Sir Arthur Eddington, OM

Total Page:16

File Type:pdf, Size:1020Kb

Sir Arthur Eddington, OM No. 3920, DECEMBER 16, 1944 NATURE 759 expeditions to set out. But the end of the War came "An intelligence, unacquainted with our universe, in time, and Davidson and Crommelin from Green­ but acquainted with the system of thought by which wich went to Brazil, while Eddington and Cottingham the human mind interprets to itself the content of went to Principe. Both expeditions made successful its sensory experience, should be able to attain all observations, and the results obtained supported the knowledge of physics that we have attained by Einstein's prediction of the amount of the deflexion, experiment. He would not deduce the particular and did much to secure general acceptance of the events and objects of our experience, but he would theory. In "Space, Time and Gravitation" (1920) deduce the generalizations we have based on them. Eddington gave a non-mathematical account of the For example,· he would infer the existence and pro­ theory, to which he prefixed the very appropriate perties of radium, but not the dimensions of the quotation from "Paradise Lost": Earth". This is a philosophy of science that does not com­ Perhaps to move mand general acceptance to-day. Nevertheless, it His laughter at their quaint opinions wide may well be that generations yet to come will regard Hereafter, when they come to model heaven Eddington's recent work as one of the most importa.r.t And calculate the stars : how they will wield and significant advances in science. The mighty frame : how build, unbuild, contrive In "The Nature of the Physical World" (1928) To save appearance. being the Gifford Lectures for 1927, and "New Path­ About this time there appeared a spate of popular ways in Science" ( 1935), being the Messenger Lectures accounts of the theory, but none could compare with at Cornell for 1934, Eddington dealt with the new Ed«;iington's masterly presentation. In 1923 he developments in science-the theory of relativity, followed this with "The Mathematical Theory of quantum theory, the principle of indeterminacy, the Relativity", which included an. account of his own expansion of the universe, etc.-and with their effect important contribution- a generalization of Weyl's on philosophical thought. Both books were essentially theory of the electromagnetic and gravitational concerned with the question : What kind of know­ fields, based on the notion of parallel displacement. ledge does science give us ? He showed that in He emphasized that there must be woven into the dealing with the universe, science is confined to structure of the world a standard of length making investigating its structure ; it can tell us nothing of possible the comparison of lengths at different points the nature of that which possesses that structure. in space-time. It was not so much the particular form that scientific Much of Eddington's later work was concerned theories have now taken that is important, for they with the development of the cosmological aspects of may in time give way to some fuller realization of relativity theory and with the unification of quantum the world, as the movement of thought behind them tbeory and relativity theory. Observations had changes. Whatever changes may come, it will never shown that the external galaxies were receding from be possible to go back to the old outlook. Eddington our own galaxy and from each other with speeds was a ma.Ster of the English language, and these lucid proportional to their mutual distances apart. This expositions did more than any other books to make gave rise to the conception of the expansion of the the intelligent layman aware of the new trends in universe. The small popular book "The Expanding science and of their philosophical implications. Universe" (1933) gave an account of the phenomena Eddington was elected a fellow of the Royal Society to be expected in a finite expanding spherical universe, in 1914 and was awarded its Royal Medal in 1928. of the type first suggested by Einstein and later He was president of the Royal Astronomical Society !feveloped by the Abbe Lemaitre. Eddington sought dur,ing 1921-23, and foreign secretary from 1933, and to find relations between the radius of curvature of was awarded its Gold Medal in 1924. He was awarded space, the recession-velocity constant of the external the Bruce Gold Medal of the Astronomical Society of galaxies, the number of particles (or the mean the Pacific in 1924. He was president of the Physical density of matter) in the universe and the physical Society during 1930-32. He received honorary constants, such as the ratio of the mass of the proton doctorates from twelve universities, and was honorary to that of the electron, the ratio of the gravitational member, foreign member or foreign associate of many to the electric force between a proton and an electron, learned societies in Europe and America. He was the fine-structure constant and the velocity of light. created a Knight Bachelor in 1930 and received the The connexion between the constant of gravitation Order of Merit in 1938. He was elected president of and Planck's constant was obtained by treating an the International Astronomical Union at its last Einstein universe first by relativity theory and then General Assembly in 1938. He was a great ambassador by wave-mechanics applied to the system of particles of science, who travelled and lectured widely. forming that universe. The mathematical account of Many in Great Britain mourn the passing of a the theory was given in "The Relativity Theory of friend and colleague while still in the zenith of his Protons and Electrons" (1936) and was revised and intellectual powers ; their sense of loss will be shared completed in his lectures before the Dublin Institute . by many others in all parts of the world, who have for Advanced Studies, entitled "The Combination of admired from afar his achievements and have Relativity Theory and Quantum Theory" (1943). received instruction and stimulus from his writings. These tesearches, to which Eddington gave much H. SPENCER JoNES. time and thought, have not yet carried general con­ viction, though the agreement between observed constants ·and the values found by pure reasoning THROUGHOUT his career as an astronomer, Sir are extraordinarily close. The extremely abstruse Arthur Eddington's connexion with the Royal and complex nature of the investigations, which few Astronomical Society, both formal and scientific, was can claim to have thoroughly understood, is no doubt close and intimate. He was elected a fellow in 1906, responsible in some measure,'but the purely deductive was president during 1921-23 (a period of office nature of the theory is an important contributory which included the celebration Of the centenary of factor. Eddington wrote that : the 'Society), received its Gold Medal in 1924, and ©1944 Nature Publishing Group 760 NATURE DECEMBER 16, 1944, VoL. 154 after H. H. Turner's death eventually inherited his of all their electrons-of their crinoline, as Sir Alfred office as foreign secretary, his corner-seat in the front Ewing termed it-are a simple corollary of the row at meetings and, it is fair to add, his place in nuclear theory of the atom : the pressure of radiation, the affections of the fellows. He used its Monthly measured in the laboratory, had been invoked to Notices as the medium of publication for almost all explain the behaviour of the tails of comets. Edding­ his fundamental contributions to science. Thus his ton seized upon these conceptions and, combining early papers on star-streaming appeared there ; his them with the laws of gravitation, evolved a theory initial papers on Cepheid pulsations in 1916 appeared within the comprehension of the ordinary physicist, there ; and these led in turn to his beautiful theory of which explained beautifully the general features of the radiative equilibrium of the stars, in which the stellar structure and stellar evolution. Bare nuclei, flow of radiation was first recognized as a basic together with the electrons freed from their normal process in the transfer of energy in stellar interiors, orbits, readily represent a gas of great density, such and in which the mechanical pressure of radiation as was required to explain the compactness of the was first shown to be an important element in the dark companion of Sirius and other white dwarfs. mechanical equilibrium. By bold imaginative conceptions of this kind, com­ The steps by which Eddington successively un­ bined with technical mathematical powers of the covered the dependence of relative radiation pressure highest order, Eddington made of the stellar universe a on molecular weight, the dependence of that on physics laboratory where somewhat extreme condi­ ionization, the importance of radiation pressure in tions prevailed, but nevertheless a physics laboratory. perhaps fixing the order of magnitude of the masses His early work on relativity and his observations of the stars, and the probable gaseous character (on that established the bending of light in a gravitational his hypotheses) of the whole interior of a star, are field were likewise matters which appealed to every among the most fascinating in the history of physicist. His later work on the connexion of the mathematical physics. They led in turn to his r!Jcog­ theories of relativity and quantum mechanics, which nition of the mass-luminosity law obeyed indifferently enabled him to relate the velocity-distance relation of by giant and dwarf stars, which, however unsatis­ the spiral nebuloo to th{) number of part­ factory still in its theoretical aspects, is an important icles in the universe, his mysttJrious number 137, &upplement to our methods of ascertaining stellar are hard matters for mltlly of us, but we feel that it is masses.
Recommended publications
  • Philosophy and the Physicists Preview
    L. Susan Stebbing Philosophy and the Physicists Preview il glifo ebooks ISBN: 9788897527466 First Edition: December 2018 (A) Copyright © il glifo, December 2018 www.ilglifo.it 1 Contents FOREWORD FROM THE EDITOR Note to the 2018 electronic edition PHILOSOPHY AND THE PHYSICISTS Original Title Page PREFACE NOTE PART I - THE ALARMING ASTRONOMERS Chapter I - The Common Reader and the Popularizing Scientist Chapter II - THE ESCAPE OF SIR JAMES JEANS PART II - THE PHYSICIST AND THE WORLD Chapter III - ‘FURNITURE OF THE EARTH’ Chapter IV - ‘THE SYMBOLIC WORLD OF PHYSICS’ Chapter V - THE DESCENT TO THE INSCRUTABLE Chapter VI - CONSEQUENCES OF SCRUTINIZING THE INSCRUTABLE PART III - CAUSALITY AND HUMAN FREEDOM Chapter VII - THE NINETEENTH-CENTURY NIGHTMARE Chapter VIII - THE REJECTION OF PHYSICAL DETERMINISM Chapter IX - REACTIONS AND CONSEQUENCES Chapter X - HUMAN FREEDOM AND RESPONSIBILITY PART IV - THE CHANGED OUTLOOK Chapter XI - ENTROPY AND BECOMING Chapter XII - INTERPRETATIONS BIBLIOGRAPHY INDEX BACK COVER Susan Stebbing 2 Foreword from the Editor In 1937 Susan Stebbing published Philosophy and the Physicists , an intense and difficult essay, in reaction to reading the works written for the general public by two physicists then at the center of attention in England and the world, James Jeans (1877-1946) and Arthur Eddington (1882- 1944). The latter, as is known, in 1919 had announced to the Royal Society the astronomical observations that were then considered experimental confirmations of the general relativity of Einstein, and who by that episode had managed to trigger the transformation of general relativity into a component of the mass and non-mass imaginary of the twentieth century.
    [Show full text]
  • The 29 of May Or Sir Arthur and The
    International Journal of Management and Applied Science, ISSN: 2394-7926 Volume-4, Issue-4, Apr.-2018 http://iraj.in THE 29TH OF MAY OR SIR ARTHUR AND THE BENDING LIGHT (TEACHING SCIENCE AND LITERATURE JOINTLY) MICHAEL KATZ Faculty of Education, Haifa University, Mount Carmel, Haifa, Israel E-mail: [email protected] Abstract - In this paper I present an instance illustrating a program of joint teaching of science and literature. The instance sketched here rests on recognition that at the age when children read books like Kästner's "The 35th of May" they can already taste notions of Relativity Theory through the story of Eddington's expedition to Principe Island. Eddington's story is briefly recounted here with references to Kästner's book. The relationships thus exhibited between science and fiction, fantasy and reality, theory and actuality, humor and earnestness, should help evoke school age children's interest in science and literature at early stages in their studies' endeavor. Keywords - Bending Light, Fantasy, Gravitation, Relativity, Science and Literature. I. INTRODUCTION South Seas" – a story of adventure and humor by Erich Kästner, the well known German author of The idea that teaching science and humanities in more than a few dearly loved novels, mostly for primary and secondary schools needn't necessarily be children and adolescents. The book was first seen as disjoint objectives is prevalent in the thought published in German in 1931 and in English shortly and practice of more than a few scholars and teachers after. in recent years. Carole Cox [1], for example, unfolds forty strategies of literature based teaching of various Twelve years earlier, in 1919, another journey topics in arts and sciences.
    [Show full text]
  • Revised Theory of Gravity Doesn't Predict a Big Bang 12 July 2010, by Lisa Zyga
    Revised theory of gravity doesn't predict a Big Bang 12 July 2010, By Lisa Zyga decades he became more interested in finding a theory to unify gravity and quantum mechanics - a task that is still being studied today. In 1924, Eddington proposed a new “gravitational action” as an alternative to the Einstein-Hilbert action, which could serve as an alternative starting point to general relativity. In astrophysics, a gravitational action is the mechanism that describes how gravity can emerge from space-time being curved by matter and energy. However, Eddington’s theory of gravity only worked for empty space and didn’t Illustration: Time Line of the Universe Credit: include any source of energy such as matter, NASA/WMAP making it an incomplete theory. Since Eddington’s proposal, scientists have attempted various ways of including matter into the (PhysOrg.com) -- The Big Bang theory has formed theory, although they have run into problems. In the basis of our understanding of the universe's this study, Banados and Ferreira have tried a new origins since it was first proposed in 1927 by way to extend the theory to include matter by using Georges Lemaitre. And for good reason: the theory a gravitational action called the Born-Infeld action. is supported by scientists' latest observations and experiments, and is based on Einstein's widely In their analysis, the scientists found that a key accepted theory of general relativity. But scientists characteristic of Eddington’s revised theory of are always on the lookout for any evidence that gravity is that it reproduces Einstein gravity might suggest an alternative to the Big Bang.
    [Show full text]
  • Eddington, Lemaître and the Hypothesis of Cosmic Expansion in 1927
    Eddington, Lemaître and the hypothesis of cosmic expansion in 1927 Cormac O’Raifeartaigh School of Science and Computing, Waterford Institute of Technology, Cork Road, Waterford, Ireland Author for correspondence: [email protected] 1 1. Introduction Arthur Stanley Eddington was one of the leading astronomers and theorists of his generation (Smart et al. 1945; McCrea 1982; Chandrasekhar, S. 1983). An early and important proponent of the general theory of relativity, his 1918 ‘Report on the Relativity Theory of Gravitation’ for the Physical Society (Eddington 1918) provided an early authoritative exposition of the subject for English-speaking physicists (Vibert Douglas 1956 p42; Chandrasekhar 1983 p24). He played a leading role in the eclipse observations of 1919 that offered early astronomical evidence in support of the theory (Vibert Douglas 1956 pp 39-41; Chandrasekhar 1983 pp 24- 29; Kennefick, this volume) while his book ‘Space, Time and Gravitation’ (Eddington 1920) was one of the first popular treatises on general relativity for an English-speaking audience. In addition, Eddington’s textbook ‘The Mathematical Theory of Relativity’ (Eddington 1923) became a classic reference for English-speaking physicists with an interest in relativity (McCrea 1982; Chandrasekhar 1983 p32). Indeed, the book provided one of the first textbook accounts of relativistic models of the cosmos, complete with a discussion of possible links to one of the greatest astronomical puzzles of the age, the redshifts of the spiral nebulae (Eddington 1923 pp 155-170). It seems therefore quite surprising that, when Eddington’s former student Georges Lemaître suggested in a seminal article of 1927 (Lemaître 1927) that a universe of expanding radius could be derived from general relativity, and that the phenomenon could provide a natural explanation for the redshifts of the spiral nebulae, Eddington (and others) paid no attention.
    [Show full text]
  • 90 Years on – the 1919 Eclipse Expedition at Príncipe
    ELLIS ET AL.: 1919 ECLIPSE REVISITED ELLIS ET AL.: 1919 ECLIPSE REVISITED 90 years on – the 1919 ecli pse expedition at Príncipe Richard Ellis, Pedro G Ferreira, Richard Massey and Gisa Weszkalnys return to Príncipe in the International Year of Astronomy to celebrate the 1919 RAS expedition led by Sir Arthur Eddington. he first experiment to observationally stars near the Sun are confirm Einstein’s General Theory of not normally visible, TRelativity was carried out in May 1919, they would be during on a Royal Astronomical Society expedition to a total solar eclipse. observe a total solar eclipse. Sir Arthur Edding- Einstein attempted ton travelled to Príncipe, a small island off the to convince observers west coast of Africa, and sent another team to to measure the gravi- Sobral, Brazil, from where the eclipse would tational deflection. He also be visible. This year, in a new RAS-funded found an enthusiastic expedition organized for the International Year colleague in Erwin of Astronomy, we returned to Príncipe to cel- Findlay-Freundlich, 1: The old plantation buildings at Roça Sundy, Eddington’s base in 1919. ebrate this key experiment that shook the foun- whose expedition to dations of 20th-century science. Russia in August 1914 was scuppered by the America and Africa, but it was important to Since 1687, Sir Isaac Newton’s law of gravity outbreak of war in the very month of the solar be as close as possible to the sub-solar point, had been the workhorse of celestial mechanics. eclipse: as a German national in Russia, he where the Earth’s rotation keeps observers in Newtonian gravity could be used to explain the was arrested.
    [Show full text]
  • The Eclipse to Confirm the General Theory of Relativity - Openmind Search Private Area
    8/9/2015 The Eclipse to Confirm the General Theory of Relativity - OpenMind Search Private area Sharing knowledge for a better future Home The Eclipse to Confirm the General Theory of Relativity The Eclipse to Confirm the General Theory of Relativity Share 20 July 2015 Physics, Science 1 Sign in or register to rate this publication One of the milestones of the science of light commemorated during this International Year of Light and Light-based Technologies is “the embedding of light in cosmology through general relativity in 1915,” that is, the celebration of the centenary of Albert Einstein’s general theory of relativity. As Adolfo de Azcárraga, president of the Spanish Royal Society of Physics (RSEF), points out in his book titled Albert Einstein, His Science and His Time, Einstein’s theory contained a spectacular prediction: “light also possessed ‘weight’, i.e., it should be attracted and deflected by celestial bodies.” Since the equivalence between acceleration and gravity extends to electromagnetic phenomena and light is an electromagnetic wave, light rays should bend in the presence of a gravitational field. Einstein had already realized that the only way to experimentally verify this theoretical prediction was for a total solar eclipse to take place since this would make it possible to photograph a star near the Sun when observed from Earth without the presence of strong sunlight. Well, on May 29, 1919 there would be a solar eclipse, which would be total on some parts of the Earth’s surface and would make it possible to verify that light rays are bent by gravity.
    [Show full text]
  • One of the Most Celebrated Physics Experiments of the 20Th Cent
    Not Only Because of Theory: Dyson, Eddington and the Competing Myths of the 1919 Eclipse Expedition Introduction One of the most celebrated physics experiments of the 20th century, a century of many great breakthroughs in physics, took place on May 29th, 1919 in two remote equatorial locations. One was the town of Sobral in northern Brazil, the other the island of Principe off the west coast of Africa. The experiment in question concerned the problem of whether light rays are deflected by gravitational forces, and took the form of astrometric observations of the positions of stars near the Sun during a total solar eclipse. The expedition to observe the eclipse proved to be one of those infrequent, but recurring, moments when astronomical observations have overthrown the foundations of physics. In this case it helped replace Newton’s Law of Gravity with Einstein’s theory of General Relativity as the generally accepted fundamental theory of gravity. It also became, almost immediately, one of those uncommon occasions when a scientific endeavor captures and holds the attention of the public throughout the world. In recent decades, however, questions have been raised about possible bias and poor judgment in the analysis of the data taken on that famous day. It has been alleged that the best known astronomer involved in the expedition, Arthur Stanley Eddington, was so sure beforehand that the results would vindicate Einstein’s theory that, for unjustifiable reasons, he threw out some of the data which did not agree with his preconceptions. This story, that there was something scientifically fishy about one of the most famous examples of an experimentum crucis in the history of science, has now become well known, both amongst scientists and laypeople interested in science.
    [Show full text]
  • + Gravity Probe B
    NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Gravity Probe B Experiment “Testing Einstein’s Universe” Press Kit April 2004 2- Media Contacts Donald Savage Policy/Program Management 202/358-1547 Headquarters [email protected] Washington, D.C. Steve Roy Program Management/Science 256/544-6535 Marshall Space Flight Center steve.roy @msfc.nasa.gov Huntsville, AL Bob Kahn Science/Technology & Mission 650/723-2540 Stanford University Operations [email protected] Stanford, CA Tom Langenstein Science/Technology & Mission 650/725-4108 Stanford University Operations [email protected] Stanford, CA Buddy Nelson Space Vehicle & Payload 510/797-0349 Lockheed Martin [email protected] Palo Alto, CA George Diller Launch Operations 321/867-2468 Kennedy Space Center [email protected] Cape Canaveral, FL Contents GENERAL RELEASE & MEDIA SERVICES INFORMATION .............................5 GRAVITY PROBE B IN A NUTSHELL ................................................................9 GENERAL RELATIVITY — A BRIEF INTRODUCTION ....................................17 THE GP-B EXPERIMENT ..................................................................................27 THE SPACE VEHICLE.......................................................................................31 THE MISSION.....................................................................................................39 THE AMAZING TECHNOLOGY OF GP-B.........................................................49 SEVEN NEAR ZEROES.....................................................................................58
    [Show full text]
  • Review of L. S. Stebbing, Philosophy and the Physicists
    NEW BOOKS Philosophy and the Physicists. By L. S. STEBBING.(London: Methuen & Co. 1937. Pp. xvi + 295. Price 7s. 6d.) Professor Stebbing's book is intended to assess the philosophical value, if any, of the numerous works in which certain eminent scientists have ex- pounded to the general public what they consider to be the implications of recent developments in mathematical physics. The writers whom she mainly discusses are Sir James Jeans and Sir Arthur Eddington. She complains, with some justice, that they both "approach their task through an emotional, fog," and both "present their views with an amount of personification and metaphor that reduces them to the level of revivalist preachers." This is a severe judgment, but it appears to me to be amply borne out by my own experience in reading their works, and by the quotations which Miss Stebbing gives. I find myself in complete agreement with her remark on p. I8, that "the fundamental objection to the modes of expression so dear to Eddington and Jeans . is that such writing obfuscates the common reader whilst pretending to enlighten him." The two writers under discussion are, as Miss Stebbing recognizes, of very different calibre when considered as contributors to philosophy. There is no evidence that Jeans has any serious contribution to make, and Miss Stebbing disposes of his puerilities in a couple of chapters. This massacre is too much like knocking down a sitting bird to be of much interest, and Miss Stebbing devotes the rest of her book to the more sportsmanlike exercise of peppering Eddington as he flits from one metaphor to another.
    [Show full text]
  • Edward Milne's Influence on Modern Cosmology
    ANNALS OF SCIENCE, Vol. 63, No. 4, October 2006, 471Á481 Edward Milne’s Influence on Modern Cosmology THOMAS LEPELTIER Christ Church, University of Oxford, Oxford OX1 1DP, UK Received 25 October 2005. Revised paper accepted 23 March 2006 Summary During the 1930 and 1940s, the small world of cosmologists was buzzing with philosophical and methodological questions. The debate was stirred by Edward Milne’s cosmological model, which was deduced from general principles that had no link with observation. Milne’s approach was to have an important impact on the development of modern cosmology. But this article shows that it is an exaggeration to intimate, as some authors have done recently, that Milne’s rationalism went on to infiltrate the discipline. Contents 1. Introduction. .........................................471 2. Methodological and philosophical questions . ..................473 3. The outcome of the debate .................................476 1. Introduction In a series of articles, Niall Shanks, John Urani, and above all George Gale1 have analysed the debate stirred by Edward Milne’s cosmological model.2 Milne was a physicist we can define, at a philosophical level, as an ‘operationalist’, a ‘rationalist’ and a ‘hypothetico-deductivist’.3 The first term means that Milne considered only the observable entities of a theory to be real; this led him to reject the notions of curved space or space in expansion. The second term means that Milne tried to construct a 1 When we mention these authors without speaking of one in particular, we will use the expression ‘Gale and co.’ 2 George Gale, ‘Rationalist Programmes in Early Modern Cosmology’, The Astronomy Quarterly,8 (1991), 193Á218.
    [Show full text]
  • 1. Introduction
    Beichler (1) Preliminary paper for Vigier IX Conference June 2014 MODERN FYSICS PHALLACIES: THE BEST WAY NOT TO UNIFY PHYSICS JAMES E. BEICHLER Research Institute for Paraphysics, Retired P.O. Box 624, Belpre, Ohio 45714 USA [email protected] Too many physicists believe the ‘phallacy’ that the quantum is more fundamental than relativity without any valid supporting evidence, so the earliest attempts to unify physics based on the continuity of relativity have been all but abandoned. This belief is probably due to the wealth of pro-quantum propaganda and general ‘phallacies in fysics’ that were spread during the second quarter of the twentieth century, although serious ‘phallacies’ exist throughout physics on both sides of the debate. Yet both approaches are basically flawed because both relativity and the quantum theory are incomplete and grossly misunderstood as they now stand. Had either side of the quantum versus relativity controversy sought common ground between the two worldviews, total unification would have been accomplished long ago. The point is, literally, that the discrete quantum, continuous relativity, basic physical geometry, theoretical mathematics and classical physics all share one common characteristic that has never been fully explored or explained – a paradoxical duality between a dimensionless point (discrete) and an extended length (continuity) in any dimension – and if the problem of unification is approached from an understanding of how this paradox relates to each paradigm, all of physics and indeed all of science could be unified under a single new theoretical paradigm. Keywords: unification, single field theory, unified field theory, quantized space-time, five-dimensional space-time, quantum, relativity, hidden variables, Einstein, Kaluza, Klein, Clifford 1.
    [Show full text]
  • 730 Philosophy 425 Sect 01 Philosophy of Science
    730 Philosophy425 Sect 01 PhilosophyofScience Instructor: SidneyFelder,e-mail: [email protected] Rutgers The State University of NewJersey, Spring 2018, Tu&Th4:10-5:50 Weeks 1, 2) Some Views of the Character of Science: T. H.HuxleyThe Method of Scientific Investigation Ernst Mach The Economical Nature of Physics C.S. Peirce The Fixation of Belief; HowtoMakeOur Ideas Clear Weeks 2, 3, 4, 5, 6) Evidence and Hypothesis: David Hume An Enquiry Concerning Human Understanding (Sections IV-VII) Nelson Goodman The NewRiddle of Induction (in Fact, Fiction and Forecast) Karl Popper Science: Conjectures and Refutations Carl Hempel Studies in the Logic of Confirmation Hermann Weyl Philosophy of Mathematics and Natural Science (Chapter 1) Pierre Duhem Physical Theory and Experiment (in The Aim and StructureofPhysical Theory) Henri Poincar ´e S pace and Geometry (in Science and Hypothesis) Arthur Eddington What is Geometry? (in Space,Time and Gravitation) Albert Einstein Geometry and Experience Weeks 7, 8, 9) Observation, Theory,and Reality Hilary Putnam What Theories are Not Bertrand Russell Similarity of Relations (in Introduction to Mathematical Philosophy) — The Analysis of Matter (chapters XIX, XXIII, and XXIV) L. Wittgenstein Tr actatus Logico-Philosophicus (5.133-5.156, 6.3-6.372) Moritz Schlick Positivism and Realism Weeks 9, 10, 11, 12, 13) Generalizations, Laws, and Probabilities Ernest Nagel The StructureofScience (Chapter 4) Henri Poincar ´e C hance (in Science and Method) J. M. Keynes ATreatise on Probability (Chapters XXIV,XXV,XXVI) Frank RamseyLaw and Causality David Lewis Counterfactual Dependence and Time’sArrow Bertrand Russell On the Notion of Cause Kurt G¨o del A Remark about the Relationship between Relativity Theory and Idealistic Philosophy Syllabus Page 1 -2- Weeks 13, 14) Explanation and The Unity of Science Jerry Fodor Special Sciences (or: The Disunity of Science as a Working Hypothesis) David Albert Physics and Chance (in After Physics) There will be a take-home exam, to be submitted either in class or (if e-mailed) either in PDF or text format.
    [Show full text]