Information and Computation: Classical and Quantum Aspects

Total Page:16

File Type:pdf, Size:1020Kb

Information and Computation: Classical and Quantum Aspects Information and Computation: Classical and Quantum Aspects A. Galindo† and M.A. Mart´ın-Delgado‡ Departamento de F´ısica T´eorica I. Facultad de Ciencias F´ısicas. Universidad Complutense. 28040 Madrid. Spain. Quantum theory has found a new field of applications in the realm of information and computation during the recent years. This paper reviews how quantum physics allows information coding in classically unexpected and subtle nonlocal ways, as well as information processing with an efficiency largely surpassing that of the present and foreseeable classical computers. Some outstanding aspects of classical and quantum information theory will be addressed here. Quantum teleportation, dense coding, and quantum cryptography are discussed as a few samples of the impact of quanta in the transmission of information. Quantum logic gates and quantum algorithms are also discussed as instances of the improvement in information processing by a quantum computer. We provide finally some examples of current experimental realizations for quantum computers and future prospects. PACS numbers: 03.67.-a, 03.67.Lx CONTENTS A.The Ion-Trap QC 57 B.NMR Liquids: Quantum Ensemble Computation 61 I.Introduction 1 C.Solid-State Quantum Computers 66 II.Classical Information 2 XII.Conclusions 71 A.The Theorems of Shannon 2 Acknowledgments 71 B.Classical Error Correction 4 List of Symbols and Acronyms 71 III.Quantum Information 6 Appendix: Computational Complexity 72 A.Entanglement and Information 8 A.Classical Complexity Classes 72 B.Quantum Coding and Schumacher’s Theorem 10 B.Quantum Complexity Classes 74 C.Capacities of a Quantum Channel 10 References 74 D.Quantum Error Correction 11 E.Entanglement Distillation 13 IV.Quantum Teleportation 14 I. INTRODUCTION V.Dense Coding 16 VI.Cryptography 17 A.Classical Cryptography 17 The twentieth century we have just left behind opened B.Quantum Cryptography 20 with the discovery of quanta by Planck (1900) and fol- C.Practical Implementation of QKD 22 lowed with the formulation of the quantum theory during VII.Quantum Computation 23 the first decades. As the century went by, we have wit- VIII.Classical Computers 23 A.The Turing Machine 23 nessed a continuous and growing increase in the number B.The von Neumann Machine 28 of applications of quantum mechanics, which began with C.Classical Parallelism 28 atomic physics and then the number kept growing (nu- D.Classical Logic Gates and Circuits 30 clearandparticlephysics,optics,condensedmatter,...) IX.Principles of Quantum Computation 32 and became countless. As the century was closing we A.The Quantum Turing Machine 33 B.Quantum Logic Gates 36 have come across an unexpected new field of applications C.Quantum Circuits 39 that have given quantum physics a refreshing twist, keep- X.Quantum Algorithms 44 ing the pace even with the newest trends of discoveries, A.Deutsch-Jozsa Algorithm 45 such as the field of new technologies of information and B.Simon Algorithm 46 computation. In a sense and having in mind the times we C.Grover Algorithm 47 D.Shor Algorithm 51 live, those of the information era and the new technolo- E.On the Classification of Algorithms 55 gies, it seems inevitable that physics gets affected by the XI.Experimental Proposals of Quantum Computers 56 presence of computers all over around, which are more and more powerful and have revolutionized many areas of science. What is more surprising is the fact that quan- tum physics may influence the field of information and †Electronic address: [email protected] computation in a new and profound way, getting at the ‡Electronic address: [email protected] very root of their foundations. For instance, fundamental aspects of quantum mechanics such as those entering the scribing the notion of a quantum Turing machine and its EPR (Einstein, Podolsky and Rosen, 1935) states have practical implementation with quantum circuits. We de- found unexpected applications in information transmis- scribe the notion of elementary quantum gates for univer- sion and cryptography. sal computation and how this extends the classical coun- But, why has this happened? It all begun by realizing terpart. We also provide a discussion of the basic quan- that information has physical nature (Landauer, 1991; tum algorithms and finally we give a general overview 1996; 1961). It is printed on a physical support (the of some of the possible physical realizations of quantum rocky wall of a cave, a clay tablet, a parchment, a sheet computers. of paper, a magneto-optic disk, etc.), it cannot be trans- Both in the information and computation parts we mitted faster than light in vacuum, and it abides by the make special emphasis in presenting first an introduc- natural laws. The statement that information is physical tion to the classical aspects of these disciplines in order does not simply mean that a computer is a physical ob- to better clarify what quantum theory adds to them in ject, but in addition that information itself is a physical the new formulations of these theories. Actually, this is entity. In turn, this implies that the laws of informa- also what we do in physics. tion are restricted or governed by the laws of physics. In particular, those of quantum physics. In fact these ones, through their linearity, entanglement of states, nonlocal- II. CLASSICAL INFORMATION ity and indetermination principle make possible new and powerful transmission tools and information treatments, Information is discretized: it comes in irreducible pack- as well as a really prodigious efficiency of computation. ages. The elementary unit of classical information is the A typical computation is implemented through an al- bit (or cbit, for classic bit), a classical system with only gorithm in a computer. This algorithm is now regarded twostates0and1(FalseandTrue,NoandYes,...). Any as a set of physical operations and the registers of the text can be coded into a string of bits: for instance, it quantum computer are considered to be states of a quan- is enough to assign to each symbol its ASCII code num- tum system. Moreover, the familiar operation of initial- ber in binary form, appended with a parity check bit. izing the data for a program to run is replaced by the Example: quanta can be coded as preparation of an initial quantum state, and the usual tasks of writing programs and running them correspond, 11100010 11101011 11000011 11011101 11101000 11000011 in the new formulation, to finding appropriate Hamilto- Each bit can be stored physically; in classical comput- nians for their time evolution operators to lead to the ers, each bit is registered as a charge state of a capacitor desired output. This output is retrieved by a quantum (0 = discharged, 1 = charged). They are distinguishable measurement of the register, and this fact has deep im- macroscopic states, and robust enough or stable. They plications on the way quantum information must be han- are not spoiled when they are read in (if carefully done) dled. and they can be cloned or replicated without any prob- We shall see that information and computation blend lem. well with quantum mechanics. Their combination brings Information is not only stored; it is usually transmit- unexpected results on the way information can be trans- ted (communication), and sometimes processed (compu- mitted and processed, extending the capabilities known tation). so far in the field of classical information to unsuspected limits, sometimes entering the realm of science-fiction, sometimes surpassing it. A. The Theorems of Shannon The advance has been remarkable mainly in the field of cryptography, where it has provided systems absolutely The classical theory of information is due to Shannon secure for the quantum distribution of keys. Quantum (1948,1949), who in two seminal works definitively laid computation is also one of the hot research fields in cur- down its principles in 1948. With his celebrated noise- rent physics; the same applies to the challenge posed less coding theorem he showed how much compressible a by the experimental realization of a computer complex message can be, or equivalently, how much redundancy enough to implement the new algorithms that exploit it has. Likewise with his coding theorem in a noisy chan- the fantastic possibilities of the massive parallelism char- nel he also found what is the minimum redundancy that acterizing those quantum computers, and that would must be present into a message in order to be compre- amount to a dramatic improvement for solving hard or hensible when reaching the receiver, despite of the noise. classically untractable problems. Let A := a1, ..., a A be a finite alphabet, endowed We first review the essentials of quantum information { | |} with a probability distribution pA : ai pA(ai), with theory and then discuss several of their consequences and p (a ) = 1. Sometimes we shall7→ be write this applications, some of them specifically quantum such as 1 i A A i ≤ ≤| | A quantum teleportation, dense coding; some of them with Pas A := ai,pA(ai) i|=1| . Let us consider messages or { } n a classical echo such as quantum cryptography. Next character strings x1x2...xn A , originating from a ∈ we review the fundamentals of quantum computation de- memoryless source, i.e., a symbol a appears in a given place with probability pA(a), independently of the sym- Let X be the alphabet of the transmitter station (of bols entering the remaining sites in the chain.1 The first a memoryless source), and Y be the one of the receiver Shannon’s theorem asserts that, if n 1, the informa- station. Let (pY X (yj xi)) be the stochastic matrix for tion supplied by a generic message ofn characters (and that channel, with| entries| given by the probabilities that thus (n log2 A )-bits long) essentially coincides with that the input symbol xi X appears as yi Y on out- transmitted| by| another shorter message, of bit length put.
Recommended publications
  • Quantum Computer: Quantum Model and Reality
    Quantum Computer: Quantum Model and Reality Vasil Penchev, [email protected] Bulgarian Academy of Sciences: Institute of Philosophy and Sociology: Dept. of Logical Systems and Models Abstract. Any computer can create a model of reality. The hypothesis that quantum computer can generate such a model designated as quantum, which coincides with the modeled reality, is discussed. Its reasons are the theorems about the absence of “hidden variables” in quantum mechanics. The quantum modeling requires the axiom of choice. The following conclusions are deduced from the hypothesis. A quantum model unlike a classical model can coincide with reality. Reality can be interpreted as a quantum computer. The physical processes represent computations of the quantum computer. Quantum information is the real fundament of the world. The conception of quantum computer unifies physics and mathematics and thus the material and the ideal world. Quantum computer is a non-Turing machine in principle. Any quantum computing can be interpreted as an infinite classical computational process of a Turing machine. Quantum computer introduces the notion of “actually infinite computational process”. The discussed hypothesis is consistent with all quantum mechanics. The conclusions address a form of neo-Pythagoreanism: Unifying the mathematical and physical, quantum computer is situated in an intermediate domain of their mutual transformations. Key words: model, quantum computer, reality, Turing machine Eight questions: There are a few most essential questions about the philosophical interpretation of quantum computer. They refer to the fundamental problems in ontology and epistemology rather than philosophy of science or that of information and computation only. The contemporary development of quantum mechanics and the theory of quantum information generate them.
    [Show full text]
  • Restricted Versions of the Two-Local Hamiltonian Problem
    The Pennsylvania State University The Graduate School Eberly College of Science RESTRICTED VERSIONS OF THE TWO-LOCAL HAMILTONIAN PROBLEM A Dissertation in Physics by Sandeep Narayanaswami c 2013 Sandeep Narayanaswami Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2013 The dissertation of Sandeep Narayanaswami was reviewed and approved* by the following: Sean Hallgren Associate Professor of Computer Science and Engineering Dissertation Adviser, Co-Chair of Committee Nitin Samarth Professor of Physics Head of the Department of Physics Co-Chair of Committee David S Weiss Professor of Physics Jason Morton Assistant Professor of Mathematics *Signatures are on file in the Graduate School. Abstract The Hamiltonian of a physical system is its energy operator and determines its dynamics. Un- derstanding the properties of the ground state is crucial to understanding the system. The Local Hamiltonian problem, being an extension of the classical Satisfiability problem, is thus a very well-motivated and natural problem, from both physics and computer science perspectives. In this dissertation, we seek to understand special cases of the Local Hamiltonian problem in terms of algorithms and computational complexity. iii Contents List of Tables vii List of Tables vii Acknowledgments ix 1 Introduction 1 2 Background 6 2.1 Classical Complexity . .6 2.2 Quantum Computation . .9 2.3 Generalizations of SAT . 11 2.3.1 The Ising model . 13 2.3.2 QMA-complete Local Hamiltonians . 13 2.3.3 Projection Hamiltonians, or Quantum k-SAT . 14 2.3.4 Commuting Local Hamiltonians . 14 2.3.5 Other special cases . 15 2.3.6 Approximation Algorithms and Heuristics .
    [Show full text]
  • STRONGLY UNIVERSAL QUANTUM TURING MACHINES and INVARIANCE of KOLMOGOROV COMPLEXITY (AUGUST 11, 2007) 2 Such That the Aforementioned Halting Conditions Are Satisfied
    STRONGLY UNIVERSAL QUANTUM TURING MACHINES AND INVARIANCE OF KOLMOGOROV COMPLEXITY (AUGUST 11, 2007) 1 Strongly Universal Quantum Turing Machines and Invariance of Kolmogorov Complexity Markus M¨uller Abstract—We show that there exists a universal quantum Tur- For a compact presentation of the results by Bernstein ing machine (UQTM) that can simulate every other QTM until and Vazirani, see the book by Gruska [4]. Additional rele- the other QTM has halted and then halt itself with probability one. vant literature includes Ozawa and Nishimura [5], who gave This extends work by Bernstein and Vazirani who have shown that there is a UQTM that can simulate every other QTM for necessary and sufficient conditions that a QTM’s transition an arbitrary, but preassigned number of time steps. function results in unitary time evolution. Benioff [6] has As a corollary to this result, we give a rigorous proof that worked out a slightly different definition which is based on quantum Kolmogorov complexity as defined by Berthiaume et a local Hamiltonian instead of a local transition amplitude. al. is invariant, i.e. depends on the choice of the UQTM only up to an additive constant. Our proof is based on a new mathematical framework for A. Quantum Turing Machines and their Halting Conditions QTMs, including a thorough analysis of their halting behaviour. Our discussion will rely on the definition by Bernstein and We introduce the notion of mutually orthogonal halting spaces and show that the information encoded in an input qubit string Vazirani. We describe their model in detail in Subsection II-B.
    [Show full text]
  • On the Simulation of Quantum Turing Machines
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Theoretical Computer Science 304 (2003) 103–128 www.elsevier.com/locate/tcs On the simulation ofquantum turing machines Marco Carpentieri Universita di Salerno, 84081 Baronissi (SA), Italy Received 20 March 2002; received in revised form 11 December 2002; accepted 12 December 2002 Communicated by G. Ausiello Abstract In this article we shall review several basic deÿnitions and results regarding quantum compu- tation. In particular, after deÿning Quantum Turing Machines and networks the paper contains an exposition on continued fractions and on errors in quantum networks. The topic of simulation ofQuantum Turing Machines by means ofobvious computation is introduced. We give a full discussion ofthe simulation ofmultitape Quantum Turing Machines in a slight generalization of the class introduced by Bernstein and Vazirani. As main result we show that the Fisher-Pippenger technique can be used to give an O(tlogt) simulation ofa multi-tape Quantum Turing Machine by another belonging to the extended Bernstein and Vazirani class. This result, even ifregarding a slightly restricted class ofQuantum Turing Machines improves the simulation results currently known in the literature. c 2003 Published by Elsevier B.V. 1. Introduction Even ifthe present technology does consent realizing only very simple devices based on the principles ofquantum mechanics, many authors considered to be worth it ask- ing whether a theoretical model ofquantum computation could o:er any substantial beneÿts over the correspondent theoretical model based on the assumptions ofclas- sical physics. Recently, this question has received considerable attention because of the growing beliefthat quantum mechanical processes might be able to performcom- putation that traditional computing machines can only perform ine;ciently.
    [Show full text]
  • A Quantum Computer Foundation for the Standard Model and Superstring Theories*
    A Quantum Computer Foundation for the Standard Model and SuperString Theories* By Stephen Blaha** * Excerpted from the book Cosmos and Consciousness by Stephen Blaha (1stBooks Library, Bloomington, IN, 2000) available from amazon.com and bn.com. ** Associate of the Harvard University Physics Department. ABSTRACT 1. SuperString Theory can naturally be based on a Quantum Computer foundation. This provides a totally new view of SuperString Theory. 2. The Standard Model of elementary particles can be viewed as defining a Quantum Computer Grammar and language. 3. A Quantum Computer can be represented in part as a second-quantized Fermi field. 4. A Quantum Computer in a certain limit naturally forms a Superspace upon which Supersymmetry rotations can be defined – a Continuum Quantum Computer. 5. A representation of Quantum Computers exists that is similar to Turing Machines - a Quantum Turing Machine. As part of this development we define various types of Quantum Grammars. 6. High level Quantum Computer languages are described for the first time. New linguistic views of the most fundamental theories of Physics, the Standard Model and SuperString Theory are described. In these new linguistic representations particles become literally symbols or letters, and particle interactions become grammar rules. This view is NOT the same as the often-expressed view that Mathematics is the language of Physics. The linguistic representation is a specific new mathematical construct. We show how to create a SuperString Quantum Computer that naturally provides a framework for SuperStrings in general and heterotic SuperStrings in particular. There are also a number of new developments relating to Quantum Computers and Quantum Turing Machines that are of interest to Computer Science.
    [Show full text]
  • Quantum Computing : a Gentle Introduction / Eleanor Rieffel and Wolfgang Polak
    QUANTUM COMPUTING A Gentle Introduction Eleanor Rieffel and Wolfgang Polak The MIT Press Cambridge, Massachusetts London, England ©2011 Massachusetts Institute of Technology All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher. For information about special quantity discounts, please email [email protected] This book was set in Syntax and Times Roman by Westchester Book Group. Printed and bound in the United States of America. Library of Congress Cataloging-in-Publication Data Rieffel, Eleanor, 1965– Quantum computing : a gentle introduction / Eleanor Rieffel and Wolfgang Polak. p. cm.—(Scientific and engineering computation) Includes bibliographical references and index. ISBN 978-0-262-01506-6 (hardcover : alk. paper) 1. Quantum computers. 2. Quantum theory. I. Polak, Wolfgang, 1950– II. Title. QA76.889.R54 2011 004.1—dc22 2010022682 10987654321 Contents Preface xi 1 Introduction 1 I QUANTUM BUILDING BLOCKS 7 2 Single-Qubit Quantum Systems 9 2.1 The Quantum Mechanics of Photon Polarization 9 2.1.1 A Simple Experiment 10 2.1.2 A Quantum Explanation 11 2.2 Single Quantum Bits 13 2.3 Single-Qubit Measurement 16 2.4 A Quantum Key Distribution Protocol 18 2.5 The State Space of a Single-Qubit System 21 2.5.1 Relative Phases versus Global Phases 21 2.5.2 Geometric Views of the State Space of a Single Qubit 23 2.5.3 Comments on General Quantum State Spaces
    [Show full text]
  • Computational Power of Observed Quantum Turing Machines
    Computational Power of Observed Quantum Turing Machines Simon Perdrix PPS, Universit´eParis Diderot & LFCS, University of Edinburgh New Worlds of Computation, January 2009 Quantum Computing Basics State space in a classical world of computation: countable A. inaquantumworld: Hilbertspace CA ket map . : A CA | i → s.t. x , x A is an orthonormal basis of CA {| i ∈ } Arbitrary states Φ = αx x | i x A X∈ 2 s.t. x A αx =1 ∈ | | P Quantum Computing Basics bra map . : A L(CA, C) h | → s.t. x, y A, ∀ ∈ 1 if x = y y x = “ Kronecker ” h | | i (0 otherwise v,t A, v t : CA CA: ∀ ∈ | ih | → v if t = x ( v t ) x = v ( t x )= | i “ v t t v ” | ih | | i | i h | | i (0 otherwise | ih |≈ 7→ Evolution of isolated systems: Linear map U L(CA, CA) ∈ U = ux,y y x | ih | x,y A X∈ which is an isometry (U †U = I). Observation Let Φ = αx x | i x A X∈ (Full) measurement in standard basis: 2 The probability to observe a A is αa . ∈ | | If a A is observed, the state becomes Φa = a . ∈ | i Partial measurement in standard basis: Let K = Kλ, λ Λ be a partition of A. { ∈ } 2 The probability to observe λ Λ is pλ = a Kλ αa ∈ ∈ | | If λ Λ is observed, the state becomes P ∈ 1 1 Φλ = PλΦ = αa a √pλ √pλ | i a Kλ X∈ where Pλ = a Kλ a a . ∈ | ih | P Observation Let Φ = αx x | i x A X∈ (Full) measurement in standard basis: 2 The probability to observe a A is αa .
    [Show full text]
  • Quantum Computational Complexity Theory Is to Un- Derstand the Implications of Quantum Physics to Computational Complexity Theory
    Quantum Computational Complexity John Watrous Institute for Quantum Computing and School of Computer Science University of Waterloo, Waterloo, Ontario, Canada. Article outline I. Definition of the subject and its importance II. Introduction III. The quantum circuit model IV. Polynomial-time quantum computations V. Quantum proofs VI. Quantum interactive proof systems VII. Other selected notions in quantum complexity VIII. Future directions IX. References Glossary Quantum circuit. A quantum circuit is an acyclic network of quantum gates connected by wires: the gates represent quantum operations and the wires represent the qubits on which these operations are performed. The quantum circuit model is the most commonly studied model of quantum computation. Quantum complexity class. A quantum complexity class is a collection of computational problems that are solvable by a cho- sen quantum computational model that obeys certain resource constraints. For example, BQP is the quantum complexity class of all decision problems that can be solved in polynomial time by a arXiv:0804.3401v1 [quant-ph] 21 Apr 2008 quantum computer. Quantum proof. A quantum proof is a quantum state that plays the role of a witness or certificate to a quan- tum computer that runs a verification procedure. The quantum complexity class QMA is defined by this notion: it includes all decision problems whose yes-instances are efficiently verifiable by means of quantum proofs. Quantum interactive proof system. A quantum interactive proof system is an interaction between a verifier and one or more provers, involving the processing and exchange of quantum information, whereby the provers attempt to convince the verifier of the answer to some computational problem.
    [Show full text]
  • Models of Quantum Computation and Quantum Programming Languages
    Models of quantum computation and quantum programming languages Jaros law Adam MISZCZAK Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Ba ltycka 5, 44-100 Gliwice, Poland The goal of the presented paper is to provide an introduction to the basic computational mod- els used in quantum information theory. We review various models of quantum Turing machine, quantum circuits and quantum random access machine (QRAM) along with their classical counter- parts. We also provide an introduction to quantum programming languages, which are developed using the QRAM model. We review the syntax of several existing quantum programming languages and discuss their features and limitations. I. INTRODUCTION of existing models of quantum computation is biased towards the models interesting for the development of Computational process must be studied using the fixed quantum programming languages. Thus we neglect some model of computational device. This paper introduces models which are not directly related to this area (e.g. the basic models of computation used in quantum in- quantum automata or topological quantum computa- formation theory. We show how these models are defined tion). by extending classical models. We start by introducing some basic facts about clas- A. Quantum information theory sical and quantum Turing machines. These models help to understand how useful quantum computing can be. It can be also used to discuss the difference between Quantum information theory is a new, fascinating field quantum and classical computation. For the sake of com- of research which aims to use quantum mechanical de- pleteness we also give a brief introduction to the main res- scription of the system to perform computational tasks.
    [Show full text]
  • Or Printers' Test Notes
    Printers’ Test Notes – A Primer Or Everything You Wanted to Know About Printers’ Test Notes, But Were Afraid to Ask. Now that The Catalog of Test Notes has been split into two catalogs, one for ATM and related test notes and one for Printer related test notes, I have better means to offer a look at the test notes more familiar to bank note collectors. Printers’ test note are also called advertising, promotional, house, trial, demonstration, and color samples., ATM test notes are often colorful, but notes produced by firms involved in bank note production offer much more sophisticated specimens – showing off their latest security and durability innovations. The avid collector of high tech bank notes will find the most up-to-date notes, actually prototypes of future notes present in a test note collection. So here is a group of questions of which the answers give the collector a good start to a new collecting interest. What different types of firms produce test notes? As Sev Onyshkevych wrote in the IBNS forum, “The "printers" category also includes the entire food chain.” This means any firm contributing to a bank note being produced can also produce a test note. The types of firms which are attributed with test notes so far are: engravers, printers, paper and polymer producers, banknote designers, security ink providers, central banks, security foiling suppliers and substrate providers. Currency counters, sorters, verification machines, dispensers, and legitimate training notes providers also make test notes which make up the inventory in The Catalog of ATM Test Notes. Which firm has produced the most different test notes in the printers catalog? There are four firms with 60 or more different test notes, not including their sub varieties.
    [Show full text]
  • Advanced Track & Trace
    Advanced Track & ATT- Trace 101aD Advanced Track & Trace provides authentication solutions embedded in bank notes through printing or directly in the materials. Patented systems developed with the Bank of France include SealNote®, Sealgn@ture® and SealTaglio®. 99 avenue de la Châtaigneraie 92504 Rueil Malmaison France 1 Test note attributed Aestron Security ASD- Design 101D An acquired security consultancy of Joh. Enschedé Zeverijinstraat 12, 1216 GK Hilversum, The Netherlands 1 Test note attributed American Banknote ABNC- Company 192NC Produced food coupons, postage stamps, stock and bond certificates, travelers’ checks, foreign currency, passports, bank checks, and commercial documents. Filed Chapter 11 in 1999; spun off American Bank Note Holographics unit in 1998. This unit sold to JDSU in 2008. 560 Sylvan Ave. Englewood Cliffs, NJ 07632 140 Test note attributed James M. Anderson & AND- Son 101NC Engraving firm active in the mid- 1800’s. Produced shares for The Baltimore & Havana Steamship Company. 148 Baltimore Street, Baltimore, Maryland 1 Test note attributed Applegarth and AC- Cowper 111aNC Inventors of the horizontal steam powered syndical press, submitted notes for 20,000 pound prize for forge-proof banknote to the Bank of England. Auction.net, the English auction house has three different varieties of Applegarth and Cowpar trial notes at auction. They estimate the year of issue as about 1818. Spink estimates the same note as 1821. “The Bank of England Note: A History of Its Printing” by A. D. Mackenzie estimates the year of issue as 1819, noting the Court of Directors of the Bank of England approved their design on February 4, 1819.
    [Show full text]
  • China's Gifts to the West
    CHINA'S GIFTS TO THE WEST Prepared by Professor Derk Bodde for the Committee on Asiatic Studies in American Education Reprinted with permission in China: A Teaching Workbook, Asia for Educators, Columbia University Introduction An exercise identifying Chinese inventions that we use and enjoy in daily life provides an excellent starting point for discussing both the achievements of the Chinese civilization and China's influence on the West. The article China 's Gifts to the West describes China's inventions of silk, tea, porcelain ("china"), paper, printing, gunpowder, the mariner's compass, medicines, lacquer, games (including cards, dominoes, and kites), and miscellaneous items such as umbrellas, as well as natural resources, such as plants (including peaches, apricots, and citrus fruits) and minerals (including coal and zinc), first discovered and cultivated by the Chinese. Lesson Ideas: For homework, have the students look up several items on the above list in an encyclopedia to see if they can identify their origin. Then use the article China's Gift to the West to enrich the story of how each invention was brought to the West. A second approach might be to assign individual students one invention to read about in China's Gift to the West and report to the class. A separate chapter is devoted to each of the items/inventions in the list above. Foreward In 1940 almost 10,000 new books were printed in the United States. Millions of copies of the 13,000 newspapers in the country were distributed. All of this was possible because we know how to make paper and to print with movable type — inventions which occurred in China.
    [Show full text]