Piezoelectric Pressure Sensors Based on Flexible Pzt Thick-Film Composite Device

Total Page:16

File Type:pdf, Size:1020Kb

Piezoelectric Pressure Sensors Based on Flexible Pzt Thick-Film Composite Device PIEZOELECTRIC PRESSURE SENSORS BASED ON FLEXIBLE PZT THICK-FILM COMPOSITE DEVICE by Rongjie Liang Bachelor of Mechanical Engineering, Wuhan University of Technology, 2012 Submitted to the Graduate Faculty of Swanson School of Engineering in partial fulfillment of the requirements for the degree of Master of Science University of Pittsburgh 2014 UNIVERSITY OF PITTSBURGH SWANSON SCHOOL OF ENGINEERING This thesis was presented by Rongjie Liang It was defended on November 24, 2014 and approved by William S. Slaughter, Ph.D., Associate Professor, Department of Mechanical Engineering and Material Science Patrick Smolinski, Ph.D., Associate Professor, Department of Mechanical Engineering and Material Science Thesis Advisor: Qing-Ming Wang, Ph. D, Professor, Department of Mechanical Engineering and Materials Science ii Copyright © by Rongjie Liang 2014 iii PIEZOELECTRIC PRESSURE SENSORS BASED ON FLEXIBLE PZT THICK-FILM COMPOSITE DEVICE Rongjie Liang, M.S. University of Pittsburgh, 2014 In this thesis, piezoelectric diaphragm pressure sensors have been proposed and developed. The piezoelectric Lead Zirconate Titanate (PZT) thick film was used in this sensor as sensing element due to its good piezoelectric property and mechanical flexibility. This kind of PZT thick film was fabricated recently using a tape-casting processing. By this process the PZT film thickness can be controlled in the range from tens to hundreds microns, making the novel flexible PZT diaphragm sensor realizable. Two structures of pressure sensor were designed and fabricated, and the relationship between generated voltage signals to applied pressures of the electromechanical model has been analyzed theoretically. For sandwiched structure sensor, the properties of the sensor to measure low frequency fluctuating pressures have been investigated experimentally. A test setup was designed and applied to generate pulsing fluid pressure waves and calibrate the sensitivities of sensor samples. The proposed pressure sensor exhibited highly sensitive response to low frequency dynamic pressure loading. The effectiveness of this sensor in human arterial pulse monitoring was studied and reported. For pressure sensor with unimorph structure, a blast wave pressure test was conducted using shock tube setup to study its sensing ability to intensive, transient pressure loading. Different sized sensors were tested and showed almost linear relationship to blast pressure in the given range. iv TABLE OF CONTENTS PREFACE ..................................................................................................................................... X 1.0 INTRODUCTION ........................................................................................................ 1 2.0 BACKGROUND ........................................................................................................... 3 2.1 FUNDAMENTAL BACKGROUND OF PIEZOELECTRICITY AND PRESSURE MEASUREMENT PRINCIPLE .................................................... 3 2.2 ADVANTAGES AND DISADVANTAGES OF PIEZOELECTRIC PRESSURE SENSORS ......................................................................................... 8 2.3 GENERAL STRUCTURES OF PIEZOELECTRIC SENSOR ....................... 9 2.4 DIFFERENT TYPES OF PIEZOELECTRIC SENSING ELEMENT .......... 11 3.0 PROPOSAL AND DESIGN OF PZT THICK FILM PRESSURE SENSOR ...... 15 3.1 FABRICATION PROCESS OF PZT THICK-FILM BY TAPE-CASTING 16 3.2 DESIGN AND CONSTRUCTION OF PRESSURE SENSOR ....................... 18 3.2.1 Unimorph Structure ...................................................................................... 19 3.2.2 Sandwiched Composite Structure ................................................................ 20 3.3 THEORETICAL ANALYSIS ............................................................................ 21 3.3.1 Static Response .............................................................................................. 21 3.3.2 Dynamic Response ......................................................................................... 29 3.4 FABRICATION PROCESS OF SANDWICHED STRUCTURE PRESSURE SENSOR ............................................................................................................... 32 4.0 PULSE PRESSURE MEASUREMENT .................................................................. 35 v 4.1 EXPERIMENTAL SETUP DESIGN ................................................................ 35 4.2 EXPERIMENTAL PROCEDURE AND RESULTS ....................................... 39 4.3 ANALYSIS AND DISCUSSION ........................................................................ 48 5.0 AIR BLAST PRESSURE MEASUREMENT ......................................................... 51 5.1 EXPERIMENT SETUP DESIGN ...................................................................... 51 5.2 SENSOR SAMPLES AND SETUP PREPARATION ..................................... 54 5.3 EXPERIMENT RESULTS ................................................................................. 57 5.3.1 Blast Pressure Waveforms ............................................................................ 57 5.3.2 Theoretical Calculation of Shock Tube Pressure ....................................... 60 5.3.3 Calibration Curves of Sensor Samples ........................................................ 62 5.4 ANALYSIS AND DISCUSSION ........................................................................ 63 6.0 SENSOR RESPONSE TO HUMAN PULSE PRESSURE .................................... 66 6.1 INTRODUCTION ............................................................................................... 66 6.2 EXPERIMENT .................................................................................................... 67 6.2.1 Experimental principle and setup ................................................................ 67 6.2.2 Result and Discussion .................................................................................... 68 6.3 CONCLUSION .................................................................................................... 69 7.0 CONCLUSION AND FUTURE WORK ................................................................. 71 APPENDIX A .............................................................................................................................. 75 APPENDIX B .............................................................................................................................. 81 BIBLIOGRAPHY ....................................................................................................................... 85 vi LIST OF TABLES Table 3-1 Properties of pressure sensor sample ............................................................................ 34 Table 4-1 Pump Speed vs. Center deflection of Disk ................................................................... 39 Table 4-2 output voltage vs. disk deflection under certain pulse frequencies .............................. 45 Table 4-3 Comparison of Experiment and Theoretical Sensitivities ............................................ 48 Table 5-1 Parameters of PZT Samples (source: JCADVANCED CERAMIC LTD., CO) .......... 53 Table 5-2 Membrane Parameters .................................................................................................. 56 Table 5-3 Peak Pressure Data ....................................................................................................... 59 Table 5-4 Time Interval of Each Test ........................................................................................... 60 Table 5-5 Theoretical Peak Pressure of each Test ........................................................................ 61 Table 5-6 Comparison of Experiment and Theoretical Sensitivities ............................................ 64 vii LIST OF FIGURES Figure 2-1.Schematic of piezoelectric effect [7] ............................................................................. 4 Figure 2-2. Poling process (a) before poling (b) applying direct voltage (c) after poling [8] ........ 5 Figure 2-3.Force/Charge relationship on piezoelectric element ;(a) d33 mode; (b)d31 mode [9] . 7 Figure 2-4. Operation modes of piezoelectric sensors [11] .......................................................... 10 Figure 2-5. Typical force, pressure and acceleration sensor [11] ................................................. 10 Figure 2-6. Schematic of a PVDF pressure sensor: left: cross-section right: top view [16]......... 14 Figure 3-1.PZT green sheet fabricated by the tape-casting processing [21] ................................. 17 Figure 3-2. The fabricated PZT thick films [21]........................................................................... 18 Figure 3-3. Unimorph Sensor structure ........................................................................................ 19 Figure 3-4. Sandwiched Structure................................................................................................. 20 Figure 3-5. Mechanical Modeling of Pressure Sensor .................................................................. 21 Figure 3-6. Two-part mechanical modeling for convenience of analysis ..................................... 22 Figure 3-7. Sensitivity performance with different thickness ratios and substrate materials.(b/a=0.6) ..................................................................................................... 28 Figure 3-8. Charge-generating performance with different radius ratios and substrate materials. (hp/hm=1.5) ................................................................................................................
Recommended publications
  • Piezoelectric Pressure Sensor Based on Enhanced Thin-Film PZT Diaphragm Containing Nanocrystalline Powders
    Chapter 6 Piezoelectric Pressure Sensor Based on Enhanced Thin-Film PZT Diaphragm Containing Nanocrystalline Powders Vahid Mohammadi, Saeideh Mohammadi and Fereshteh Barghi Additional information is available at the end of the chapter http://dx.doi.org/10.5772/54755 1. Introduction During recent years, the study of micro-electromechanical systems (MEMS) has shown that there are significant opportunities for micro sensors and microactuators based on various physical mechanisms such as piezoresistive, capacitive, piezoelectric, magnetic, and electro‐ static. In addition, specialized processes, novel materials, and customized packaging meth‐ ods are routinely used. MEMS themes include miniaturization, multiplicity, and microelectronic manufacturing and integration. Huge technology opportunities for MEMS are present in automotive applications, medicine, defense, controls, and communications. Other applications include biomedical pressure sensors and projection displays. For several excellent MEMS overviews of both core technologies and emerging applications, the readers are encouraged to consult references [1–4]. MEMS can be classified in two major categories: sensors and actuators. MEMS sensors, or microsensors, usually rely on integrated microfabrication methods to realize mechanical structures that predictably deform or respond to a specific physical or chemical variable. Such responses can be observed through a variety of physical detection methods including electronic and optical effects. Structures and devices are designed to be sensitive to changes in resistance (piezoresistivity), changes in capacitance, and changes in charge (piezoelectrici‐ ty), with an amplitude usually proportional to the magnitude of the stimulus sensed. Exam‐ ples of microsensors include accelerometers, pressure sensors, strain gauges, flow sensors, thermal sensors, chemical sensors, and biosensors. MEMS actuators, or microactuators, are usually based on electrostatic, piezoelectric, magnetic, thermal, and pneumatic forces.
    [Show full text]
  • Piezoelectric Chemical Sensors
    Pure Appl. Chem., Vol. 76, No. 6, pp. 1139–1160, 2004. © 2004 IUPAC INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY ANALYTICAL CHEMISTRY DIVISION* PIEZOELECTRIC CHEMICAL SENSORS (IUPAC Technical Report) Prepared for publication by RICHARD P. BUCK1, ERNO˝ LINDNER2,‡, WLODZIMIERZ KUTNER3, AND GYÖRGY INZELT4 1Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA; 2Department of Biomedical Engineering, The University of Memphis, Herff College of Engineering, Memphis, TN 38512, USA; 3Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, PL-01 224 Warszawa, Poland; 4Department of Physical Chemistry, Eötvös Loránd University, Budapest, Pázmány Péter sétány 1/A, H-1117, Hungary *Membership of the Analytical Chemistry Division during the final preparation of this report (2002–2003) was as follows: President: D. Moore (USA); Titular Members: F. Ingman (Sweden); K. J. Powell (New Zealand); R. Lobinski (France); G. G. Gauglitz (Germany); V. P. Kolotov (Russia); K. Matsumoto (Japan); R. M. Smith (UK); Y. Umezawa (Japan); Y. Vlasov (Russia); Associate Members: A. Fajgelj (Slovenia); H. Gamsjäger (Austria); D. B. Hibbert (Australia); W. Kutner (Poland); K. Wang (China); National Representatives: E. A. G. Zagatto (Brazil); M.-L. Riekkola (Finland); H. Kim (Korea); A. Sanz-Medel (Spain); T. Ast (Yugoslavia). ‡Corresponding author Republication or reproduction of this report or its storage and/or dissemination by electronic means is permitted without the need for formal IUPAC permission on condition that an acknowledgment, with full reference to the source, along with use of the copyright symbol ©, the name IUPAC, and the year of publication, are prominently visible. Publication of a translation into another language is subject to the additional condition of prior approval from the relevant IUPAC National Adhering Organization.
    [Show full text]
  • On the Design of a MEMS Piezoelectric Accelerometer
    www.nature.com/scientificreports OPEN On the design of a MEMS piezoelectric accelerometer coupled to the middle ear as an Received: 8 January 2018 Accepted: 19 February 2018 implantable sensor for hearing Published: xx xx xxxx devices A. L. Gesing1, F. D. P. Alves2, S. Paul1 & J. A. Cordioli1 The presence of external elements is a major limitation of current hearing aids and cochlear implants, as they lead to discomfort and inconvenience. Totally implantable hearing devices have been proposed as a solution to mitigate these constraints, which has led to challenges in designing implantable sensors. This work presents a feasibility analysis of a MEMS piezoelectric accelerometer coupled to the ossicular chain as an alternative sensor. The main requirements of the sensor include small size, low internal noise, low power consumption, and large bandwidth. Diferent designs of MEMS piezoelectric accelerometers were modeled using Finite Element (FE) method, as well as optimized for high net charge sensitivity. The best design, a 2 × 2 mm2 annular confguration with a 500 nm thick Aluminum Nitride (AlN) layer was selected for fabrication. The prototype was characterized, and its charge sensitivity and spectral acceleration noise were found to be with good agreement to the FE model predictions. Weak coupling between a middle ear FE model and the prototype was considered, resulting in equivalent input noise (EIN) lower than 60 dB sound pressure level between 600 Hz and 10 kHz. These results are an encouraging proof of concept for the development of MEMS piezoelectric accelerometers as implantable sensors for hearing devices. Over 10% of the world’s population is afected by hearing losses1, a disability which incurs in lower quality life and even reduced income.
    [Show full text]
  • Pressure Sensor/ Rohs 3-Screen Display Sensor Monitor IP65
    Remote Type Pressure Sensor/ RoHS 3-Screen Display Sensor Monitor IP65 Pressure Sensor for General Fluids PSE57२ Series Rated pressure range 0 to 1 MPa −100 to 100 kPa 0 to 500 kPa 0 to 2 MPa 0 to 5 MPa 0 to 10 MPa Withstand voltage 500 VAC <Twice that of the PSE560> Materials of Parts in Contact with Fluid Piping port C3604 + Nickel plating Pressure sensor Al2O3 (Alumina 96%) Square ring FKM NewNew 3-Screen Display Sensor Monitor PSE300AC Series Change the settings while checking the measured value. Visualization of Settings Set value (Threshold value) Main screen Measured value (Current pressure value) Hysteresis value Sub screen Delay time Label (Display item), Set value (Threshold value) Peak value Bottom value PSE57२/PSE300AC Series CAT.ES100-119A Pressure Sensor for General Fluids PSE57२ Series bPSE570/573/574 Materials of parts in bPSE575/576/577 Materials of parts in contact with fl uid contact with fl uid (1 MPa/100 kPa/500 kPa) (2 MPa/5 MPa/10 MPa) Pressure sensor PressurePre sensor O-ring Al2O3 Port size AlA 2O3 (Alumina 96%) FKM + Grease (Alumina 96%) R1/4 (with M5 female thread) Square ring FKM Port size Fitting R1/8, 1/4 Fitting C3604 + (with M5 female thread) C3604 + Nickel plating Nickel plating Series Variations Series Variations Proof Proof Model Rated pressure range pressure Model Rated pressure range pressure −100 kPa 0 100 kPa 500 kPa 1 MPa 2 MPa 5 MPa 10 MPa −100 kPa 0 100 kPa 500 kPa 1 MPa 2 MPa 5 MPa 10 MPa 3.0 5.0 PSE570 PSE575 1 MPa MPa 2 MPa MPa 600 12.5 PSE573 ± PSE576 100 kPa kPa 5 MPa MPa 10 MPa 1.5 30 PSE574
    [Show full text]
  • Charge Amplifier Type 5050B
    Electronics and Software Charge Amplifier Type 5050B... In-line TEDS Charge Amplifier Module A signal processing device that converts the charge signal from a high impedance piezoelectric sensor into a voltage signal at a low impedance level. Used with high impedance acceleration sensors for performing dynamic measurements in a wide variety of applications. • Two-wire, single-ended device • Rugged, stainless steel case • Wide frequency response • Five gain versions • ä conforming • IEPE compatibility • TEDS option available 2.79 Description 0.17 0.47 The 5050B... in-line TEDS charge amplifier series contains ø0.625 miniature charge amplifiers that convert the charge signal from a stand-alone high impedance piezoelectric sensor into a high level voltage signal at a low impedance output. This two-wire, single-ended device is in five fixed gain settings 0.1, 0.5, 1, 10, and 25 mV/pC with a frequency response of KIAG 10-32 neg. Connector BNC neg. Connector 0.5 Hz ... 50 kHz. Type 5050B... T-version includes a TEDS (sensor input) (output) (Transducer Electronic Data Sheet) chip for storage and retrieval of information. The charge converters can be powered by several Kistler Piezotron power supply couplers or any industry standard IEPE (Integrated Electronic Piezo-Electric) compatible power source. Installation Application Typically, the sensor is placed in a high temperature environment The combination of Type 5050B... in-line TEDS charge amplifier and the charge converter is located some distance away at a and power supply/coupler is a less expensive alternative to location within its operating temperature range. laboratory style charge amplifiers. The charge amplifier is inserted in the signal line between a high impedance sensor and follow- High temperature cable such as the Type 1635Csp is used to on signal conditioning.
    [Show full text]
  • Industrial Vibration Accelerometer Performance Considerations: Shear Versus Compression Designs
    Industrial Vibration Accelerometer Performance Considerations: Shear versus Compression Designs By: David A. Corelli Category IV Vibration Analyst Director of Application Engineering IMI Sensors Molly Bakewell Global PR, Advertising & Image Manager PCB Piezotronics, Inc. www.pcb.com The implementation of industrial vibration monitoring sensors and associated signal conditioning as an integral part of industrial predictive maintenance programs has proven for many maintenance and plant engineers to be an effective strategy for reducing downtime and improving overall machinery health. Vibration monitoring technology is widely used because of its ability to detect and diagnose a wide variety of machinery faults, such as bearing faults, gear problems, misalignment, looseness, mass imbalance, and others, on a wide variety of rotating machinery, and its relative ease of integration with portable data collectors, online vibration monitoring systems, PLC’s, qne SCADA and Plant Information (PI) systems. For the proper implementation of sensors into a vibration monitoring program, one must first understand the differences in the two most common designs of industrial piezoelectric sensors, as well as various considerations in selection and mounting. A piezoelectric accelerometer produces a measurable electrical signal when an inertial mass stresses, or applies a force to, its integral crystal sensing element. The two main types of piezoelectric sensor designs most typically used for industrial vibration monitoring applications are shear and compression, which define the actual mode, or crystal axis, in which an inertial mass stresses the piezoelectric crystal. While both types operate in a similar fashion, one of these designs provides much more reliable and repeatable performance when acted upon by certain external influences within the demanding industrial application environment.
    [Show full text]
  • Seminar Manual Pressure Sensors
    R R ! ! "" # ! $ ! ! " " # R ! " # $% % & #' ( '(& "! ) '('*# '(%+#! '( '((,- " # '. '(./ 0 '1 '(12 %% ) # *+, - % * !, , * % ! %1 %'2 %1 %%!! % %% , ( %' %) %''3 ! % %'%! (4 %'( ( %'.5# " (' %'16 (( . ## %%6 ! (( %%'& " (. #. / , #& %(5 ( %('$ () %, & % R * * #$% * #$ * (6 1 ('6 7 11 (% 7# 1 (( 1 #" '01- & (' # ('' % ('%+# 1 # " % &( (% # ) (%' " (%%+# )4 (%( "! ) (%.2 )' (%15 )% ##!, , ( (( # ). (('6 )1 ((%, #2 3 #*4 %% 3 (16 % (1' # % (1%8 9 ( $ 3* 5 6 & ( R : ! ! 3 ! " # !"" "!"" # , # # ! 2 " " # Absolute pressure vacuum closed vessel 3 ;8 3 !!2 !"" " !! !# !! '% Level measurement open vessel 3 ';< 3 ' ! " ! 2 ! " ! '(' : ! . R Level measurement closed vessel 3 %;< ' 3 % ! " ! ! 2 !"" " ! " " ! ! ,9 . Flow measurement 3 (;3 8 3 ( ! " " 2 !""" !" " ! '(. '1 2 " " # " !"" 3 ' "# " ! ! # "!"" '% # " 9 : ! 1 R +#! 2# 44!(44 # ! !" #! (2 # '. " + # 9 " ! "#! ! 3 .;,# 2# !#! !/#! !! !" " !! 3 1 ! " 2 ! ! ! 8 == ! ! " : ! R Accumulator charged at Accumulator discharged at max. operating
    [Show full text]
  • Common-Notes Pressure-Sensor.Pdf
    ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ Products or specifications on the catalog are 〈Warranty Coverage〉 subject to be changed without notice. Please If any malfunctions should occur due to our inquire our sales agents for our latest fault, NIDEC COPAL ELECTRONICS warrants specifications. We require an acknowl edgment any part of our product within one year from the of specification documents for product use date of delivery by repair or replacement at beyond our specifications, and conditions free of charge. However, warranty is not appli- needing high reliability, such as nuclear reactor cable if the causes of defect should result control, railroads, aviation, automobile, from the following con ditions: combustion, medical, amusement, • Failure or damages caused by inappropriate Disaster prevention equipment and etc. use, inappropriate conditions, and Furthermore, we ask you to perform a swift inappropriate handling. incoming inspection for delivered products and • Failure or dam ages caused by inappropriate we wouldalso appreciate if full attention is given mod i fi cations, adjustment, or repair. to the storage conditions of the product. • Failure or damage caused by technically and sci en tif i cally unpredictable factors. 〈Warranty Period〉 • Failure or damage caused by natural disaster, The Warranty period is one year from the date fire or unavoid able factors. of delivery. The warranty is only applicable to the product itself, not applic a ble to con sumable products such as batteries and etc. PRESSURE SENSORS OUTLINE A pressure sensor is a device that converts fluid ■ PRODUCT LINE-UP pressure into an electrical signal. NIDEC COPAL a) Diffusion type semi-conductor pressure sensors ··· ELECTRONICS pressure sensors are man u fac- P series tured from the semiconductor pressure sensing A basic pressure sensing device which converts chips to a variety of pressure sensor products at its pressure into an electrical signal.
    [Show full text]
  • Development of a High Temperature Silicon Carbide Capacitive Pressure Sensor System Based on a Clapp
    DEVELOPMENT OF A HIGH TEMPERATURE SILICON CARBIDE CAPACITIVE PRESSURE SENSOR SYSTEM BASED ON A CLAPP- TYPE OSCILLATOR CIRCUIT By MAXIMILIAN C. SCARDELLETTI Submitted in partial fulfilment for the degree of Doctor of Philosophy Department of Electrical Engineering and Computer Science CASE WESTERN RESERVE UNIVERSITY August 2016 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of Maximilian C. Scardelletti candidate for the degree of Doctor of Philosophy Committee Chair Christian A. Zorman Committee Member Francis L. Merat Committee Member Philip X. L. Feng Committee Member Xiong (Bill) Yu Date of Defense May 3rd, 2016 *We also certify that written approval has been obtained for any proprietary material contained therein. 2 Table of Contents List of Figures…………………………………………………………………….….........8 List of Tables………………………………………………………………………….…18 Acknowledgements……………………………………………………………….……...19 Abstract…………………..………………………………………………………………20 Chapter 1: Introduction…………………………………………………………….........22 1.1: Technical Rational.........................................................................................22 1.2: Areas of Potential Impact..............................................................................24 1.2.1: Oil and Gas Extraction Applications..............................................24 1.2.2: Automotive Applications................................................................24 1.2.3: Aerospace Applications..................................................................25 1.3:
    [Show full text]
  • Velocity Measurements Using a Piezoelectric Plate As a Sensor
    University of Texas at El Paso ScholarWorks@UTEP Open Access Theses & Dissertations 2020-01-01 Velocity Measurements Using A Piezoelectric Plate As A Sensor Paul Perez University of Texas at El Paso Follow this and additional works at: https://scholarworks.utep.edu/open_etd Part of the Mechanical Engineering Commons Recommended Citation Perez, Paul, "Velocity Measurements Using A Piezoelectric Plate As A Sensor" (2020). Open Access Theses & Dissertations. 3020. https://scholarworks.utep.edu/open_etd/3020 This is brought to you for free and open access by ScholarWorks@UTEP. It has been accepted for inclusion in Open Access Theses & Dissertations by an authorized administrator of ScholarWorks@UTEP. For more information, please contact [email protected]. VELOCITY MEASUREMENTS USING A PIEZOELECTRIC PLATE AS A SENSOR PAUL ALFREDO PEREZ ITURRALDE Master’s Program in Mechanical Engineering APPROVED: Norman Love, Ph.D., Chair Yirong Lin, Ph.D. Tzu-Liang (Bill) Tseng, Ph.D. Stephen L. Crites, Jr., Ph.D. Dean of the Graduate School Copyright © by Paul Alfredo Perez Iturralde 2020 Dedication I dedicated this work to my parents and siblings because they are the main foundation of my values, they laid my foundations of responsibility and desires for professional improvement. EXPERIMENTAL SET UP FOR THE TESTING OF A PIEZOELECTRIC MASS FLOW RATE SENSOR by PAUL ALFREDO PEREZ ITURRALDE THESIS Presented to the Faculty of the Graduate School of The University of Texas at El Paso in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Department of Mechanical Engineering THE UNIVERSITY OF TEXAS AT EL PASO May 2020 Acknowledgements This thesis has been funded by National Energy Technology Laboratory (NETL).
    [Show full text]
  • Powerful Instruments for Process Pressure, Differential Pressure, Level and Flow Pressure 2 Pressure Measurement
    Products Solutions Services Pressure measurement Powerful instruments for process pressure, differential pressure, level and flow Pressure 2 Pressure measurement Endress+Hauser – Your partner Endress+Hauser is a global leader in measurement instrumentation, services and solutions for industrial process engineering With dedicated sales centers and a strong network of partners, Endress+Hauser guarantees competent worldwide Competence center for pressure measurement support. Our production centers in twelve countries meet Endress+Hauser Maulburg is one of the leading your needs and requirements quickly and effectively. The producers of level and pressure instrumentation. The Group is managed and coordinated by a holding company in company employs more than 2,000 associates Reinach, Switzerland. As a successful family-owned world-wide. Headquartered in Maulburg, near to the business, Endress+Hauser is set to remain independent and French and Swiss border, Endress+Hauser has also self-reliant. sites in Kassel and Stahnsdorf. Associated Product Centers in Greenwood (USA), Suzhou (China), Endress+Hauser provides sensors, instruments, systems Yamanashi (Japan), Aurangabad (India) and Itatiba and services for level, flow, pressure and temperature (Brazil) are responsible for customized final assembly measurement as well as analytics and data acquisition. and calibration of measuring instruments. The company supports you with automation engineering, logistics and IT services and solutions. Our products set standards in quality and technology. We work closely with the chemical, petrochemical, food and beverage, oil and gas, water and wastewater, power and energy, life science, primary and metal, renewable energy, pulp and paper and shipbuilding industries. Endress+Hauser helps customers to optimize their processes in terms of reliability, safety, economic efficiency and environmental impact.
    [Show full text]
  • Design of a Piezoelectric Accelerometer with High Sensitivity and Low Transverse Effect
    sensors Article Design of a Piezoelectric Accelerometer with High Sensitivity and Low Transverse Effect Bian Tian, Hanyue Liu *, Ning Yang, Yulong Zhao and Zhuangde Jiang State Key Laboratory for Mechanical Manufacturing Systems Egineering, Xi’an Jiaotong University, Xi’an 710049, China; [email protected] (B.T.); [email protected] (N.Y.); [email protected] (Y.Z.); [email protected] (Z.J.) * Correspondence: [email protected]; Tel.: +86-29-8339-5171 Academic Editor: Jörg F. Wagner Received: 19 July 2016; Accepted: 21 September 2016; Published: 26 September 2016 Abstract: In order to meet the requirements of cable fault detection, a new structure of piezoelectric accelerometer was designed and analyzed in detail. The structure was composed of a seismic mass, two sensitive beams, and two added beams. Then, simulations including the maximum stress, natural frequency, and output voltage were carried out. Moreover, comparisons with traditional structures of piezoelectric accelerometer were made. To verify which vibration mode is the dominant one on the acceleration and the space between the mass and glass, mode analysis and deflection analysis were carried out. Fabricated on an n-type single crystal silicon wafer, the sensor chips were wire-bonged to printed circuit boards (PCBs) and simply packaged for experiments. Finally, a vibration test was conducted. The results show that the proposed piezoelectric accelerometer has high sensitivity, low resonance frequency, and low transverse effect. Keywords: piezoelectric accelerometer; high sensitivity; low resonance frequency; low transverse effect 1. Introduction With the development of urbanization, cables have gradually been replacing overhead lines due to their merits of being a reliable power supply, having a simple operation, and being a less occupying area.
    [Show full text]