Physical Modeling of the Piano

Total Page:16

File Type:pdf, Size:1020Kb

Physical Modeling of the Piano EURASIP Journal on Applied Signal Processing 2004:7, 926–933 c 2004 Hindawi Publishing Corporation Physical Modeling of the Piano N. Giordano Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907-2036, USA Email: [email protected] M. Jiang Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907-2036, USA Department of Computer Science, Montana State University, Bozeman, MT 59715, USA Email: [email protected] Received 21 June 2003; Revised 27 October 2003 A project aimed at constructing a physical model of the piano is described. Our goal is to calculate the sound produced by the instrument entirely from Newton’s laws. The structure of the model is described along with experiments that augment and test the model calculations. The state of the model and what can be learned from it are discussed. Keywords and phrases: physical modeling, piano. 1. INTRODUCTION the instrument. However, as far as we can tell, certain fea- tures of the model, such as hammer-string impulse func- This paper describes a long term project by our group aimed tions and the transfer function that ultimately relates the at physical modeling of the piano. The theme of this volume, sound pressure to the soundboard motion (and other sim- model based sound synthesis of musical instruments, is quite ilar transfer functions), are taken from experiments on real broad, so it is useful to begin by discussing precisely what instruments. This approach is a powerful way to produce re- we mean by the term “physical modeling.” The goal of our alistic musical tones efficiently, in real time and in a man- project is to use Newton’s laws to describe all aspects of the ner that can be played by a human performer. However, this piano. We aim to use F = ma to calculate the motion of the approach cannot address certain questions. For example, it hammers, strings, and soundboard, and ultimately the sound would not be able to predict the sound that would be pro- that reaches the listener. duced if a radically new type of soundboard was employed, Of course, we are not the first group to take such a New- or if the hammers were covered with a completely differ- ton’s law approach to the modeling of a musical instrument. ent type of material than the conventional felt. The physi- For the piano, there have been such modeling studies of the cal modeling method that we describe in this paper can ad- hammer-string interaction [1, 2, 3, 4, 5, 6, 7, 8, 9], string vi- dress such questions. Hence, we view the ideas and method brations [8, 9, 10], and soundboard motion [11]. (Nice re- embodied in work of Bank and coworkers [20] (and the ref- views of the physics of the piano are given in [12, 13, 14, 15].) erences therein) as complementary to the physical modeling There has been similar modeling of portions of other instru- approach that is the focus of our work. ments (such as the guitar [16]), and of several other com- In this paper, we describe the route that we have taken plete instruments, including the xylophone and the timpani to assembling a complete physical model of the piano. [17, 18, 19]. Our work is inspired by and builds on this pre- This complete model is really composed of interacting sub- vious work. models which deal with (1) the motions of the hammers and At this point, we should also mention how our work re- strings and their interaction, (2) soundboard vibrations, and lates to other modeling work, such as the digital waveguide (3) sound generation by the vibrating soundboard. For each approach, which was recently reviewed in [20]. The digital of these submodels we must consider several issues, includ- waveguide method makes extensive use of physics in choos- ing selection and implementation of the computational algo- ing the structure of the algorithm; that is, in choosing the rithm, determination of the values of the many parameters proper filter(s) and delay lines, connectivity, and so forth, that are involved, and testing the submodel. After consider- to properly match and mimic the Newton’s law equations of ing each of the submodels, we then describe how they are motion of the strings, soundboard, and other components of combined to produce a complete computational piano. The Physical Modeling of the Piano 927 quality of the calculated tones is discussed, along with the The issue of listening tests brings us to the question of lessons we have learned from this work. A preliminary and goals, that is, what do we hope to accomplish with such a abbreviated report on this project was given in [21]. modeling project? At one level, we would hope that the cal- culated piano tones are realistic and convincing. The model could then be used to explore what various hypothetical pi- 2. OVERALL STRATEGY AND GOALS anos would sound like. For example, one could imagine con- structing a piano with a carbon fiber soundboard, and it One of the first modeling decisions that arises is the question would be very useful to be able to predict its sound ahead of of whether to work in the frequency domain or the time do- time, or to use the model in the design of the new sound- main. In many situations, it is simplest and most instructive board. On a different and more philosophical level, one to work in the frequency domain. For example, an under- might want to ask questions such as “what are the most im- standing of the distribution of normal mode frequencies, and portant elements involved in making a piano sound like a pi- the nature of the associated eigenvectors for the body vibra- ano?” We emphasize that it is not our goal to make a real time tions of a violin or a piano soundboard, is very instructive. model, nor do we wish to compete with the tones produced However, we have chosen to base our modeling in the time by other modeling methods, such as sampling synthesis and domain. We believe that this choice has several advantages. digital waveguide modeling [20]. First, the initial excitation—in our case this is the motion of a piano hammer just prior to striking a string—is described most conveniently in the time domain. Second, the interac- 3. STRINGS AND HAMMERS tion between various components of the instrument, such Our model begins with a piano hammer moving freely with a as the strings and soundboard, is somewhat simpler when speed v just prior to making contact with a string (or strings, viewed in the time domain, especially when one considers h since most notes involve more than one string). Hence, we the early “attack” portion of a tone. Third, our ultimate goal ignore the mechanics of the action. This mechanics is, of is to calculate the room pressure as a function of time, so it is course, quite important from a player’s perspective, since it appealing to start in the time domain with the hammer mo- determines the touch and feel of the instrument [26]. Nev- tion and stay in the time domain throughout the calculation, ertheless, we will ignore these issues, since (at least to a first ending with the pressure as would be received by a listener. approximation) they are not directly relevant to the compo- Our time domain modeling is based on finite difference cal- sition of a piano tone and we simply take v as an input pa- culations [10] that describe all aspects of the instrument. h rameter. Typical values are in the range 1–4 m/s [9]. A second element of strategy involves the determination When a hammer strikes a string, there is an interaction of the many parameters that are required for describing the force that is a function of the compression of the hammer piano. Ideally, one would like to determine all of these pa- felt, y f . This force determines the initial excitation and is rameters independently, rather than use them as fitting pa- thus a crucial factor in the composition of the resulting tone. rameters when comparing the modeling results to real (mea- Considerable effort has been devoted to understanding the sured) tones. This is indeed possible for all of the parame- hammer-string force [1, 2, 3, 4, 5, 6, 7, 27, 28, 29, 30, 31, ters. For example, dimensional parameters such as the string 32, 33]. Hammer felt is a very complicated material [34], diameters and lengths, soundboard dimensions, and bridge and there is no “first principles” expression for the hammer- positions, can all be measured from a real piano. Likewise, ff string force relation Fh(y f ). Much work has assumed a sim- various material properties such as the string sti ness, the ple power law function elastic moduli of the soundboard, and the acoustical proper- ties of the room in which the numerical piano is located, are p Fh y f = F0 y ,(1) well known from very straightforward measurements. For a f few quantities, most notably the force-compression charac- where the exponent p is typically in the range 2.5–4 and F0 teristics of the piano hammers, it is necessary to use separate is an overall amplitude. This power law form seems to be at (and independent) experiments. least qualitatively consistent with many experiments and we This brings us to a third element of our modeling therefore used (1) in our initial modeling calculations. strategy—the problem of how to test the calculations. The While (1) has been widely used to analyze and inter- final output is the sound at the listener, so one could “test” pret experiments, and also in previous modeling work, it the model by simply evaluating the sounds via listening tests.
Recommended publications
  • The Science of String Instruments
    The Science of String Instruments Thomas D. Rossing Editor The Science of String Instruments Editor Thomas D. Rossing Stanford University Center for Computer Research in Music and Acoustics (CCRMA) Stanford, CA 94302-8180, USA [email protected] ISBN 978-1-4419-7109-8 e-ISBN 978-1-4419-7110-4 DOI 10.1007/978-1-4419-7110-4 Springer New York Dordrecht Heidelberg London # Springer Science+Business Media, LLC 2010 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer ScienceþBusiness Media (www.springer.com) Contents 1 Introduction............................................................... 1 Thomas D. Rossing 2 Plucked Strings ........................................................... 11 Thomas D. Rossing 3 Guitars and Lutes ........................................................ 19 Thomas D. Rossing and Graham Caldersmith 4 Portuguese Guitar ........................................................ 47 Octavio Inacio 5 Banjo ...................................................................... 59 James Rae 6 Mandolin Family Instruments........................................... 77 David J. Cohen and Thomas D. Rossing 7 Psalteries and Zithers .................................................... 99 Andres Peekna and Thomas D.
    [Show full text]
  • Tonal Quality of the Clavichord : the Effect of Sympathetic Strings Christophe D’Alessandro, Brian Katz
    Tonal quality of the clavichord : the effect of sympathetic strings Christophe d’Alessandro, Brian Katz To cite this version: Christophe d’Alessandro, Brian Katz. Tonal quality of the clavichord : the effect of sympathetic strings. Intl Symp on Musical Acoustics (ISMA), 2004, Nara, Unknown Region. pp.21–24. hal- 01789802 HAL Id: hal-01789802 https://hal.archives-ouvertes.fr/hal-01789802 Submitted on 21 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Proceedings of the International Symposium on Musical Acoustics, March 31st to April 3rd 2004 (ISMA2004), Nara, Japan 1-P1-7 Tonal quality of the clavichord: the effect of sympathetic strings Christophe d'Alessandro & Brian F.G. Katz LIMSI-CNRS, BP133 F-91403 Orsay, France [email protected], [email protected] Abstract part of the strings the “played strings”. Only few works have included efforts specifically devoted to the In the clavichord, unlike the piano, the slanting strings acoustics of the clavichord [2][3][4]. Experiments with between the bridge and the hitch pins are not damped physical modeling synthesis of the clavichord are with felt. The effect of these “sympathetic strings” on described in [5].
    [Show full text]
  • Modelling of Sympathetic String Vibrations Jean-Loic Le Carrou, François Gautier, Nicolas Dauchez, Joël Gilbert
    Modelling of Sympathetic String Vibrations Jean-Loic Le Carrou, François Gautier, Nicolas Dauchez, Joël Gilbert To cite this version: Jean-Loic Le Carrou, François Gautier, Nicolas Dauchez, Joël Gilbert. Modelling of Sympathetic String Vibrations. Acta Acustica united with Acustica, Hirzel Verlag, 2005, 91, pp.277 - 288. hal- 00474982 HAL Id: hal-00474982 https://hal.archives-ouvertes.fr/hal-00474982 Submitted on 21 Apr 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Modelling of Sympathetic String Vibrations Jean-Lo¨ıc Le Carrou,∗ Francois Gautier, Nicolas Dauchez, and Jo¨el Gilbert Laboratoire d’Acoustique de l’Universit´edu Maine, UMR CNRS 6613, 72085 Le Mans Cedex 9, France (Dated: October 5, 2004) Abstract String instruments are usually composed of several strings connected to a vibrating body allowing efficient sound radiation. For some special string tunings, sympathetic vibrations can occur: if one string is excited, some others are also excited via the body. In order to investigate this phenomenon, an analytical model of a simplified generic string in- strument has been developed. The body of the instrument is represented by a beam clamped at both ends, to which several strings are attached.
    [Show full text]
  • Listening to String Sound: a Pedagogical Approach To
    LISTENING TO STRING SOUND: A PEDAGOGICAL APPROACH TO EXPLORING THE COMPLEXITIES OF VIOLA TONE PRODUCTION by MARIA KINDT (Under the Direction of Maggie Snyder) ABSTRACT String tone acoustics is a topic that has been largely overlooked in pedagogical settings. This document aims to illuminate the benefits of a general knowledge of practical acoustic science to inform teaching and performance practice. With an emphasis on viola tone production, the document introduces aspects of current physical science and psychoacoustics, combined with established pedagogy to help students and teachers gain a richer and more comprehensive view into aspects of tone production. The document serves as a guide to demonstrate areas where knowledge of the practical science can improve on playing technique and listening skills. The document is divided into three main sections and is framed in a way that is useful for beginning, intermediate, and advanced string students. The first section introduces basic principles of sound, further delving into complex string tone and the mechanism of the violin and viola. The second section focuses on psychoacoustics and how it relates to the interpretation of string sound. The third section covers some of the pedagogical applications of the practical science in performance practice. A sampling of spectral analysis throughout the document demonstrates visually some of the relevant topics. Exercises for informing intonation practices utilizing combination tones are also included. INDEX WORDS: string tone acoustics, psychoacoustics,
    [Show full text]
  • Sympathetic Vibration in a Piano
    Sympathetic vibration in a piano Jin Jack TAN(1), Armin KOHLRAUSCH(2), Maarten HORNIKX(3) (1)Department of Built Environment, Eindhoven University of Technology, Netherlands, [email protected] (2)Human Technology Interaction, Eindhoven University of Technology, Netherlands, [email protected] (3)Department of Built Environment, Eindhoven University of Technology, Netherlands, [email protected] Abstract Sympathetic vibration is a common phenomenon in musical instruments. In the piano, strings that are not struck directly by the hammer can vibrate sympathetically due to physical coupling. This effect will, for instance, occur when the una corda pedal is used in a grand piano. When depressed, the hammer shifts rightwards so that the leftmost string will be missed, striking only 1 out of 2 (or 2 out of 3) strings in a note at a same time. In order to understand the acoustical and perceptual differences in the notes played without and with una corda pedal depressed, the recordings of a piano for these two playing conditions are studied for all 88 keys. Differences arising in the frequency domains are found and presented alongside with discrepancies in three psychoacoustical descriptors, namely log-attack-time, temporal centroid and normalised spectral centroid. Future work in the form of listening test is planned. Keywords: piano, sympathetic vibration, una corda pedal, psychoacoustics 1 INTRODUCTION Sympathetic vibration is a physical phenomenon where a vibrating body that is initially at rest responds to another vibration in vicinity. In string-based musical instruments, sympathetic vibration is a common occurrence as strings vibrate sympathetically due to the excitation of other strings [1, 2].
    [Show full text]
  • Sympathetic String Modes in the Concert Harp Jean-Loic Le Carrou, François Gautier, Roland Badeau
    Sympathetic string modes in the concert harp Jean-Loic Le Carrou, François Gautier, Roland Badeau To cite this version: Jean-Loic Le Carrou, François Gautier, Roland Badeau. Sympathetic string modes in the concert harp. Acta Acustica united with Acustica, Hirzel Verlag, 2009, 95 (4), pp.744–752. hal-00945199 HAL Id: hal-00945199 https://hal.inria.fr/hal-00945199 Submitted on 25 Mar 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Sympathetic modes in the concert harp Jean-Lo¨ıc Le Carrou and Fran¸cois Gautier∗ LAUM, CNRS, Universit´edu Maine, Av. O. Messiaen, 72085 LE MANS, France Roland Badeau T´el´ecom Paris (ENST) / CNRS LTCI, 46 rue Barrault, 75634 Paris Cedex 13, France (Dated: December 12, 2007) 1 Le Carrou et al.: Sympathetic modes in the concert harp Abstract The concert harp is composed of a soundboard, a cavity with sound holes and 47 strings. When one string is plucked, other strings are excited and induce a characteristic ‘halo of sound’. This phenomenon, called sympathetic vibrations is due to a coupling between strings via the instrument’s body. These sympathetic modes generate the presence of multiple spectral components in each partial of the tone.
    [Show full text]
  • Download Manual
    Table of Contents 1. Welcome to Noire ....................................................................................................... 1 1.1. About NOIRE ................................................................................................... 1 1.2. NOIRE’s Special Sound .................................................................................... 1 1.3. The Particles Engine ......................................................................................... 2 1.4. Two KONTAKT Instruments ............................................................................... 2 1.4.1. NOIRE Pure ........................................................................................... 2 1.4.2. NOIRE Felt ............................................................................................ 3 2. User Interface ............................................................................................................. 4 2.1. Piano Edit Page ................................................................................................ 5 2.1.1. Anatomy Area ........................................................................................ 6 2.1.2. Noises Area ........................................................................................... 7 2.1.3. Tone Area .............................................................................................. 8 2.1.4. Settings Area ......................................................................................... 9 2.2. FX Edit Page .................................................................................................
    [Show full text]
  • The Bowed String and Its Playability: Theory, Simulation and Analysis
    The bowed string and its playability: Theory, simulation and analysis Hossein Mansour Department of Music Research McGill University Montr´eal, Qu´ebec, Canada June 2016 A dissertation submitted to McGill University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Music Technology c 2016 Hossein Mansour i Abstract This thesis describes the development of a highly refined physics-based model of a bowed string and its subsequent use to investigate several aspects of a bowed string, particularly its playability. Different components of a previously reported model are replaced by more accurate solutions, and several new features are added to make the model more realistic. Plucked-string simulations are described first, followed by enhancements to include the bow and the bowing process. Several properties of the simulated plucked response are compared to their designed values and to their experimental counterparts, which confirms the accuracy of the model and its parameters. An initial application of the model is focused on the minimum bow force above which the Helmholtz motion is sustainable. The Helmholtz motion is associated with the “speaking” sound of a bowed string, as opposed to its “whistling” or “crunching” sounds. An earlier theoretical relation for the minimum bow force is re-derived starting from a more robust assumption of an ideal stick-slip at the bowing point rather than a perfect sawtooth-shaped excitation force at the bridge. Simulations are used to evaluate and validate the improved accuracy of the new formulation. The revised relation makes some fundamentally different predictions that are confirmed by the simulations.
    [Show full text]
  • Bowed Strings and Sympathy, from Violins to Indian Sarangis Matthias Demoucron, Stéphanie Weisser
    Bowed strings and sympathy, from violins to indian sarangis Matthias Demoucron, Stéphanie Weisser To cite this version: Matthias Demoucron, Stéphanie Weisser. Bowed strings and sympathy, from violins to indian sarangis. Acoustics 2012, Apr 2012, Nantes, France. hal-00810608 HAL Id: hal-00810608 https://hal.archives-ouvertes.fr/hal-00810608 Submitted on 23 Apr 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Proceedings of the Acoustics 2012 Nantes Conference 23-27 April 2012, Nantes, France Bowed strings and sympathy, from violins to indian sarangis M. Demoucrona and S. Weisserb aIPEM, Blandijnberg 2, 9000 Gent, Belgium bMus´ee des Instruments de Musique, Montagne de la Cour 2, 1000 Bruxelles, Belgium [email protected] 3593 23-27 April 2012, Nantes, France Proceedings of the Acoustics 2012 Nantes Conference The sarangi is an indian bowed string instrument that is characterized by a large set of sympathetic strings (some- times up to over 30), called taraf, going below the three main strings. The tuning of the taraf varies among players, but generally one part is tuned chromatically and diatonically, while the other part is tuned according to the rag of the musical piece, resulting in a rich and highly reverberant sound when the main strings are bowed.
    [Show full text]
  • Nord Piano 3 English User Manual V1x-Edition-D.Pdf
    NORD ELECTRO 5 USER MAnuAL OS V1.X | 1 User Manual English Nord Piano 3 OS Version: 1.x Edition: D Part No. 50446 Copyright Clavia DMI AB Edition: D 2 | NORD ELECTRO 5 USER MAnuAL OS V1.X The lightning flash with the arrowhead symbol within CAUTION - ATTENTION an equilateral triangle is intended to alert the user to the RISK OF ELECTRIC SHOCK presence of uninsulated voltage within the products en- DO NOT OPEN closure that may be of sufficient magnitude to constitute RISQUE DE SHOCK ELECTRIQUE a risk of electric shock to persons. NE PAS OUVRIR Le symbole éclair avec le point de flèche à l´intérieur d´un triangle équilatéral est utilisé pour alerter l´utilisateur de la presence à l´intérieur du coffret de ”voltage dangereux” non isolé d´ampleur CAUTION: TO REDUCE THE RISK OF ELECTRIC SHOCK suffisante pour constituer un risque d`éléctrocution. DO NOT REMOVE COVER (OR BACK). NO USER SERVICEABLE PARTS INSIDE. REFER SERVICING TO QUALIFIED PERSONNEL. The exclamation mark within an equilateral triangle is intended to alert the user to the presence of important operating and maintenance (servicing) instructions in the ATTENTION:POUR EVITER LES RISQUES DE CHOC ELECTRIQUE, NE literature accompanying the product. PAS ENLEVER LE COUVERCLE. AUCUN ENTRETIEN DE PIECES INTERIEURES PAR L´USAGER. Le point d´exclamation à l´intérieur d´un triangle équilatéral est CONFIER L´ENTRETIEN AU PERSONNEL QUALIFE. employé pour alerter l´utilisateur de la présence d´instructions AVIS: POUR EVITER LES RISQUES D´INCIDENTE OU D´ELECTROCUTION, importantes pour le fonctionnement et l´entretien (service) dans le N´EXPOSEZ PAS CET ARTICLE A LA PLUIE OU L´HUMIDITET.
    [Show full text]
  • Extensions of the Karplus-Strong Plucked-String Algorithm
    ([WHQVLRQVRIWKH.DUSOXV6WURQJ3OXFNHG6WULQJ$OJRULWKP $XWKRU V 'DYLG$-DIIHDQG-XOLXV26PLWK 5HYLHZHGZRUN V 6RXUFH&RPSXWHU0XVLF-RXUQDO9RO1R 6XPPHU SS 3XEOLVKHGE\The MIT Press 6WDEOH85/http://www.jstor.org/stable/3680063 . $FFHVVHG Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The MIT Press is collaborating with JSTOR to digitize, preserve and extend access to Computer Music Journal. http://www.jstor.org This content downloaded on Wed, 9 Jan 2013 14:25:21 PM All use subject to JSTOR Terms and Conditions DavidA. Jaffe and Julius 0. Smith Extensions of the Center for Computer Research in Music and Acoustics (CCRMA) StanfordUniversity Karplus-Strong California 94305 Stanford, Plucked-String Algorithm Introduction The String-SimulationAlgorithm In 1960, an efficient computational model for vi- The Karplus-Strongplucked-string algorithm is pre- brating strings, based on physical resonating, was sented in this issue of Computer Music Journal. proposed by McIntyre and Woodhouse (1960). This From our point of view, the algorithm consists of model plays a crucial role in their recent work on a high-order digital filter, which represents the bowed strings (McIntyre,Schumacher, and Wood- string; and a short noise burst, which represents house 1981; 1983), and methods for calibratingthe the "pluck." The digital filter is given by the dif- model to recorded data have been developed (Smith ference equation 1983).
    [Show full text]
  • Nord Grand English User Manual V1.5X-Edition-C.Pdf
    USER MANUAL Nord Grand English OS version: 1.5x Edition: C Part number: 50476 Copyright Clavia DMI AB Edition: C The lightning flash with the arrowhead symbol within CAUTION - ATTENTION an equilateral triangle is intended to alert the user to the RISK OF ELECTRIC SHOCK presence of uninsulated voltage within the products en- DO NOT OPEN closure that may be of sufficient magnitude to constitute RISQUE DE SHOCK ELECTRIQUE a risk of electric shock to persons. NE PAS OUVRIR Le symbole éclair avec le point de flèche à l´intérieur d´un triangle équilatéral est utilisé pour alerter l´utilisateur de la presence à l´intérieur du coffret de ”voltage dangereux” non isolé d´ampleur CAUTION: TO REDUCE THE RISK OF ELECTRIC SHOCK suffisante pour constituer un risque d`éléctrocution. DO NOT REMOVE COVER (OR BACK). NO USER SERVICEABLE PARTS INSIDE. REFER SERVICING TO QUALIFIED PERSONNEL. The exclamation mark within an equilateral triangle is intended to alert the user to the presence of important operating and maintenance (servicing) instructions in the ATTENTION:POUR EVITER LES RISQUES DE CHOC ELECTRIQUE, NE literature accompanying the product. PAS ENLEVER LE COUVERCLE. AUCUN ENTRETIEN DE PIECES INTERIEURES PAR L´USAGER. Le point d´exclamation à l´intérieur d´un triangle équilatéral est CONFIER L´ENTRETIEN AU PERSONNEL QUALIFE. employé pour alerter l´utilisateur de la présence d´instructions AVIS: POUR EVITER LES RISQUES D´INCIDENTE OU D´ELECTROCUTION, importantes pour le fonctionnement et l´entretien (service) dans le N´EXPOSEZ PAS CET ARTICLE A LA PLUIE OU L´HUMIDITET. livret d´instructions accompagnant l´appareil.
    [Show full text]