us.es/sisius/sis showpub.php?idpers=1021 Present Address: P. Pilarczyk IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria 254 P. Pilarczyk, P. Real 1 Introduction A full cubical set in Rn is a finite union of n-dimensional boxes of fixed size (called cubes for short) aligned with a uniform rectangular grid in Rn.