Combination Effects of Docetaxel and Doxorubicin in Hormone-Refractory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
August 2019: Additions and Deletions to the Drug Product List
Prescription and Over-the-Counter Drug Product List 39TH EDITION Cumulative Supplement Number 08 : August 2019 ADDITIONS/DELETIONS FOR PRESCRIPTION DRUG PRODUCT LIST ACETAMINOPHEN; BENZHYDROCODONE HYDROCHLORIDE TABLET;ORAL APADAZ >D> + KVK TECH INC 325MG;EQ 8.16MG BASE N 208653 003 Jan 04, 2019 Aug CHRS >A> +! 325MG;EQ 8.16MG BASE N 208653 003 Jan 04, 2019 Aug CHRS ACETAMINOPHEN; CODEINE PHOSPHATE TABLET;ORAL ACETAMINOPHEN AND CODEINE PHOSPHATE >A> AA ELITE LABS INC 300MG;15MG A 212418 001 Sep 10, 2019 Aug NEWA >A> AA 300MG;30MG A 212418 002 Sep 10, 2019 Aug NEWA >A> AA 300MG;60MG A 212418 003 Sep 10, 2019 Aug NEWA ACETAMINOPHEN; OXYCODONE HYDROCHLORIDE TABLET;ORAL OXYCODONE AND ACETAMINOPHEN >D> AA CHEMO RESEARCH SL 325MG;5MG A 207574 001 Dec 13, 2016 Aug CAHN >A> AA HALO PHARM CANADA 325MG;5MG A 207834 001 Aug 15, 2019 Aug NEWA >A> AA 325MG;7.5MG A 207834 002 Aug 15, 2019 Aug NEWA >A> AA 325MG;10MG A 207834 003 Aug 15, 2019 Aug NEWA >A> AA XIROMED 325MG;5MG A 207574 001 Dec 13, 2016 Aug CAHN ACYCLOVIR CAPSULE;ORAL ACYCLOVIR >A> AB CADILA 200MG A 204313 001 Mar 25, 2016 Aug CAHN >D> AB ZYDUS PHARMS 200MG A 204313 001 Mar 25, 2016 Aug CAHN >D> OINTMENT;OPHTHALMIC >D> AVACLYR >D> +! FERA PHARMS LLC 3% N 202408 001 Mar 29, 2019 Aug DISC >A> + @ 3% N 202408 001 Mar 29, 2019 Aug DISC OINTMENT;TOPICAL ACYCLOVIR >A> AB APOTEX INC 5% A 210774 001 Sep 06, 2019 Aug NEWA >D> AB PERRIGO UK FINCO 5% A 205659 001 Feb 20, 2019 Aug DISC >A> @ 5% A 205659 001 Feb 20, 2019 Aug DISC ALBENDAZOLE TABLET;ORAL ALBENDAZOLE >A> AB STRIDES PHARMA 200MG A 210011 -
Induction with Mitomycin C, Doxorubicin, Cisplatin And
British Journal of Cancer (1999) 80(12), 1962–1967 © 1999 Cancer Research Campaign Article no. bjoc.1999.0627 Induction with mitomycin C, doxorubicin, cisplatin and maintenance with weekly 5-fluorouracil, leucovorin for treatment of metastatic nasopharyngeal carcinoma: a phase II study RL Hong1, TS Sheen2, JY Ko2, MM Hsu2, CC Wang1 and LL Ting3 Departments of 1Oncology, 2Otolaryngology and 3Radiation Therapy, National Taiwan University Hospital, National Taiwan University, No. 7, Chung-Shan South Road, Taipei 10016, Taiwan Summary The combination of cisplatin and 5-fluorouracil (5-FU) (PF) is the most popular regimen for treating metastatic nasopharyngeal carcinoma (NPC) but it is limited by severe stomatitis and chronic cisplatin-related toxicity. A novel approach including induction with mitomycin C, doxorubicin and cisplatin (MAP) and subsequent maintenance with weekly 5-FU and leucovorin (FL) were designed with an aim to reduce acute and chronic toxicity of PF. Thirty-two patients of NPC with measurable metastatic lesions in the liver or lung were entered into this phase II trial. Mitomycin C 8 mg m–2, doxorubicin 40 mg m–2 and cisplatin 60 mg m–2 were given on day 1 every 3 weeks as initial induction. After either four courses or remission was achieved, patients received weekly dose of 5-FU 450 mg m–2 and leucovorin 30 mg m–2 for maintenance until disease progression. With 105 courses of MAP given, 5% were accompanied by grade 3 and 0% were accompanied by grade 4 stomatitis. The dose-limiting toxicity of MAP was myelosuppression. Forty per cent of courses had grade 3 and 13% of courses had grade 4 leukopenia. -
Synthesis of 4-Hydroperoxy Derivatives of Ifosfamide and Trofosfamide by Direct Ozonation and Preliminary Antitumor Evaluation in V/Vo
[CANCER RESEARCH, 36, 2278-2281, July 1976] Synthesis of 4-Hydroperoxy Derivatives of Ifosfamide and Trofosfamide by Direct Ozonation and Preliminary Antitumor Evaluation in V/vo Hans-J. Hohorst, Gernot Peter, and Robert F. Struck Gustav-Embden-Zentrum der Biologischen Chemie, Abteilung KIr Zellchemie der J. W. Goethe-Universit~t, 6000 Frankfurt am Main, West Germany [H-J. H., G. P.], and Kettering-Meyer Laboratory, Southern Research Institute, Birmingham, Alabama 35205 [R. F. S.] SUMMARY reported routes (15, 17 to 19, 20), as well as to improve the yields. Two of us (11) have recently described such a syn- A one-step synthesis of 4-hydroperoxyifosfamide and 4- thesis of 4-hydroperoxycyclophosphamide, and application hydroperoxytrofosfamide is described. The method in- of this method to ifosfamide and trofosfamide and evalua- volves direct ozonation of ifosfamide and trofosfamide and tion of the products against leukemia L1210 in vivo are the offers improved yields in comparison with Fenton oxidation subjects of this report. The method is advantageous be- and greater convenience in comparison with ozonation of cause of its simplicity, its use of available starting materials, the appropriate 3-butenyl phosphorodiamidate. Evaluation the ease of isolation of products, and respectable yields. of the 4-hydroperoxy derivatives of cyclophosphamide, ifos- famide, and trofosfamide against leukemia L1210 in vivo suggests a superior effect for the ifosfamide derivative. MATERIALS AND METHODS Starting Materials. Cyclophosphamide, ifosfamide, and INTRODUCTION trofosfamide were obtained from Dr. Robert R. Engle, Drug Development Branch, National Cancer Institute, Silver Cyclophosphamide and its congeners ifosfamide and tro- Spring, Md., and from Asta Werke, 4800 Bielefeld, West fosfamide (1, 3) (Chart 1) are effective antitumor agents in Germany. -
Arsenic Trioxide Is Highly Cytotoxic to Small Cell Lung Carcinoma Cells
160 Arsenic trioxide is highly cytotoxic to small cell lung carcinoma cells 1 1 Helen M. Pettersson, Alexander Pietras, effect of As2O3 on SCLC growth, as suggested by an Matilda Munksgaard Persson,1 Jenny Karlsson,1 increase in neuroendocrine markers in cultured cells. [Mol Leif Johansson,2 Maria C. Shoshan,3 Cancer Ther 2009;8(1):160–70] and Sven Pa˚hlman1 1Center for Molecular Pathology, CREATE Health and 2Division of Introduction Pathology, Department of Laboratory Medicine, Lund University, 3 Lung cancer is the most frequent cause of cancer deaths University Hospital MAS, Malmo¨, Sweden; and Department of f Oncology-Pathology, Cancer Center Karolinska, Karolinska worldwide and results in 1 million deaths each year (1). Institute and Hospital, Stockholm, Sweden Despite novel treatment strategies, the 5-year survival rate of lung cancer patients is only f15%. Small cell lung carcinoma (SCLC) accounts for 15% to 20% of all lung Abstract cancers diagnosed and is a very aggressive malignancy Small cell lung carcinoma (SCLC) is an extremely with early metastatic spread (2). Despite an initially high aggressive form of cancer and current treatment protocols rate of response to chemotherapy, which currently com- are insufficient. SCLC have neuroendocrine characteristics bines a platinum-based drug with another cytotoxic drug and show phenotypical similarities to the childhood tumor (3, 4), relapses occur in the absolute majority of SCLC neuroblastoma. As multidrug-resistant neuroblastoma patients. At relapse, the efficacy of further chemotherapy is cells are highly sensitive to arsenic trioxide (As2O3) poor and the need for alternative treatments is obvious. in vitro and in vivo, we here studied the cytotoxic effects Arsenic-containing compounds have been used in tradi- of As2O3 on SCLC cells. -
Combination Effects of Radiotherapy / Drug Treatments for Cancer Recommendation by the German Commission on Radiological Protection with Scientific Background
Strahlenschutzkommission Geschäftsstelle der Strahlenschutzkommission Postfach 12 06 29 D-53048 Bonn http://www.ssk.de + Combination Effects of Radiotherapy / Drug Treatments for Cancer Recommendation by the German Commission on Radiological Protection with scientific Background Adopted at the 264th session of the SSK on 21 October 2013 Combination Effects of Radiotherapy / Drug Treatments for Cancer 2 The German original of this English translation was published in 2013 by the Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety under the title: Kombinationswirkungen Strahlentherapie/medikamentöse Tumortherapie Empfehlung der Strahlenschutzkommission mit wissenschaftlicher Begründung This translation is for informational purposes only, and is not a substitute for the official statement. The original version of the statement, published on www.ssk.de, is the only definitive and official version. Combination Effects of Radiotherapy / Drug Treatments for Cancer 3 Contents Preface ....................................................................................................................... 8 Recommendation ...................................................................................................... 9 Scientific background of the recommendation .................................................... 11 1 Introduction ..................................................................................................... 11 2 Drug licensing and pharmacovigilance ....................................................... -
Protocol of Clinical Study
Protocol of clinical study Title Therapy-Optimization Trial and Phase II Study for the Treatment of Relapsed or Refractory of Primitive Neuroectodermal Brain Tumors and Ependymomas in Children and Adolescents Inclusion Criteria: Disease Characteristics • Histologically confirmed Medulloblastoma, cerebral PNET or Ependymoma • Refractory or relapsed disease • Measurable disease by MRI or detection of tumor cells in cerebrospinal fluid Patients characteristics • Performance status ECOG ≥ 3 or Karnofsky Status ≥ 40% • Life expectancy ≥ 8 weeks Hematological: • Absolute leukocyte count ≥ 2.0 x 10^9 /l • Hemoglobin ≥ 10g/dl • Platelet count ≥ 70 x 10^9/l Renal: • Creatinine no greater than 1.5 times UNL • No overt renal disease Hepatic: • Bilirubin less than 2.5 times UNL • AST and ALT less than 5 times UNL • No overt hepatic disease • Pulmonary: • No overt pulmonary disease • Cardiovascular: • No overt cardiovascular disease Other: • Not pregnant or nursing • Negative pregnancy test • Fertile patients must use effective contraception Orphanet Database. Clinical trial 2009. http://www.orpha.net/data/eth/DE/ID60629Eng.pdf • No uncontrolled infection Prior concurrent therapy • More than 2 weeks since prior systemic chemotherapy • More than 4 weeks since prior radiotherapy • No other concurrent anticancer or experimental drugs Examinations required • Examination of lumbar CSF • Cranial and spinal MRI within 14 days prior to start of treatment Intervention 1: P-HIT-REZ 2005: Active Comparator Carboplatine, Etoposide, Thiotepa, Trofosfamide intravenous chemotherapy 2: P-HIT-REZ 2005: Active Comparator Temozolomide, Etoposide, Thiotepa oral chemotherapy 3: E-HIT-REZ 2005: Experimental Temozolomide, Etoposide, Trofosfamide Phase II Intravent. Etoposide: Experimental Etoposide Phase II Number of expected inclusions 200 patients Study start February 2006 Estimated Study Completion January 2016 Study phase Phase II Phase III Study Design National, multicentre, treatment, randomized, crossover assignment, active control efficacy study Orphanet Database. -
5-Fluorouracil + Adriamycin + Cyclophosphamide) Combination in Differentiated H9c2 Cells
Article Doxorubicin Is Key for the Cardiotoxicity of FAC (5-Fluorouracil + Adriamycin + Cyclophosphamide) Combination in Differentiated H9c2 Cells Maria Pereira-Oliveira, Ana Reis-Mendes, Félix Carvalho, Fernando Remião, Maria de Lourdes Bastos and Vera Marisa Costa * UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; [email protected] (M.P.-O.); [email protected] (A.R.-M.); [email protected] (F.C.); [email protected] (F.R.); [email protected] (M.L.B.) * Correspondence: [email protected] Received: 4 October 2018; Accepted: 3 January 2019; Published: 10 January 2019 Abstract: Currently, a common therapeutic approach in cancer treatment encompasses a drug combination to attain an overall better efficacy. Unfortunately, it leads to a higher incidence of severe side effects, namely cardiotoxicity. This work aimed to assess the cytotoxicity of doxorubicin (DOX, also known as Adriamycin), 5-fluorouracil (5-FU), cyclophosphamide (CYA), and their combination (5-Fluorouracil + Adriamycin + Cyclophosphamide, FAC) in H9c2 cardiac cells, for a better understanding of the contribution of each drug to FAC-induced cardiotoxicity. Differentiated H9c2 cells were exposed to pharmacological relevant concentrations of DOX (0.13–5 μM), 5-FU (0.13–5 μM), CYA (0.13–5 μM) for 24 or 48 h. Cells were also exposed to FAC mixtures (0.2, 1 or 5 μM of each drug and 50 μM 5-FU + 1 μM DOX + 50 μM CYA). DOX was the most cytotoxic drug, followed by 5-FU and lastly CYA in both cytotoxicity assays (reduction of 3-(4,5-dimethylthiazol-2- yl)-2,5-diphenyl tetrazolium bromide (MTT) and neutral red (NR) uptake). -
Intravenous Ascorbate and Oncologic Agents
© PAUL S. ANDERSON 2013 INTRAVENOUS ASCORBATE AND ONCOLOGIC AGENTS Updated Data Review and Policies for concurrent use at Anderson Medical Specialty Associates, Southwest College of Naturopathic Medicine Research Institute and Medical Center and Bastyr University Clinical Research Center Paul S. Anderson 05/01/2013 © Paul S. Anderson – All rights reserved – Reproduction and redistribution only allowed with proper attribution. Abstract: Intravenous application of ascorbic acid (IVAA) has a long history in adjunctive oncology communities. Its use has stimulated much debate regarding efficacy, safety and appropriate inclusion in oncologic practice. The potential for both antagonistic and synergistic interactions between IVAA and chemotherapies or radiation has existed for some time as an unanswered or confusing question in the naturopathic and allopathic oncology community. The purpose of this publication is to summarize and update the state of understanding of this complicated topic for clinicians employing either standard or integrative oncology care. INTRAVENOUS ASCORBATE AND ONCOLOGIC AGENTS Introduction: Intravenous ascorbate has been used in oncology practice by naturopathic and alternative allopathic physicians for decades. Published data regarding this therapy shows that it continues to be one of the most commonly employed alternative IV therapies. This popularity has both stimulated awareness of this therapy and concern regarding not only the safety and efficacy of IVAA in the oncology patient but also for the potential of antagonistic -
Characteristics of Doxorubicin‑Selected Multidrug‑Resistant Human Leukemia HL‑60 Cells with Tolerance to Arsenic Trioxide and Contribution of Leukemia Stem Cells
ONCOLOGY LETTERS 15: 1255-1262, 2018 Characteristics of doxorubicin‑selected multidrug‑resistant human leukemia HL‑60 cells with tolerance to arsenic trioxide and contribution of leukemia stem cells JING CHEN, HULAI WEI, JIE CHENG, BEI XIE, BEI WANG, JUAN YI, BAOYING TIAN, ZHUAN LIU, FEIFEI WANG and ZHEWEN ZHANG Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China Received December 29, 2015; Accepted June 9, 2017 DOI: 10.3892/ol.2017.7353 Abstract. The present study selected and characterized resistance (MDR) frequently induces therapy failure or tumor a multidrug-resistant HL-60 human acute promyelocytic recurrence (1-3). MDR involves various mechanisms including, leukemia cell line, HL-60/RS, by exposure to stepwise adenosine triphosphate-binding cassette (ABC) transporters, incremental doses of doxorubicin. The drug-resistant P-glycoprotein (P-gp), multidrug-resistance-related protein HL-60/RS cells exhibited 85.68-fold resistance to doxoru- (MRP) and breast-cancer-resistance protein (BCRP) overex- bicin and were cross-resistant to other chemotherapeutics, pression, which function to efflux certain molecules out of including cisplatin, daunorubicin, cytarabine, vincristine the cells (4-8). In addition, mechanisms of acquired MDR and etoposide. The cells over-expressed the transporters in leukemia also include abnormal drug metabolism and the P-glycoprotein, multidrug-resistance-related protein 1 presence of leukemia stem cells (LSC). LSCs are particu- and breast-cancer-resistance protein, encoded by the larly of interest and considered to serve an important role adenosine triphosphate-binding cassette (ABC)B1, ABCC1 in leukemia resistance and relapse (4). -
Nephroblastoma High-Dose Chemotherapy with Autologous Stem Cell Rescue in Children with Nephroblastoma
Bone Marrow Transplantation (2002) 30, 893–898 2002 Nature Publishing Group All rights reserved 0268–3369/02 $25.00 www.nature.com/bmt Nephroblastoma High-dose chemotherapy with autologous stem cell rescue in children with nephroblastoma B Kremens1, B Gruhn2, T Klingebiel13, C Hasan3, H-J Laws4, E Koscielniak12, B Hero5, B Selle6, C Niemeyer7, FG Finckenstein8, A Schulz9, A Wawer10, F Zintl2 and N Graf11 1Department of Pediatric Hematology/Oncology, University of Essen, Germany; 2Department of Pediatric Hematology/Oncology, University of Jena, Germany; 3Department of Pediatric Hematology/Oncology, University of Bonn, Germany; 4Department of Pediatric Hematology/Oncology, University of Du¨sseldorf, Germany; 5Department of Pediatric Hematology/Oncology, University of Cologne, Germany; 6Department of Pediatric Hematology/Oncology, University of Heidelberg, Germany, 7Department of Pediatric Hematology/Oncology, University of Freiburg, Germany; 8Department of Pediatric Hematology/Oncology, University of Hamburg, Germany; 9Department of Pediatric Hematology/Oncology, University of Ulm, Germany; 10Department of Pediatric Hematology/Oncology, University of Halle, Germany; 11Department of Pediatric Hematology/Oncology, University of Homburg/Saar, Germany; 12Department of Pediatric Hematology, Oncology and Immunology, Olga-Hospital, Stuttgart, Germany; and 13Department of Pediatric Hematology/Oncology, University of Frankfurt, Germany Summary: Keywords: Wilms tumor; high-dose chemotherapy; auto- logous bone marrow transplantation Children with Wilms tumor who have a particular risk of failure at relapse or at primary diagnosis were treated with high-dose chemotherapy (HDC) and auto- logous peripheral blood stem cell rescue in order to A child with newly diagnosed Wilms tumor (WT) has a improve their probability of survival. From April 1992 probability of about 85% of being cured with multimodal to December 1998, 23 evaluable patients received HDC treatment nowadays. -
Cisplatin, Gemcitabine, and Treosulfan in Relapsed Stage IV Cutaneous Malignant Melanoma Patients
British Journal of Cancer (2007) 97, 1329 – 1332 & 2007 Cancer Research UK All rights reserved 0007 – 0920/07 $30.00 www.bjcancer.com Cisplatin, gemcitabine, and treosulfan in relapsed stage IV cutaneous malignant melanoma patients *,1,2,3 1 1 2 J Atzpodien , K Terfloth , M Fluck and M Reitz 1 2 Fachklinik Hornheide an der Westfa¨lischen Wilhelms-Universita¨t Mu¨nster, Dorbaumstr. 300, Mu¨nster 48157, Germany; Europa¨isches Institut fu¨r Tumor Immunologie und Pra¨vention (EUTIP), Bad Honnef, Germany To evaluate the efficacy of cisplatin, gemcitabine, and treosulfan (CGT) in 91 patients with pretreated relapsed AJCC stage IV À2 cutaneous malignant melanoma. Patients in relapse after first-, second-, or third-line therapy received 40 mg m intravenous (i.v.) À2 À2 Clinical Studies cisplatin, 1000 mg m i.v. gemcitabine, and 2500 mg m i.v. treosulfan on days 1 and 8. Cisplatin, gemcitabine, and treosulfan therapy was repeated every 5 weeks until progression of disease occurred. A maximum of 11 CGT cycles (mean, two cycles) was administered per patient. Four patients (4%) showed a partial response; 15 (17%) patients had stable disease; and 72 (79%) patients progressed upon first re-evaluation. Overall survival of all 91 patients was 6 months (2-year survival rate, 7%). Patients with partial remission or stable disease exhibited a median overall survival of 11 months (2-year survival rate, 36%), while patients with disease progression upon first re-evaluation had a median overall survival of 5 months (2-year survival rate, 0%). Treatment with CGT was efficient in one-fifth of the pretreated relapsed stage IV melanoma patients achieving disease stabilisation or partial remission with prolonged but limited survival. -
Cyclophosphamide-Doxorubicin Ver
Chemotherapy Protocol BREAST CANCER CYCLOPHOSPHAMIDE-DOXORUBICIN Regimen Breast Cancer – Cyclophosphamide-Doxorubicin Indication Primary systemic (neoadjuvant) therapy of breast cancer Adjuvant therapy of high risk (greater than 5%) node negative breast cancer WHO Performance status 0, 1, 2 Toxicity Drug Adverse Effect Cyclophosphamide Dysuria, haemorrhagic cystitis, taste disturbances Doxorubicin Cardio toxicity, urinary discolourisation (red) The adverse effects listed are not exhaustive. Please refer to the relevant Summary of Product Characteristics for full details. Monitoring Regimen FBC, U&E’s and LFT’s prior to each cycle. Ensure adequate cardiac function before starting treatment with doxorubicin. Baseline LVEF should be measured, particularly in patients with a history of cardiac problems or in the elderly. Dose Modifications The dose modifications listed are for haematological, liver and renal function only. Dose adjustments may be necessary for other toxicities as well. In principle all dose reductions due to adverse drug reactions should not be re- escalated in subsequent cycles without consultant approval. It is also a general rule for chemotherapy that if a third dose reduction is necessary treatment should be stopped. Version 1.1 (Aug 2014) Page 1 of 6 Breast – Cyclophosphamide-Doxorubicin Please discuss all dose reductions / delays with the relevant consultant before prescribing if appropriate. The approach may be different depending on the clinical circumstances. The following is a general guide only. Haematological Prior to prescribing the following treatment criteria must be met on day 1 of treatment. Criteria Eligible Level Neutrophil equal to or more than 1x109/L Platelets equal to or more than 100x109/L Consider blood transfusion if patient symptomatic of anaemia or has a haemoglobin of less than 8g/dL If counts on day one are below these criteria for neutrophil and/or platelets then delay treatment for seven days.