Information and Computation: Classical and Quantum Aspects
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Quantum Computer: Quantum Model and Reality
Quantum Computer: Quantum Model and Reality Vasil Penchev, [email protected] Bulgarian Academy of Sciences: Institute of Philosophy and Sociology: Dept. of Logical Systems and Models Abstract. Any computer can create a model of reality. The hypothesis that quantum computer can generate such a model designated as quantum, which coincides with the modeled reality, is discussed. Its reasons are the theorems about the absence of “hidden variables” in quantum mechanics. The quantum modeling requires the axiom of choice. The following conclusions are deduced from the hypothesis. A quantum model unlike a classical model can coincide with reality. Reality can be interpreted as a quantum computer. The physical processes represent computations of the quantum computer. Quantum information is the real fundament of the world. The conception of quantum computer unifies physics and mathematics and thus the material and the ideal world. Quantum computer is a non-Turing machine in principle. Any quantum computing can be interpreted as an infinite classical computational process of a Turing machine. Quantum computer introduces the notion of “actually infinite computational process”. The discussed hypothesis is consistent with all quantum mechanics. The conclusions address a form of neo-Pythagoreanism: Unifying the mathematical and physical, quantum computer is situated in an intermediate domain of their mutual transformations. Key words: model, quantum computer, reality, Turing machine Eight questions: There are a few most essential questions about the philosophical interpretation of quantum computer. They refer to the fundamental problems in ontology and epistemology rather than philosophy of science or that of information and computation only. The contemporary development of quantum mechanics and the theory of quantum information generate them. -
Restricted Versions of the Two-Local Hamiltonian Problem
The Pennsylvania State University The Graduate School Eberly College of Science RESTRICTED VERSIONS OF THE TWO-LOCAL HAMILTONIAN PROBLEM A Dissertation in Physics by Sandeep Narayanaswami c 2013 Sandeep Narayanaswami Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2013 The dissertation of Sandeep Narayanaswami was reviewed and approved* by the following: Sean Hallgren Associate Professor of Computer Science and Engineering Dissertation Adviser, Co-Chair of Committee Nitin Samarth Professor of Physics Head of the Department of Physics Co-Chair of Committee David S Weiss Professor of Physics Jason Morton Assistant Professor of Mathematics *Signatures are on file in the Graduate School. Abstract The Hamiltonian of a physical system is its energy operator and determines its dynamics. Un- derstanding the properties of the ground state is crucial to understanding the system. The Local Hamiltonian problem, being an extension of the classical Satisfiability problem, is thus a very well-motivated and natural problem, from both physics and computer science perspectives. In this dissertation, we seek to understand special cases of the Local Hamiltonian problem in terms of algorithms and computational complexity. iii Contents List of Tables vii List of Tables vii Acknowledgments ix 1 Introduction 1 2 Background 6 2.1 Classical Complexity . .6 2.2 Quantum Computation . .9 2.3 Generalizations of SAT . 11 2.3.1 The Ising model . 13 2.3.2 QMA-complete Local Hamiltonians . 13 2.3.3 Projection Hamiltonians, or Quantum k-SAT . 14 2.3.4 Commuting Local Hamiltonians . 14 2.3.5 Other special cases . 15 2.3.6 Approximation Algorithms and Heuristics . -
STRONGLY UNIVERSAL QUANTUM TURING MACHINES and INVARIANCE of KOLMOGOROV COMPLEXITY (AUGUST 11, 2007) 2 Such That the Aforementioned Halting Conditions Are Satisfied
STRONGLY UNIVERSAL QUANTUM TURING MACHINES AND INVARIANCE OF KOLMOGOROV COMPLEXITY (AUGUST 11, 2007) 1 Strongly Universal Quantum Turing Machines and Invariance of Kolmogorov Complexity Markus M¨uller Abstract—We show that there exists a universal quantum Tur- For a compact presentation of the results by Bernstein ing machine (UQTM) that can simulate every other QTM until and Vazirani, see the book by Gruska [4]. Additional rele- the other QTM has halted and then halt itself with probability one. vant literature includes Ozawa and Nishimura [5], who gave This extends work by Bernstein and Vazirani who have shown that there is a UQTM that can simulate every other QTM for necessary and sufficient conditions that a QTM’s transition an arbitrary, but preassigned number of time steps. function results in unitary time evolution. Benioff [6] has As a corollary to this result, we give a rigorous proof that worked out a slightly different definition which is based on quantum Kolmogorov complexity as defined by Berthiaume et a local Hamiltonian instead of a local transition amplitude. al. is invariant, i.e. depends on the choice of the UQTM only up to an additive constant. Our proof is based on a new mathematical framework for A. Quantum Turing Machines and their Halting Conditions QTMs, including a thorough analysis of their halting behaviour. Our discussion will rely on the definition by Bernstein and We introduce the notion of mutually orthogonal halting spaces and show that the information encoded in an input qubit string Vazirani. We describe their model in detail in Subsection II-B. -
On the Simulation of Quantum Turing Machines
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Theoretical Computer Science 304 (2003) 103–128 www.elsevier.com/locate/tcs On the simulation ofquantum turing machines Marco Carpentieri Universita di Salerno, 84081 Baronissi (SA), Italy Received 20 March 2002; received in revised form 11 December 2002; accepted 12 December 2002 Communicated by G. Ausiello Abstract In this article we shall review several basic deÿnitions and results regarding quantum compu- tation. In particular, after deÿning Quantum Turing Machines and networks the paper contains an exposition on continued fractions and on errors in quantum networks. The topic of simulation ofQuantum Turing Machines by means ofobvious computation is introduced. We give a full discussion ofthe simulation ofmultitape Quantum Turing Machines in a slight generalization of the class introduced by Bernstein and Vazirani. As main result we show that the Fisher-Pippenger technique can be used to give an O(tlogt) simulation ofa multi-tape Quantum Turing Machine by another belonging to the extended Bernstein and Vazirani class. This result, even ifregarding a slightly restricted class ofQuantum Turing Machines improves the simulation results currently known in the literature. c 2003 Published by Elsevier B.V. 1. Introduction Even ifthe present technology does consent realizing only very simple devices based on the principles ofquantum mechanics, many authors considered to be worth it ask- ing whether a theoretical model ofquantum computation could o:er any substantial beneÿts over the correspondent theoretical model based on the assumptions ofclas- sical physics. Recently, this question has received considerable attention because of the growing beliefthat quantum mechanical processes might be able to performcom- putation that traditional computing machines can only perform ine;ciently. -
A Quantum Computer Foundation for the Standard Model and Superstring Theories*
A Quantum Computer Foundation for the Standard Model and SuperString Theories* By Stephen Blaha** * Excerpted from the book Cosmos and Consciousness by Stephen Blaha (1stBooks Library, Bloomington, IN, 2000) available from amazon.com and bn.com. ** Associate of the Harvard University Physics Department. ABSTRACT 1. SuperString Theory can naturally be based on a Quantum Computer foundation. This provides a totally new view of SuperString Theory. 2. The Standard Model of elementary particles can be viewed as defining a Quantum Computer Grammar and language. 3. A Quantum Computer can be represented in part as a second-quantized Fermi field. 4. A Quantum Computer in a certain limit naturally forms a Superspace upon which Supersymmetry rotations can be defined – a Continuum Quantum Computer. 5. A representation of Quantum Computers exists that is similar to Turing Machines - a Quantum Turing Machine. As part of this development we define various types of Quantum Grammars. 6. High level Quantum Computer languages are described for the first time. New linguistic views of the most fundamental theories of Physics, the Standard Model and SuperString Theory are described. In these new linguistic representations particles become literally symbols or letters, and particle interactions become grammar rules. This view is NOT the same as the often-expressed view that Mathematics is the language of Physics. The linguistic representation is a specific new mathematical construct. We show how to create a SuperString Quantum Computer that naturally provides a framework for SuperStrings in general and heterotic SuperStrings in particular. There are also a number of new developments relating to Quantum Computers and Quantum Turing Machines that are of interest to Computer Science. -
Quantum Computing : a Gentle Introduction / Eleanor Rieffel and Wolfgang Polak
QUANTUM COMPUTING A Gentle Introduction Eleanor Rieffel and Wolfgang Polak The MIT Press Cambridge, Massachusetts London, England ©2011 Massachusetts Institute of Technology All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher. For information about special quantity discounts, please email [email protected] This book was set in Syntax and Times Roman by Westchester Book Group. Printed and bound in the United States of America. Library of Congress Cataloging-in-Publication Data Rieffel, Eleanor, 1965– Quantum computing : a gentle introduction / Eleanor Rieffel and Wolfgang Polak. p. cm.—(Scientific and engineering computation) Includes bibliographical references and index. ISBN 978-0-262-01506-6 (hardcover : alk. paper) 1. Quantum computers. 2. Quantum theory. I. Polak, Wolfgang, 1950– II. Title. QA76.889.R54 2011 004.1—dc22 2010022682 10987654321 Contents Preface xi 1 Introduction 1 I QUANTUM BUILDING BLOCKS 7 2 Single-Qubit Quantum Systems 9 2.1 The Quantum Mechanics of Photon Polarization 9 2.1.1 A Simple Experiment 10 2.1.2 A Quantum Explanation 11 2.2 Single Quantum Bits 13 2.3 Single-Qubit Measurement 16 2.4 A Quantum Key Distribution Protocol 18 2.5 The State Space of a Single-Qubit System 21 2.5.1 Relative Phases versus Global Phases 21 2.5.2 Geometric Views of the State Space of a Single Qubit 23 2.5.3 Comments on General Quantum State Spaces -
Computational Power of Observed Quantum Turing Machines
Computational Power of Observed Quantum Turing Machines Simon Perdrix PPS, Universit´eParis Diderot & LFCS, University of Edinburgh New Worlds of Computation, January 2009 Quantum Computing Basics State space in a classical world of computation: countable A. inaquantumworld: Hilbertspace CA ket map . : A CA | i → s.t. x , x A is an orthonormal basis of CA {| i ∈ } Arbitrary states Φ = αx x | i x A X∈ 2 s.t. x A αx =1 ∈ | | P Quantum Computing Basics bra map . : A L(CA, C) h | → s.t. x, y A, ∀ ∈ 1 if x = y y x = “ Kronecker ” h | | i (0 otherwise v,t A, v t : CA CA: ∀ ∈ | ih | → v if t = x ( v t ) x = v ( t x )= | i “ v t t v ” | ih | | i | i h | | i (0 otherwise | ih |≈ 7→ Evolution of isolated systems: Linear map U L(CA, CA) ∈ U = ux,y y x | ih | x,y A X∈ which is an isometry (U †U = I). Observation Let Φ = αx x | i x A X∈ (Full) measurement in standard basis: 2 The probability to observe a A is αa . ∈ | | If a A is observed, the state becomes Φa = a . ∈ | i Partial measurement in standard basis: Let K = Kλ, λ Λ be a partition of A. { ∈ } 2 The probability to observe λ Λ is pλ = a Kλ αa ∈ ∈ | | If λ Λ is observed, the state becomes P ∈ 1 1 Φλ = PλΦ = αa a √pλ √pλ | i a Kλ X∈ where Pλ = a Kλ a a . ∈ | ih | P Observation Let Φ = αx x | i x A X∈ (Full) measurement in standard basis: 2 The probability to observe a A is αa . -
Quantum Computational Complexity Theory Is to Un- Derstand the Implications of Quantum Physics to Computational Complexity Theory
Quantum Computational Complexity John Watrous Institute for Quantum Computing and School of Computer Science University of Waterloo, Waterloo, Ontario, Canada. Article outline I. Definition of the subject and its importance II. Introduction III. The quantum circuit model IV. Polynomial-time quantum computations V. Quantum proofs VI. Quantum interactive proof systems VII. Other selected notions in quantum complexity VIII. Future directions IX. References Glossary Quantum circuit. A quantum circuit is an acyclic network of quantum gates connected by wires: the gates represent quantum operations and the wires represent the qubits on which these operations are performed. The quantum circuit model is the most commonly studied model of quantum computation. Quantum complexity class. A quantum complexity class is a collection of computational problems that are solvable by a cho- sen quantum computational model that obeys certain resource constraints. For example, BQP is the quantum complexity class of all decision problems that can be solved in polynomial time by a arXiv:0804.3401v1 [quant-ph] 21 Apr 2008 quantum computer. Quantum proof. A quantum proof is a quantum state that plays the role of a witness or certificate to a quan- tum computer that runs a verification procedure. The quantum complexity class QMA is defined by this notion: it includes all decision problems whose yes-instances are efficiently verifiable by means of quantum proofs. Quantum interactive proof system. A quantum interactive proof system is an interaction between a verifier and one or more provers, involving the processing and exchange of quantum information, whereby the provers attempt to convince the verifier of the answer to some computational problem. -
Models of Quantum Computation and Quantum Programming Languages
Models of quantum computation and quantum programming languages Jaros law Adam MISZCZAK Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Ba ltycka 5, 44-100 Gliwice, Poland The goal of the presented paper is to provide an introduction to the basic computational mod- els used in quantum information theory. We review various models of quantum Turing machine, quantum circuits and quantum random access machine (QRAM) along with their classical counter- parts. We also provide an introduction to quantum programming languages, which are developed using the QRAM model. We review the syntax of several existing quantum programming languages and discuss their features and limitations. I. INTRODUCTION of existing models of quantum computation is biased towards the models interesting for the development of Computational process must be studied using the fixed quantum programming languages. Thus we neglect some model of computational device. This paper introduces models which are not directly related to this area (e.g. the basic models of computation used in quantum in- quantum automata or topological quantum computa- formation theory. We show how these models are defined tion). by extending classical models. We start by introducing some basic facts about clas- A. Quantum information theory sical and quantum Turing machines. These models help to understand how useful quantum computing can be. It can be also used to discuss the difference between Quantum information theory is a new, fascinating field quantum and classical computation. For the sake of com- of research which aims to use quantum mechanical de- pleteness we also give a brief introduction to the main res- scription of the system to perform computational tasks. -
Or Printers' Test Notes
Printers’ Test Notes – A Primer Or Everything You Wanted to Know About Printers’ Test Notes, But Were Afraid to Ask. Now that The Catalog of Test Notes has been split into two catalogs, one for ATM and related test notes and one for Printer related test notes, I have better means to offer a look at the test notes more familiar to bank note collectors. Printers’ test note are also called advertising, promotional, house, trial, demonstration, and color samples., ATM test notes are often colorful, but notes produced by firms involved in bank note production offer much more sophisticated specimens – showing off their latest security and durability innovations. The avid collector of high tech bank notes will find the most up-to-date notes, actually prototypes of future notes present in a test note collection. So here is a group of questions of which the answers give the collector a good start to a new collecting interest. What different types of firms produce test notes? As Sev Onyshkevych wrote in the IBNS forum, “The "printers" category also includes the entire food chain.” This means any firm contributing to a bank note being produced can also produce a test note. The types of firms which are attributed with test notes so far are: engravers, printers, paper and polymer producers, banknote designers, security ink providers, central banks, security foiling suppliers and substrate providers. Currency counters, sorters, verification machines, dispensers, and legitimate training notes providers also make test notes which make up the inventory in The Catalog of ATM Test Notes. Which firm has produced the most different test notes in the printers catalog? There are four firms with 60 or more different test notes, not including their sub varieties. -
Advanced Track & Trace
Advanced Track & ATT- Trace 101aD Advanced Track & Trace provides authentication solutions embedded in bank notes through printing or directly in the materials. Patented systems developed with the Bank of France include SealNote®, Sealgn@ture® and SealTaglio®. 99 avenue de la Châtaigneraie 92504 Rueil Malmaison France 1 Test note attributed Aestron Security ASD- Design 101D An acquired security consultancy of Joh. Enschedé Zeverijinstraat 12, 1216 GK Hilversum, The Netherlands 1 Test note attributed American Banknote ABNC- Company 192NC Produced food coupons, postage stamps, stock and bond certificates, travelers’ checks, foreign currency, passports, bank checks, and commercial documents. Filed Chapter 11 in 1999; spun off American Bank Note Holographics unit in 1998. This unit sold to JDSU in 2008. 560 Sylvan Ave. Englewood Cliffs, NJ 07632 140 Test note attributed James M. Anderson & AND- Son 101NC Engraving firm active in the mid- 1800’s. Produced shares for The Baltimore & Havana Steamship Company. 148 Baltimore Street, Baltimore, Maryland 1 Test note attributed Applegarth and AC- Cowper 111aNC Inventors of the horizontal steam powered syndical press, submitted notes for 20,000 pound prize for forge-proof banknote to the Bank of England. Auction.net, the English auction house has three different varieties of Applegarth and Cowpar trial notes at auction. They estimate the year of issue as about 1818. Spink estimates the same note as 1821. “The Bank of England Note: A History of Its Printing” by A. D. Mackenzie estimates the year of issue as 1819, noting the Court of Directors of the Bank of England approved their design on February 4, 1819. -
China's Gifts to the West
CHINA'S GIFTS TO THE WEST Prepared by Professor Derk Bodde for the Committee on Asiatic Studies in American Education Reprinted with permission in China: A Teaching Workbook, Asia for Educators, Columbia University Introduction An exercise identifying Chinese inventions that we use and enjoy in daily life provides an excellent starting point for discussing both the achievements of the Chinese civilization and China's influence on the West. The article China 's Gifts to the West describes China's inventions of silk, tea, porcelain ("china"), paper, printing, gunpowder, the mariner's compass, medicines, lacquer, games (including cards, dominoes, and kites), and miscellaneous items such as umbrellas, as well as natural resources, such as plants (including peaches, apricots, and citrus fruits) and minerals (including coal and zinc), first discovered and cultivated by the Chinese. Lesson Ideas: For homework, have the students look up several items on the above list in an encyclopedia to see if they can identify their origin. Then use the article China's Gift to the West to enrich the story of how each invention was brought to the West. A second approach might be to assign individual students one invention to read about in China's Gift to the West and report to the class. A separate chapter is devoted to each of the items/inventions in the list above. Foreward In 1940 almost 10,000 new books were printed in the United States. Millions of copies of the 13,000 newspapers in the country were distributed. All of this was possible because we know how to make paper and to print with movable type — inventions which occurred in China.