Pevonedistat, a First-In-Class NEDD8-Activating Enzyme Inhibitor, Combined with Azacitidine in Patients With
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
214120Orig1s000
CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 214120Orig1s000 MULTI-DISCIPLINE REVIEW Summary Review Office Director Cross Discipline Team Leader Review Clinical Review Non-Clinical Review Statistical Review Clinical Pharmacology Review NDA Multidisciplinary Review and Evaluation Application Number NDA 214120 Application Type Type 3 Priority or Standard Priority Submit Date 3/3/2020 Received Date 3/3/2020 PDUFA Goal Date 9/3/2020 Office/Division OOD/DHM1 Review Completion Date 9/1/2020 Applicant Celgene Corporation Established Name Azacitidine (Proposed) Trade Name Onureg Pharmacologic Class Nucleoside metabolic inhibitor Formulations Tablet (200 mg, 300 mg) (b) (4) Applicant Proposed Indication/Population Recommendation on Regulatory Regular approval Action Recommended Indication/ For continued treatment of adult patients with acute Population myeloid leukemia who achieved first complete remission (CR) or complete remission with incomplete blood count recovery (CRi) following intensive induction chemotherapy and are not able to complete intensive curative therapy. SNOMED CT for the Recommended 91861009 Indication/Population Recommended Dosing Regimen 300 mg orally daily on Days 1 through 14 of each 28-day cycle Reference ID: 4664570 NDA Multidisciplinary Review and Evaluation NDA 214120 Onureg (azacitidine tablets) TABLE OF CONTENTS TABLE OF CONTENTS ................................................................................................................................... 2 TABLE OF TABLES ....................................................................................................................................... -
Intravesical Instillation of Azacitidine Suppresses Tumor Formation Through TNF-R1 and TRAIL-R2 Signaling in Genotoxic Carcinogen-Induced Bladder Cancer
cancers Article Intravesical Instillation of Azacitidine Suppresses Tumor Formation through TNF-R1 and TRAIL-R2 Signaling in Genotoxic Carcinogen-Induced Bladder Cancer Shao-Chuan Wang 1,2,3, Ya-Chuan Chang 2, Min-You Wu 2, Chia-Ying Yu 2, Sung-Lang Chen 1,2,3 and Wen-Wei Sung 1,2,3,* 1 Department of Urology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan; [email protected] (S.-C.W.); [email protected] (S.-L.C.) 2 School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; [email protected] (Y.-C.C.); [email protected] (M.-Y.W.); [email protected] (C.-Y.Y.) 3 Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan * Correspondence: [email protected] or fl[email protected]; Tel.: +886-4-2473-9595 Simple Summary: Approximately 70% of all bladder cancer is diagnosed as non-muscle invasive bladder cancer and can be treated by transurethral resection of the bladder tumor, followed by intravesical instillation chemotherapy. Bacille Calmette-Guérin (BCG) is the first-line agent for intravesical instillation, but its accessibility has been limited for years due to a BCG shortage. Here, our aim was to evaluate the therapeutic role of intravesical instillation of azacitidine, a DNA methyltransferase inhibitor, in bladder cancer. Cell model experiments showed that azacitidine inhibited TNFR1 downstream pathways to downregulate HIF-1α, claspin, and survivin. Concomitant Citation: Wang, S.-C.; Chang, Y.-C.; upregulation of the TRAIL R2 pathway by azacitidine ultimately drove the tumor cells to apoptosis. Wu, M.-Y.; Yu, C.-Y.; Chen, S.-L.; Sung, Rats with genotoxic carcinogen-induced bladder cancer showed a significantly reduced in vivo tumor W.-W. -
Blockage of Neddylation Modification Stimulates Tumor Sphere Formation
Blockage of neddylation modification stimulates tumor PNAS PLUS sphere formation in vitro and stem cell differentiation and wound healing in vivo Xiaochen Zhoua,b,1, Mingjia Tanb,1, Mukesh K. Nyatib, Yongchao Zhaoc,d, Gongxian Wanga,2, and Yi Sunb,c,e,2 aDepartment of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; bDivision of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109; cInstitute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; dKey Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; and eCollaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310058, China Edited by Vishva M. Dixit, Genentech, San Francisco, CA, and approved March 10, 2016 (received for review November 13, 2015) MLN4924, also known as pevonedistat, is the first-in-class inhibitor acting alone or in combination with current chemotherapy of NEDD8-activating enzyme, which blocks the entire neddylation and/or radiation (6, 11). One of the seven clinical trials of MLN4924 modification of proteins. Previous preclinical studies and current (NCT00911066) was published recently, concluding a modest effect clinical trials have been exclusively focused on its anticancer property. of MLN4924 against acute myeloid leukemia (AML) (12). Unexpectedly, we show here, to our knowledge for the first time, To further elucidate the role of blocking neddylation in cancer that MLN4924, when applied at nanomolar concentrations, signif- treatment, we thought to study the effect of MLN4924 on cancer icantly stimulates in vitro tumor sphere formation and in vivo stem cells (CSCs) or tumor-initiating cells (TICs), a small group tumorigenesis and differentiation of human cancer cells and mouse of tumor cells with stem cell properties that have been claimed to embryonic stem cells. -
LEUKEMIA CHEMOTHERAPY REGIMENS (Part 1 of 2) the Selection, Dosing, and Administration of Anti-Cancer Agents and the Management of Associated Toxicities Are Complex
LEUKEMIA CHEMOTHERAPY REGIMENS (Part 1 of 2) The selection, dosing, and administration of anti-cancer agents and the management of associated toxicities are complex. Drug dose modifications and schedule and initiation of supportive care interventions are often necessary because of expected toxicities and because of individual patient variability, prior treatment, and comorbidities. Thus, the optimal delivery of anti-cancer agents requires a healthcare delivery team experienced in the use of such agents and the management of associated toxicities in patients with cancer. The chemotherapy regimens below may include both FDA-approved and unapproved uses/regimens and are provided as references only to the latest treatment strategies. Clinicians must choose and verify treatment options based on the individual patient. REGIMEN DOSING Acute Myeloid Leukemia (AML) Induction Therapy Cytarabine (Cytosar-U; ARA-C) + Days 1–3: An anthracycline (eg, daunorubicin at least 60mg/m2/day IV, an anthracycline idarubicin 10–12mg/m2/day IV, or mitoxantrone 10–12mg/m2/day IV), plus (daunorubicin [Cerubidine], Days 1–7: Cytarabine 100–200mg/m2/day continuous IV infusion. idarubicin [Idamycin], OR mitoxantrone [Novantrone])1, 2 Days 1–3: An anthracycline (eg, daunorubicin 45mg/m2/day IV, idarubicin 12mg/m2/day IV, or mitoxantrone 12mg/m2/day IV), plus Days 1–7: Cytarabine 100mg/m2/day continuous IV infusion. Intermediate-dose cytarabine3 Cycle 1 Days 1–7: Cytarabine 200mg/m2/day continuous IV infusion, plus Days 5–6: Idarubicin 12mg/m2/day IV. Cycle 2 Days 1–6: Cytarabine 1,000mg/m2 continuous IV infusion for 3 hrs twice daily, plus Days 3, 5 and 7: Amsacrine 120mg/m2/day. -
The Anti-Tumor Activity of the NEDD8 Inhibitor Pevonedistat in Neuroblastoma
International Journal of Molecular Sciences Article The Anti-Tumor Activity of the NEDD8 Inhibitor Pevonedistat in Neuroblastoma Jennifer H. Foster 1,* , Eveline Barbieri 1, Linna Zhang 1, Kathleen A. Scorsone 1, Myrthala Moreno-Smith 1, Peter Zage 2,3 and Terzah M. Horton 1,* 1 Texas Children’s Cancer and Hematology Centers, Department of Pediatrics, Section of Hematology and Oncology, Baylor College of Medicine, Houston, TX 77030, USA; [email protected] (E.B.); [email protected] (L.Z.); [email protected] (K.A.S.); [email protected] (M.M.-S.) 2 Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA 92024, USA; [email protected] 3 Peckham Center for Cancer and Blood Disorders, Rady Children’s Hospital, San Diego, CA 92123, USA * Correspondence: [email protected] (J.H.F.); [email protected] (T.M.H.); Tel.: +1-832-824-4646 (J.H.F.); +1-832-824-4269 (T.M.H.) Abstract: Pevonedistat is a neddylation inhibitor that blocks proteasomal degradation of cullin–RING ligase (CRL) proteins involved in the degradation of short-lived regulatory proteins, including those involved with cell-cycle regulation. We determined the sensitivity and mechanism of action of pevonedistat cytotoxicity in neuroblastoma. Pevonedistat cytotoxicity was assessed using cell viability assays and apoptosis. We examined mechanisms of action using flow cytometry, bromod- eoxyuridine (BrDU) and immunoblots. Orthotopic mouse xenografts of human neuroblastoma were generated to assess in vivo anti-tumor activity. Neuroblastoma cell lines were very sensitive to pevonedistat (IC50 136–400 nM). The mechanism of pevonedistat cytotoxicity depended on p53 Citation: Foster, J.H.; Barbieri, E.; status. -
Vidaza, INN-Azacitidine
ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS 1 1. NAME OF THE MEDICINAL PRODUCT Vidaza 25 mg/ml powder for suspension for injection 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Each vial contains 100 mg azacitidine. After reconstitution, each ml suspension contains 25 mg azacitidine. For a full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Powder for suspension for injection. White lyophilised powder. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications Vidaza is indicated for the treatment of adult patients who are not eligible for haematopoietic stem cell transplantation with: • intermediate-2 and high-risk myelodysplastic syndromes (MDS) according to the International Prognostic Scoring System (IPSS), • chronic myelomonocytic leukaemia (CMML) with 10-29 % marrow blasts without myeloproliferative disorder, • acute myeloid leukaemia (AML) with 20-30 % blasts and multi-lineage dysplasia, according to World Health Organisation (WHO) classification. 4.2 Posology and method of administration Vidaza treatment should be initiated and monitored under the supervision of a physician experienced in the use of chemotherapeutic agents. Patients should be premedicated with anti-emetics for nausea and vomiting. Posology The recommended starting dose for the first treatment cycle, for all patients regardless of baseline haematology laboratory values, is 75 mg/m2 of body surface area, injected subcutaneously, daily for 7 days, followed by a rest period of 21 days (28-day treatment cycle). It is recommended that patients be treated for a minimum of 6 cycles. Treatment should be continued as long as the patient continues to benefit or until disease progression. Patients should be monitored for haematologic response/toxicity and renal toxicities (see section 4.4); a delay in starting the next cycle or a dose reduction as described below may be necessary. -
Neddylation: a Novel Modulator of the Tumor Microenvironment Lisha Zhou1,2*†, Yanyu Jiang3†, Qin Luo1, Lihui Li1 and Lijun Jia1*
Zhou et al. Molecular Cancer (2019) 18:77 https://doi.org/10.1186/s12943-019-0979-1 REVIEW Open Access Neddylation: a novel modulator of the tumor microenvironment Lisha Zhou1,2*†, Yanyu Jiang3†, Qin Luo1, Lihui Li1 and Lijun Jia1* Abstract Neddylation, a post-translational modification that adds an ubiquitin-like protein NEDD8 to substrate proteins, modulates many important biological processes, including tumorigenesis. The process of protein neddylation is overactivated in multiple human cancers, providing a sound rationale for its targeting as an attractive anticancer therapeutic strategy, as evidence by the development of NEDD8-activating enzyme (NAE) inhibitor MLN4924 (also known as pevonedistat). Neddylation inhibition by MLN4924 exerts significantly anticancer effects mainly by triggering cell apoptosis, senescence and autophagy. Recently, intensive evidences reveal that inhibition of neddylation pathway, in addition to acting on tumor cells, also influences the functions of multiple important components of the tumor microenvironment (TME), including immune cells, cancer-associated fibroblasts (CAFs), cancer-associated endothelial cells (CAEs) and some factors, all of which are crucial for tumorigenesis. Here, we briefly summarize the latest progresses in this field to clarify the roles of neddylation in the TME, thus highlighting the overall anticancer efficacy of neddylaton inhibition. Keywords: Neddylation, Tumor microenvironment, Tumor-derived factors, Cancer-associated fibroblasts, Cancer- associated endothelial cells, Immune cells Introduction Overall, binding of NEDD8 molecules to target proteins Neddylation is a reversible covalent conjugation of an can affect their stability, subcellular localization, conform- ubiquitin-like molecule NEDD8 (neuronal precursor ation and function [4]. The best-characterized substrates cell-expressed developmentally down-regulated protein of neddylation are the cullin subunits of Cullin-RING li- 8) to a lysine residue of the substrate protein [1, 2]. -
Azacytidine Sensitizes Acute Myeloid Leukemia Cells to Arsenic Trioxide By
Chau et al. Journal of Hematology & Oncology (2015) 8:46 DOI 10.1186/s13045-015-0143-3 JOURNAL OF HEMATOLOGY & ONCOLOGY RESEARCH ARTICLE Open Access Azacytidine sensitizes acute myeloid leukemia cells to arsenic trioxide by up-regulating the arsenic transporter aquaglyceroporin 9 David Chau1†, Karen Ng1†, Thomas Sau-Yan Chan1, Yuen-Yee Cheng1,3, Bonnie Fong2, Sidney Tam2, Yok-Lam Kwong1 and Eric Tse1* Abstract Background: The therapeutic efficacy of arsenic trioxide (As2O3) in acute myeloid leukemia (AML) is modest, which is partly related to its limited intracellular uptake into the leukemic cells. As2O3 enters cells via the transmembrane protein aquaglyceroporin 9 (AQP9). Azacytidine, a demethylating agent that is approved for the treatment of AML, has been shown to have synergistic effect with As2O3. We tested the hypothesis that azacytidine might up-regulate AQP9 and enhances As2O3-mediated cytotoxicity in AML. Methods: Arsenic-induced cytotoxicity, the expression of AQP9, and the intracellular uptake of As2O3 were determined in AML cell lines and primary AML cells with or without azacytidine pre-treatment. The mechanism of AQP9 up-regulation was then investigated by examining the expression of transcription factors for AQP9 gene and the methylation status of their gene promoters. Results: As2O3-induced cytotoxicity in AML cell lines was significantly enhanced after azacytidine pre-treatment as a result of AQP9 up-regulation, leading to increased arsenic uptake and hence intracellular concentration. Blocking AQP9-mediated As2O3 uptake with mercury chloride abrogated the sensitization effect of azacytidine. AQP9 promoter does not contain CpG islands. Instead, azacytidine pre-treatment led to increased expression of HNF1A, a transcription activator of AQP9, through demethylation of HNF1A promoter. -
Phase Ib Study of Pevonedistat, a NEDD8-Activating Enzyme Inhibitor
Investigational New Drugs (2019) 37:87–97 https://doi.org/10.1007/s10637-018-0610-0 PHASE I STUDIES Phase Ib study of pevonedistat, a NEDD8-activating enzyme inhibitor, in combination with docetaxel, carboplatin and paclitaxel, or gemcitabine, in patients with advanced solid tumors A Craig Lockhart1 & Todd M. Bauer2 & Charu Aggarwal3 & Carrie B. Lee4 & RDonaldHarvey5 & Roger B. Cohen6 & Farhad Sedarati7 & Tsz Keung Nip8 & Hélène Faessel9 & Ajeeta B. Dash10 & Bruce J. Dezube7 & Douglas V. Faller7 & Afshin Dowlati11 Received: 1 March 2018 /Accepted: 11 May 2018 /Published online: 21 May 2018 # The Author(s) 2018 Summary Purpose This phase Ib study (NCT01862328) evaluated the maximum tolerated dose (MTD), safety, and efficacy of pevonedistat in combination with standard-of-care chemotherapies in patients with solid tumors. Methods Patients received pevonedistat with docetaxel (arm 1, n = 22), carboplatin plus paclitaxel (arm 2, n = 26), or gemcitabine (arm 3, n = 10) in 21-days (arms 1 and 2) or 28-days (arm 3) cycles. A lead-in cohort (arm 2a, n = 6) determined the arm 2 carboplatin dose. Dose escalation proceeded via continual modified reassessment. Results Pevonedistat MTD was 25 mg/m2 (arm 1) or 20 mg/m2 (arm 2); arm 3 was discontinued due to poor tolerability. Fifteen (23%) patients experienced dose-limiting toxicities during cycle 1 (grade ≥3 liver enzyme elevations, febrile neutropenia, and thrombocytopenia), managed with dose holds or reductions. Drug-related adverse events (AEs) occurred in 95% of patients. Most common AEs included fatigue (56%) and nausea (50%). One drug-related death occurred in arm 3 (febrile neutropenia). Pevonedistat exposure increased when co-administered with carboplatin plus paclitaxel; no obvious changes were observed when co-administered with docetaxel or gemcitabine. -
Pharmacogenomic Biomarkers in Docetaxel Treatment of Prostate Cancer: from Discovery to Implementation
G C A T T A C G G C A T genes Review Pharmacogenomic Biomarkers in Docetaxel Treatment of Prostate Cancer: From Discovery to Implementation Reka Varnai 1,2, Leena M. Koskinen 3, Laura E. Mäntylä 3, Istvan Szabo 4,5, Liesel M. FitzGerald 6 and Csilla Sipeky 3,* 1 Department of Primary Health Care, University of Pécs, Rákóczi u 2, H-7623 Pécs, Hungary 2 Faculty of Health Sciences, Doctoral School of Health Sciences, University of Pécs, Vörösmarty u 4, H-7621 Pécs, Hungary 3 Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland 4 Institute of Sport Sciences and Physical Education, University of Pécs, Ifjúság útja 6, H-7624 Pécs, Hungary 5 Faculty of Sciences, Doctoral School of Biology and Sportbiology, University of Pécs, Ifjúság útja 6, H-7624 Pécs, Hungary 6 Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia * Correspondence: csilla.sipeky@utu.fi Received: 17 June 2019; Accepted: 5 August 2019; Published: 8 August 2019 Abstract: Prostate cancer is the fifth leading cause of male cancer death worldwide. Although docetaxel chemotherapy has been used for more than fifteen years to treat metastatic castration resistant prostate cancer, the high inter-individual variability of treatment efficacy and toxicity is still not well understood. Since prostate cancer has a high heritability, inherited biomarkers of the genomic signature may be appropriate tools to guide treatment. In this review, we provide an extensive overview and discuss the current state of the art of pharmacogenomic biomarkers modulating docetaxel treatment of prostate cancer. This includes (1) research studies with a focus on germline genomic biomarkers, (2) clinical trials including a range of genetic signatures, and (3) their implementation in treatment guidelines. -
Vidaza U.S. Full Prescribing Information
-------------------------------CONTRAINDICATIONS------------------------------ HIGHLIGHTS OF PRESCRIBING INFORMATION Advanced Malignant Hepatic Tumors (4.1). These highlights do not include all the information needed to use Hypersensitivity to Azacitidine or Mannitol (4.2). VIDAZA safely and effectively. See full prescribing information for VIDAZA. -----------------------WARNINGS AND PRECAUTIONS------------------------ Anemia, Neutropenia and Thrombocytopenia: Monitor complete blood VIDAZA (azacitidine for injection), for subcutaneous or intravenous use counts (CBC) frequently (5.1). Initial U.S. Approval: 2004 Hepatotoxicity: Patients with severe preexisting hepatic impairment are at higher risk for toxicity (5.2). Renal Toxicity: Monitor patients with renal impairment for toxicity ----------------------------INDICATIONS AND USAGE--------------------------- since azacitidine and its metabolites are primarily excreted by the VIDAZA is a nucleoside metabolic inhibitor indicated for the treatment of kidneys (5.3). patients with the following FAB myelodysplastic syndrome (MDS) subtypes: Tumor Lysis Syndrome: VIDAZA may cause fatal or serious tumor Refractory anemia (RA) or refractory anemia with ringed sideroblasts (RARS) lysis syndrome, including in patients with MDS. Assess baseline risk (if accompanied by neutropenia or thrombocytopenia or requiring and monitor and treat as appropriate (5.4). transfusions), refractory anemia with excess blasts (RAEB), refractory anemia Embryo-Fetal Risk: VIDAZA can cause fetal harm. Advise females -
Pevonedistat (MLN4924), a First-In-Class NEDD8-Activating Enzyme Inhibitor, in Patients with Acute Myeloid Leukaemia and Myelodysplastic Syndromes: a Phase 1 Study
research paper Pevonedistat (MLN4924), a First-in-Class NEDD8-activating enzyme inhibitor, in patients with acute myeloid leukaemia and myelodysplastic syndromes: a phase 1 study Ronan T. Swords,1 Harry P. Erba,2 Summary Daniel J. DeAngelo,3 Dale L. Bixby,2 This trial was conducted to determine the dose-limiting toxicities (DLTs) Jessica K. Altman,4 Michael Maris,5 Zhaowei Hua,6 Stephen J. Blakemore,6 and maximum tolerated dose (MTD) of the first in class NEDD8-activating Helene Faessel,6 Farhad Sedarati,6 enzyme (NAE) inhibitor, pevonedistat, and to investigate pevonedistat Bruce J. Dezube,6 Francis J. Giles4 and pharmacokinetics and pharmacodynamics in patients with acute myeloid Bruno C. Medeiros7 leukaemia (AML) and myelodysplastic syndromes (MDS). Pevonedistat was 1Leukemia Program, Sylvester Comprehensive administered via a 60-min intravenous infusion on days 1, 3 and 5 (sche- Cancer Center, Miami, FL, 2Division of Hema- dule A, n = 27), or days 1, 4, 8 and 11 (schedule B, n = 26) every 21-days. tology/Oncology, University of Michigan, Ann Dose escalation proceeded using a standard ‘3 + 3’ design. Responses were 3 Arbor, MI, Department of Medical Oncology, assessed according to published guidelines. The MTD for schedules A and Dana-Farber Cancer Institute, Boston, MA, B were 59 and 83 mg/m2, respectively. On schedule A, hepatotoxicity was 4 Northwestern Medicine Developmental Thera- dose limiting. Multi-organ failure (MOF) was dose limiting on schedule B. peutics Institute, Northwestern University, The overall complete (CR) and partial (PR) response rate in patients trea- Chicago, IL, 5Colorado Blood Cancer Institute, ted at or below the MTD was 17% (4/23, 2 CRs, 2 PRs) for schedule A Denver, CO, 6Takeda Pharmaceuticals Interna- tional Co., Cambridge, MA, and 7Division of and 10% (2/19, 2 PRs) for schedule B.