14 Mar 2021 Grand Canonical Distribution . L12–1 Equilibrium

Total Page:16

File Type:pdf, Size:1020Kb

14 Mar 2021 Grand Canonical Distribution . L12–1 Equilibrium 14 mar 2021 grand canonical distribution . L12{1 Equilibrium Distribution Functions. III: Grand Canonical Distribution Setup and Derivation • Idea: A distribution function describing a system in equilibrium with a heat bath with which it exchanges both energy and particles. It can be used classically in situations where chemical reactions, phase transitions, osmosis or other processes change the number of particles, and in quantum field theory where particles are created and annihilated. It is also useful as a tool to derive results for fixed-particle-number situations. • Distribution function: For fixed total values of Nt and Et, the probability that the system has Ns Nt particles in a microstate s of energy H(s) = Es Et is ρ(N; s) / ΩR(Nt − N; Et − E). To leading order, @S @S 0 H(s) µN kB ln ρ(N; s) = C + ln ΩR(Nt;Et) − Ns − Es + ::: = C − + + ::: ; @N @E kBT kBT 1 1 X X Z so ρ(N; s) = e−βH(s)+βµN ;Z := e−βH(s)+βµN = eβµN dΩ e−βH(q;p) ; Z g (N) g states N=0 Γ(N) −1 where β = 1=kBT as before, and we have used the fact that from the thermodynamic identity @S=@E = T and @S=@N = −µ T −1. We can also define the fugacity z := eβµ, and write 1 X N Zg = z Z(N) : N=0 Obtaining Thermodynamics from the Grand Canonical Distribution • Mean particle number: Taking a derivative of Zg with respect to µ we find that 1 @ @ N¯ = ln Z = z ln Z : β @µ g @z g • Mean energy: If we take a derivative of Zg with respect to β, as we did in the case of a canonical ensemble to get E¯, in this case we obtain @ @ − ln Z = E¯ − µ N;¯ so E¯ = − ln Z + µ N:¯ @β g @β g P • Entropy: Substituting in the Gibbs entropy SG = −kB N;s ρ(N; s) ln ρ(N; s) the ρ(N; s) above, we get X e−βH+βµN e−βH+βµN X e−βH+βµN E¯ µN¯ S = −k ln = −k (−βE + βµN − ln Z ) = − + k ln Z : B Z Z B Z g T T B g N;s g g N;s g • Grand potential: From the definition, Ω := E¯ − TS − µN¯, and again substituting for S, ¯ ¯ ¯ ¯ Ω = E − T (E=T + µN=T + kB ln Zg) − µN = −kBT ln Zg : ¯ Notice that we can write the mean particle number in terms of the grand potential, as N = −@Ω=@µjβ;V . • Pressure equation of state: The grand potential version of the fundamental thermodynamic identity, dΩ = −S dT − p dV − N dµ ; can be derived similarly to how we derived those in terms of F and other potentials. Using this, we find @Ω p = − : @V T,µ • Particle-number fluctuations: Taking a further µ derivative of ln Zg, we see that 1 @2 @N¯ 2 ¯ 2 2 2 2 ln Zg = N − N ≡ (∆N) ≡ σN ; or σN = kBT ; β2 @µ2 β;V @µ T;V whose dependence on N¯ as N¯ ! 1 is best expressed as a relative fluctuation s σ 1 @N¯ 1 N = k T / p : N¯ N¯ B @µ N¯ This shows that in this limit particle-number fluctuations become negligible and predictions based on Zg ¯ −1=2 coincide with those based on Zc (for specific systems we can also calculate explicitly the coefficient of N ). 14 mar 2021 grand canonical distribution . L12{2 Example: Non-Interacting Particles • Grand partition function: Here Zg is a sum over all states, each of which is a specification of a number N PN of particles and N one-particle states s = fs1; :::; sN g, with HN (s) = i=1 H1(si), 1 1 1 X X X X Z N Z = eβµN e−βHN (s) = eβµN Z = eβµN 1 = exp eβµ Z ; g N N! 1 N=0 s2Γ(N) N=0 N=0 where we have used the definition of the N-particle canonical partition function ZN , its expression in terms of Z1 when the particles are non-interacting, and in the last step the power-series expansion of an exponential. 3 • Ideal gas: In this case Z1 = (V/λ ) Zint, with Zint an internal partition function, so the grand potential is eβµ V Ω(T; V; µ) = −k T ln Z = −k T eβµ Z = − Z ; B g B 1 β λ3 int p where as usual λ := h= 2πmkBT . For the pressure and mean particle number we then get @Ω @ eβµ V eβµ @Ω @ eβµ V eβµ V ¯ p = − = Zint = Zint ; N = − = = Zint : @V β,µ @V β λ3 β λ3 @µ β;V @µ β λ3 λ3 ¯ From these we see by inspection that the usual ideal-gas equation of state holds, pV = NkBT . ¯ ¯ • Mean energy and chemical potential: For the mean energy we use the general result E = −@ ln Zg=@β+µ N. The chemical potential µ in principle is a parameter like β (temperature) and V , but it is less easy to control and in practice we will use the grand canonical ensemble in situations in which we know the number of particles, we identify the latter with N¯, and find µ by inverting the expression for N¯ as a function of µ. Fluctuation-Response Relation • Idea: For any system in a grand canonical ensemble we can derive a relationship between the typical size of the particle-number fluctuations and the isotermal compressibility, analogously to the way we derived the 2 relationship between the energy variance σE and the heat capacity for a canonical ensemble. • Derivation: We saw in the previous page that the particle-number fluctuation can be written as @N¯ 2 2 (∆N) ≡ σN = kBT : @µ T;V The right-hand side of this equation can be rewritten using mathematical identities for functions of several variables and thermodynamic identities such as dF = −S dT − p dV + µ dN (where we identify N¯ with N), @N @N @V @µ @p = ; with = − ; @µ T;V @V T,µ @µ T;N @V T;N @N T;V @p @p @V = − : @N T;V @V T;N @N T;p Combining these equations and using @N @N N = = ; @V T,µ @V T;p V where we have used the fact that µ = µ(T; p), we finally get the fluctuation-response relation N 2 @V N 2 2 σN = −kBT = kBT κT : V 2 @p T;N V Reading • Main references: Kennett, Chapter 6; Pathria & Beale, Chapter 4. • Partial treatments: Halley (mentioned on page 33), Kardar (briefly treated in Sec. 7.3, for bosons and fermions), Mattis & Swendsen (Sec. 4.4, very short), and Reif (briefly treated in Sec. *6.9). • More extensive: Plischke & Bergersen (Sec. 2.3), Reichl (Sec. 6.2, a good one), and Schwabl (Sec. 2.7)..
Recommended publications
  • Particle Characterisation In
    LIFE SCIENCE I TECHNICAL BULLETIN ISSUE N°11 /JULY 2008 PARTICLE CHARACTERISATION IN EXCIPIENTS, DRUG PRODUCTS AND DRUG SUBSTANCES AUTHOR: HILDEGARD BRÜMMER, PhD, CUSTOMER SERVICE MANAGER, SGS LIFE SCIENCE SERVICES, GERMANY Particle characterization has significance in many industries. For the pharmaceutical industry, particle size impacts products in two ways: as an influence on drug performance and as an indicator of contamination. This article will briefly examine how particle size impacts both, and review the arsenal of methods for measuring and tracking particle size. Furthermore, examples of compromised product quality observed within our laboratories illustrate why characterization is so important. INDICATOR OF CONTAMINATION Controlling the limits of contaminating • Adverse indirect reactions: particles Particle characterisation of drug particles is critical for injectable are identified by the immune system as substances, drug products and excipients (parenteral) solutions. Particle foreign material and immune reaction is an important factor in R&D, production contamination of solutions can potentially might impose secondary effects. and quality control of pharmaceuticals. have the following results: It is becoming increasingly important for In order to protect a patient and to compliance with requirements of FDA and • Adverse direct reactions: e.g. particles guarantee a high quality product, several European Health Authorities. are distributed via the blood in the body chapters in the compendia (USP, EP, JP) and cause toxicity to specific tissues or describe techniques for characterisation organs, or particles of a given size can of limits. Some of the most relevant cause a physiological effect blocking blood chapters are listed in Table 1. flow e.g. in the lungs.
    [Show full text]
  • Chapter 3 Bose-Einstein Condensation of an Ideal
    Chapter 3 Bose-Einstein Condensation of An Ideal Gas An ideal gas consisting of non-interacting Bose particles is a ¯ctitious system since every realistic Bose gas shows some level of particle-particle interaction. Nevertheless, such a mathematical model provides the simplest example for the realization of Bose-Einstein condensation. This simple model, ¯rst studied by A. Einstein [1], correctly describes important basic properties of actual non-ideal (interacting) Bose gas. In particular, such basic concepts as BEC critical temperature Tc (or critical particle density nc), condensate fraction N0=N and the dimensionality issue will be obtained. 3.1 The ideal Bose gas in the canonical and grand canonical ensemble Suppose an ideal gas of non-interacting particles with ¯xed particle number N is trapped in a box with a volume V and at equilibrium temperature T . We assume a particle system somehow establishes an equilibrium temperature in spite of the absence of interaction. Such a system can be characterized by the thermodynamic partition function of canonical ensemble X Z = e¡¯ER ; (3.1) R where R stands for a macroscopic state of the gas and is uniquely speci¯ed by the occupa- tion number ni of each single particle state i: fn0; n1; ¢ ¢ ¢ ¢ ¢ ¢g. ¯ = 1=kBT is a temperature parameter. Then, the total energy of a macroscopic state R is given by only the kinetic energy: X ER = "ini; (3.2) i where "i is the eigen-energy of the single particle state i and the occupation number ni satis¯es the normalization condition X N = ni: (3.3) i 1 The probability
    [Show full text]
  • Bose-Einstein Condensation of Photons and Grand-Canonical Condensate fluctuations
    Bose-Einstein condensation of photons and grand-canonical condensate fluctuations Jan Klaers Institute for Applied Physics, University of Bonn, Germany Present address: Institute for Quantum Electronics, ETH Zürich, Switzerland Martin Weitz Institute for Applied Physics, University of Bonn, Germany Abstract We review recent experiments on the Bose-Einstein condensation of photons in a dye-filled optical microresonator. The most well-known example of a photon gas, pho- tons in blackbody radiation, does not show Bose-Einstein condensation. Instead of massively populating the cavity ground mode, photons vanish in the cavity walls when they are cooled down. The situation is different in an ultrashort optical cavity im- printing a low-frequency cutoff on the photon energy spectrum that is well above the thermal energy. The latter allows for a thermalization process in which both tempera- ture and photon number can be tuned independently of each other or, correspondingly, for a non-vanishing photon chemical potential. We here describe experiments demon- strating the fluorescence-induced thermalization and Bose-Einstein condensation of a two-dimensional photon gas in the dye microcavity. Moreover, recent measurements on the photon statistics of the condensate, showing Bose-Einstein condensation in the grandcanonical ensemble limit, will be reviewed. 1 Introduction Quantum statistical effects become relevant when a gas of particles is cooled, or its den- sity is increased, to the point where the associated de Broglie wavepackets spatially over- arXiv:1611.10286v1 [cond-mat.quant-gas] 30 Nov 2016 lap. For particles with integer spin (bosons), the phenomenon of Bose-Einstein condensation (BEC) then leads to macroscopic occupation of a single quantum state at finite tempera- tures [1].
    [Show full text]
  • Statistical Physics– a Second Course
    Statistical Physics– a second course Finn Ravndal and Eirik Grude Flekkøy Department of Physics University of Oslo September 3, 2008 2 Contents 1 Summary of Thermodynamics 5 1.1 Equationsofstate .......................... 5 1.2 Lawsofthermodynamics. 7 1.3 Maxwell relations and thermodynamic derivatives . .... 9 1.4 Specificheatsandcompressibilities . 10 1.5 Thermodynamicpotentials . 12 1.6 Fluctuations and thermodynamic stability . .. 15 1.7 Phasetransitions ........................... 16 1.8 EntropyandGibbsParadox. 18 2 Non-Interacting Particles 23 1 2.1 Spin- 2 particlesinamagneticfield . 23 2.2 Maxwell-Boltzmannstatistics . 28 2.3 Idealgas................................ 32 2.4 Fermi-Diracstatistics. 35 2.5 Bose-Einsteinstatistics. 36 3 Statistical Ensembles 39 3.1 Ensemblesinphasespace . 39 3.2 Liouville’stheorem . .. .. .. .. .. .. .. .. .. .. 42 3.3 Microcanonicalensembles . 45 3.4 Free particles and multi-dimensional spheres . .... 48 3.5 Canonicalensembles . 50 3.6 Grandcanonicalensembles . 54 3.7 Isobaricensembles .......................... 58 3.8 Informationtheory . .. .. .. .. .. .. .. .. .. .. 62 4 Real Gases and Liquids 67 4.1 Correlationfunctions. 67 4.2 Thevirialtheorem .......................... 73 4.3 Mean field theory for the van der Waals equation . 76 4.4 Osmosis ................................ 80 3 4 CONTENTS 5 Quantum Gases and Liquids 83 5.1 Statisticsofidenticalparticles. .. 83 5.2 Blackbodyradiationandthephotongas . 88 5.3 Phonons and the Debye theory of specific heats . 96 5.4 Bosonsatnon-zerochemicalpotential .
    [Show full text]
  • Grand-Canonical Ensemble
    PHYS4006: Thermal and Statistical Physics Lecture Notes (Unit - IV) Open System: Grand-canonical Ensemble Dr. Neelabh Srivastava (Assistant Professor) Department of Physics Programme: M.Sc. Physics Mahatma Gandhi Central University Semester: 2nd Motihari-845401, Bihar E-mail: [email protected] • In microcanonical ensemble, each system contains same fixed energy as well as same number of particles. Hence, the system dealt within this ensemble is a closed isolated system. • With microcanonical ensemble, we can not deal with the systems that are kept in contact with a heat reservoir at a given temperature. 2 • In canonical ensemble, the condition of constant energy is relaxed and the system is allowed to exchange energy but not the particles with the system, i.e. those systems which are not isolated but are in contact with a heat reservoir. • This model could not be applied to those processes in which number of particle varies, i.e. chemical process, nuclear reactions (where particles are created and destroyed) and quantum process. 3 • So, for the method of ensemble to be applicable to such processes where number of particles as well as energy of the system changes, it is necessary to relax the condition of fixed number of particles. 4 • Such an ensemble where both the energy as well as number of particles can be exchanged with the heat reservoir is called Grand Canonical Ensemble. • In canonical ensemble, T, V and N are independent variables. Whereas, in grand canonical ensemble, the system is described by its temperature (T),volume (V) and chemical potential (μ). 5 • Since, the system is not isolated, its microstates are not equally probable.
    [Show full text]
  • The Grand Canonical Ensemble
    University of Central Arkansas The Grand Canonical Ensemble Stephen R. Addison Directory ² Table of Contents ² Begin Article Copyright °c 2001 [email protected] Last Revision Date: April 10, 2001 Version 0.1 Table of Contents 1. Systems with Variable Particle Numbers 2. Review of the Ensembles 2.1. Microcanonical Ensemble 2.2. Canonical Ensemble 2.3. Grand Canonical Ensemble 3. Average Values on the Grand Canonical Ensemble 3.1. Average Number of Particles in a System 4. The Grand Canonical Ensemble and Thermodynamics 5. Legendre Transforms 5.1. Legendre Transforms for two variables 5.2. Helmholtz Free Energy as a Legendre Transform 6. Legendre Transforms and the Grand Canonical Ensem- ble 7. Solving Problems on the Grand Canonical Ensemble Section 1: Systems with Variable Particle Numbers 3 1. Systems with Variable Particle Numbers We have developed an expression for the partition function of an ideal gas. Toc JJ II J I Back J Doc Doc I Section 2: Review of the Ensembles 4 2. Review of the Ensembles 2.1. Microcanonical Ensemble The system is isolated. This is the ¯rst bridge or route between mechanics and thermodynamics, it is called the adiabatic bridge. E; V; N are ¯xed S = k ln ­(E; V; N) Toc JJ II J I Back J Doc Doc I Section 2: Review of the Ensembles 5 2.2. Canonical Ensemble System in contact with a heat bath. This is the second bridge between mechanics and thermodynamics, it is called the isothermal bridge. This bridge is more elegant and more easily crossed. T; V; N ¯xed, E fluctuates.
    [Show full text]
  • 2. Classical Gases
    2. Classical Gases Our goal in this section is to use the techniques of statistical mechanics to describe the dynamics of the simplest system: a gas. This means a bunch of particles, flying around in a box. Although much of the last section was formulated in the language of quantum mechanics, here we will revert back to classical mechanics. Nonetheless, a recurrent theme will be that the quantum world is never far behind: we’ll see several puzzles, both theoretical and experimental, which can only truly be resolved by turning on ~. 2.1 The Classical Partition Function For most of this section we will work in the canonical ensemble. We start by reformu- lating the idea of a partition function in classical mechanics. We’ll consider a simple system – a single particle of mass m moving in three dimensions in a potential V (~q ). The classical Hamiltonian of the system3 is the sum of kinetic and potential energy, p~ 2 H = + V (~q ) 2m We earlier defined the partition function (1.21) to be the sum over all quantum states of the system. Here we want to do something similar. In classical mechanics, the state of a system is determined by a point in phase space.Wemustspecifyboththeposition and momentum of each of the particles — only then do we have enough information to figure out what the system will do for all times in the future. This motivates the definition of the partition function for a single classical particle as the integration over phase space, 1 3 3 βH(p,q) Z = d qd pe− (2.1) 1 h3 Z The only slightly odd thing is the factor of 1/h3 that sits out front.
    [Show full text]
  • Particle Number Concentrations and Size Distribution in a Polluted Megacity
    https://doi.org/10.5194/acp-2020-6 Preprint. Discussion started: 17 February 2020 c Author(s) 2020. CC BY 4.0 License. Particle number concentrations and size distribution in a polluted megacity: The Delhi Aerosol Supersite study Shahzad Gani1, Sahil Bhandari2, Kanan Patel2, Sarah Seraj1, Prashant Soni3, Zainab Arub3, Gazala Habib3, Lea Hildebrandt Ruiz2, and Joshua S. Apte1 1Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Texas, USA 2McKetta Department of Chemical Engineering, The University of Texas at Austin, Texas, USA 3Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, India Correspondence: Joshua S. Apte ([email protected]), Lea Hildebrandt Ruiz ([email protected]) Abstract. The Indian national capital, Delhi, routinely experiences some of the world's highest urban particulate matter concentrations. While fine particulate matter (PM2.5) mass concentrations in Delhi are at least an order of magnitude higher than in many western cities, the particle number (PN) concentrations are not similarly elevated. Here we report on 1.25 years of highly 5 time resolved particle size distributions (PSD) data in the size range of 12–560 nm. We observed that the large number of accumulation mode particles—that constitute most of the PM2.5 mass—also contributed substantially to the PN concentrations. The ultrafine particles (UFP, Dp <100 nm) fraction of PN was higher during the traffic rush hours and for daytimes of warmer seasons—consistent with traffic and nucleation events being major sources of urban UFP. UFP concentrations were found to be relatively lower during periods with some of the highest mass concentrations.
    [Show full text]
  • Statistical Physics 06/07
    STATISTICAL PHYSICS 06/07 Quantum Statistical Mechanics Tutorial Sheet 3 The questions that follow on this and succeeding sheets are an integral part of this course. The code beside each question has the following significance: • K: key question – explores core material • R: review question – an invitation to consolidate • C: challenge question – going beyond the basic framework of the course • S: standard question – general fitness training! 3.1 Particle Number Fluctuations for Fermions [s] (a) For a single fermion state in the grand canonical ensemble, show that 2 h(∆nj) i =n ¯j(1 − n¯j) wheren ¯j is the mean occupancy. Hint: You only need to use the exclusion principle not the explict form ofn ¯j. 2 How is the fact that h(∆nj) i is not in general small compared ton ¯j to be reconciled with the sharp values of macroscopic observables? (b) For a gas of noninteracting particles in the grand canonical ensemble, show that 2 X 2 h(∆N) i = h(∆nj) i j (you will need to invoke that nj and nk are uncorrelated in the GCE for j 6= k). Hence show that for noninteracting Fermions Z h(∆N)2i = g() f(1 − f) d follows from (a) where f(, µ) is the F-D distribution and g() is the density of states. (c) Show that for low temperatures f(1 − f) is sharply peaked at = µ, and hence that 2 h∆N i ' kBT g(F ) where F = µ(T = 0) R ∞ ex dx [You may use without proof the result that −∞ (ex+1)2 = 1.] 3.2 Entropy of the Ideal Fermi Gas [C] The Grand Potential for an ideal Fermi is given by X Φ = −kT ln [1 + exp β(µ − j)] j Show that for Fermions X Φ = kT ln(1 − pj) , j where pj = f(j) is the probability of occupation of the state j.
    [Show full text]
  • Appendix a Review of Probability Distribution
    Appendix A Review of Probability Distribution In this appendix we review some fundamental concepts of probability theory. After deriving in Sect. A.1 the binomial probability distribution, in Sect. A.2 we show that for systems described by a large number of random variables this distribution tends to a Gaussian function. Finally, in Sect. A.3 we define moments and cumulants of a generic probability distribution, showing how the central limit theorem can be easily derived. A.1 Binomial Distribution Consider an ideal gas at equilibrium, composed of N particles, contained in a box of volume V . Isolating within V a subsystem of volume v, as the gas is macroscop- ically homogeneous, the probability to find a particle within v equals p = v/V , while the probability to find it in a volume V − v is q = 1 − p. Accordingly, the probability to find any one given configuration (i.e. assuming that particles could all be distinguished from each other), with n molecules in v and the remaining (N − n) within (V − v), would be equal to pnqN−n, i.e. the product of the respective prob- abilities.1 However, as the particles are identical to each other, we have to multiply this probability by the Tartaglia pre-factor, that us the number of possibilities of 1Here, we assume that finding a particle within v is not correlated with finding another, which is true in ideal gases, that are composed of point-like molecules. In real fluids, however, since molecules do occupy an effective volume, we should consider an excluded volume effect.
    [Show full text]
  • Aerosol Particle Measurements at Three Stationary Sites in The
    Supplementary material to Aerosol particle measurements at three stationary sites in the megacity of Paris during summer 2009: Meteorology and air mass origin dominate aerosol particle composition and size distribution F. Freutel 1, J. Schneider 1, F. Drewnick 1, S.-L. von der Weiden-Reinmüller 1, M. Crippa 2, A. S. H. Prévôt 2, U. Baltensperger 2, L. Poulain 3, A. Wiedensohler 3, J. Sciare 4, R. Sarda- Estève 4, J. F. Burkhart 5, S. Eckhardt 5, A. Stohl 5, V. Gros 4, A. Colomb 6,7 , V. Michoud 6, J. F. Doussin 6, A. Borbon 6, M. Haeffelin 8,9 , Y. Morille 9,10 , M. Beekmann6, S. Borrmann 1,11 [1] Max Planck Institute for Chemistry, Mainz, Germany [2] Paul Scherrer Institute, Villigen, Switzerland [3] Leibniz Institute for Tropospheric Research, Leipzig, Germany [4] Laboratoire des Sciences du Climat et de l'Environnement, Gif-sur-Yvette, France [5] Norwegian Institute for Air Research, Kjeller, Norway [6] LISA, UMR-CNRS 7583, Université Paris Est Créteil (UPEC), Université Paris Diderot (UPD), Créteil, France [7] LaMP, Clermont Université, Université Blaise Pascal, CNRS, Aubière, France [8] Institut Pierre-Simon Laplace, Paris, France [9] Site Instrumental de Recherche par Télédétection Atmosphérique, Palaiseau, France [10] Laboratoire de Météorologie Dynamique, Palaiseau, France [11] Institute of Atmospheric Physics, Johannes Gutenberg University Mainz, Mainz, Germany Correspondence to: J. Schneider ([email protected]) 1 Table S1. Results from the intercomparison measurements between the gas phase and BC measurement instruments
    [Show full text]
  • Grand-Canonical Ensembles
    Grand-canonical ensembles As we know, we are at the point where we can deal with almost any classical problem (see below), but for quantum systems we still cannot deal with problems where the translational degrees of freedom are described quantum mechanically and particles can interchange their locations – in such cases we can write the expression for the canonical partition function, but because of the restriction on the occupation numbers we simply cannot calculate it! (see end of previous write-up). Even for classical systems, we do not know how to deal with problems where the number of particles is not fixed (open systems). For example, suppose we have a surface on which certain types of atoms can be adsorbed (trapped). The surface is in contact with a gas containing these atoms, and depending on conditions some will stick to the surface while other become free and go into the gas. Suppose we are interested only in the properties of the surface (for instance, the average number of trapped atoms as a function of temperature). Since the numbers of atoms on the surface varies, this is an open system and we still do not know how to solve this problem. So for these reasons we need to introduce grand-canonical ensembles. This will finally allow us to study quantum ideal gases (our main goal for this course). As we expect, the results we’ll obtain at high temperatures will agree with the classical predictions we already have, however, as we will see, the low-temperature quantum behavior is really interesting and worth the effort! Like we did for canonical ensembles, I’ll introduce the formalism for classical problems first, and then we’ll generalize to quantum systems.
    [Show full text]