Thyasirid Bivalves from Cretaceous and Paleogene Cold Seeps

Total Page:16

File Type:pdf, Size:1020Kb

Thyasirid Bivalves from Cretaceous and Paleogene Cold Seeps Thyasirid bivalves from Cretaceous and Paleogene cold seeps KRZYSZTOF HRYNIEWICZ, KAZUTAKA AMANO, ROBERT G. JENKINS, and STEFFEN KIEL Hryniewicz, K., Amano, K., Jenkins, R.G., and Kiel, S. 2017. Thyasirid bivalves from Cretaceous and Paleogene cold seeps. Acta Palaeontologica Polonica 62 (4): 705–728. We present a systematic study of thyasirid bivalves from Cretaceous to Oligocene seep carbonates worldwide. Eleven species of thyasirid bivalves are identified belonging to three genera: Conchocele, Maorithyas, and Thyasira. Two spe- cies are new: Maorithyas humptulipsensis sp. nov. from middle Eocene seep carbonates in the Humptulips Formation, Washington State, USA, and Conchocele kiritachiensis sp. nov. from the late Eocene seep deposit at Kiritachi, Hokkaido, Japan. Two new combinations are provided: Conchocele townsendi (White, 1890) from Maastrichtian strata of the James Ross Basin, Antarctica, and Maorithyas folgeri (Wagner and Schilling, 1923) from Oligocene rocks from California, USA. Three species are left in open nomenclature. We show that thyasirids have Mesozoic origins and appear at seeps be- fore appearing in “normal” marine environments. These data are interpreted as a record of seep origination of thyasirids, and their subsequent dispersal to non-seep environments. We discuss the age of origination of thyasirids in the context of the origin of the modern deep sea fauna and conclude that thyasirids could have deep sea origins. This hypothesis is supported by the observed lack of influence of the Cretaceous and Paleogene Oceanic Anoxic Events on the main evolutionary lineages of the thyasirids, as seen in several other members of the deep sea fauna. Key words: Bivalvia, Thyasiridae, cold seeps, deep sea, ecology, evolution, Cretaceous, Paleogene. Krzysztof Hryniewicz [[email protected]], Institute of Paleobiology, Polish Academy of Sciences, ul. Twarda 51/55, 00-818 Warszawa, Poland. Kazutaka Amano [[email protected]], Department of Geoscience, Joetsu University of Education, 1Yamayashiki Joetsu City, Niigata 943-8512, Japan. Robert G. Jenkins [[email protected]], School of Natural System, College of Science and Engineering, Kanazawa University, Kanazawa City, Ishikawa 920-1192, Japan. Steffen Kiel [[email protected]], Swedish Museum of Natural History, Department of Palaeobiology, Box 500 07, 104 05 Stockholm, Sweden. Received 23 may 2017, accepted 2 August 2017, available online 31 October 2017. Copyright © 2017 K. Hryniewicz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (for details please see http://creativecommons.org/licenses/by/4.0/), which permits unre- stricted use, distribution, and reproduction in any medium, provided the original author and source are credited. lucinid and thyasirid bivalves, have received less attention, Introduction although often being dominant in some Recent cold seeps Marine chemosynthesis-based ecosystems comprise hydro- (Kharlamenko et al. 2016). Fossil lucinid bivalves are rela- thermal vents (e.g., Van Dover 2000), hydrocarbon seeps tively well known, commonly comprising the main faunal (e.g., Sibuet and Olu 1998; Levin 2005) and wood and nek- element of Cretaceous and Paleogene seeps (Kiel 2013). ton falls (Smith and Baco 2003; Bernardino et al. 2010). The focus of this study are the less well known fos- Hydrocarbon seeps are submarine edifices where low-tem- sil thyasirid seep faunas. Many species are known from perature fluids are released to the water column (Judd Cretaceous to Pleistocene seep deposits worldwide (e.g., and Hovland 2007). These environments are populated by Van Winkle 1919; Yabe and Nomura 1925; Kauffman 1967; faunas dominated by macroinvertebrate species living in Squires and Gring 1996; Goedert et al. 2003; Kiel et al. symbiosis with chemoautotrophic bacteria (Levin 2005), 2008; Amano et al. 2013). Although thyasirids are rarely among which the most iconic are epifaunal and semi-in- common in ancient seep settings, the genus Cretaxinus faunal groups like vestimentiferan tubeworms (Bright and Hryniewicz, Little, and Nakrem, 2014, was reported to be Lallier 2010), vesicomyid clams and bathymodiolin mussels restricted to ancient seep environments, and it is possible (Taylor and Glover 2010) and large abyssochrysoid gas- that one more thyasirid genus occurs at fossil seeps only tropods (Sasaki et al. 2010). Infaunal groups, among them (Nobuhara et al. 2008). Despite a growing volume of data Acta Palaeontol. Pol. 62 (4): 705–728, 2017 https://doi.org/10.4202/app.00390.2017 706 ACTA PALAEONTOLOGICA POLONICA 62 (4), 2017 A 1 u B sh Hon Kumamoto u ok 4 hik 5 u S 6 sh yu 3 East China Sea K 2 Maeshima Bungo Channel 100 km C Maeshima D Mak i Is Bullman land Creek East Twin River d n la Is ra u o h os G Canyon River West Fork 7 of Grays River 2000 m 100 km Fig. 1. A. Map showing some of the fossil seep localities bearing thyasirids examined in this study. Detailed maps of Amakusa area, Kyushu, Japan (B, C), Washington State, USA (D). 1, Colesbukta area, Spitsbergen, Svalbard; 2, Maeshima, Amakusa area, Kyushu, Japan; 3, Tanami, Honshu, Japan; 4, Hokkaido, Japan; 5, Washington State, USA; 6, Montrose, Nebraska, USA; 7, James Ross Basin, Seymour Island, Antarctica. After Campbell 2006 (A) and Goedert and Benham 1999 (D). For detailed list of localities discussed, the reader is refered the Material section, and references therein. on fossil seeps, the taxonomy of thyasirids in these habitats University of California Museum of Paleontology, Berkeley, remains poorly understood. The purpose of this paper is to USA; UMUT, University Museum, University of Tokyo, improve the current knowledge of fossil seep-inhabiting Tokyo, Japan; USNM, United States National Museum thyasirids using newly collected material and museum col- of Natural History, Washington, USA; ZPAL, Institute of lections. Due to an overwhelming number of Neogene seep Paleo biology, Polish Academy of Sciences, Warsaw, Poland. deposits, especially in Japan and the Russian Far East, the current study is restricted to more manageable Cretaceous and Paleogene occurrences. Material Institutional abbreviations.—CSUN, California State This study is based on a collection of specimens from University at Northridge, USA; GPIBo, Steinmann-Institut Cretaceous–Oligocene localities worldwide (Figs. 1, 2). The für Geologie, Mineralogie und Paläontologie, Universität majority of these localities have already been described; Bonn, Germany; JUE, Joetsu University of Education, therefore we only briefly outline the localities and provide Japan; LACMIP, Natural History Museum of Los Angeles references to more detailed descriptions. The localities are County, Los Angeles, USA; MMH; Natural History Mu- listed below in an alphabetical order. seum of Denmark, Geological Museum, Copenhagen, Den- Bear River, southwestern Washington State, USA.— mark; NRM, Swedish Museum of Natural History (Natur- Large seep deposit in an abandoned quarry on the south side historiska riksmuseet), Stockholm, Sweden; PMO, Natural of Bear River in Pacific County, western Washington State, History Museum, University of Oslo, Norway; UCMP, embedded in upper Eocene strata of “Siltstone of Cliff Point” HRYNIEWICZ ET AL.—CRETACEOUS AND PALEOGENE THYASIRID BIVALVES 707 Ma 23.0 Oligocene 33.9 Creek Creek East Twin River R Yayoi Murdock Tappu Eocene Kami-Atsunai S 4, Satsop River Tanami Bullman Kiritachi Paleogene Canyon River Bear River loc. 16504, Canyon River River 56.0 Colesbukta Whiskey Creek Paleocene LACMIP James Ross Basin 66.0 Humptulips Maastrichtian 72.1 Montrose West Fork of Grays River Campanian Maeshima 83.6 Santonian Coniacian 89.8 Late Cretaceous Turonian 93.9 Cenomanian 100.5 Western Kyushu Honshu AntarcticaSvalbard Hokkaido WashingtonState Interior Seaway Fig. 2. Geological ages of the fossil seep localities bearing thyasirids examined in this study. (LACMIP loc. 5802). It contains a diverse fauna dominated occurrences later identified as seep deposits and wood-rich by Bathymodiolus willapaensis; the thyasirids reported sediments (Hryniewicz et al. 2016). The fauna is dominated herein are quite rare (Goedert and Squires 1990; Squires and by C. conradii associated with diverse background species, Goedert 1991; Goedert and Benham 2003; Kiel 2010). chiefly mollusks. Bullman Creek, northwestern Washington State, USA.— East Twin River, northwestern Washington State, USA.— Cold seep limestone found as float on beach terrace approxi- Block of cold-seep limestone found as float along base of mately 1 km east of the mouth of Bullman Creek in Clallam bluff approximately 110 m north and 490 m west of the south- County, northwestern Washington State, derived from the east corner of Section 24, T. 31 N., R. 10 W according to US lower Oligocene Jansen Creek Member of the Makah For- public land description system, approx. 1.6 km east of East ma tion; coordinates: 48°20.798’ N, 124°31.223’ W. Twin River, Clallam County, Washington State. The block Canyon River, western Washington State, USA.—Large comes from the upper part of the Pysht Formation and is of cold seep carbonate block with large thyasirid bivalves ex- late Oligocene age (Nesbitt et al. 2013). posed by natural etching. Found as float on gravel bar, east Humptulips Formation, western Washington State, bank of Canyon River, approximately 100 m upstream from USA.—Our material comes from two distinct localities bridge, coordinates: 47°18.166’ N, 123°30.567’ W; SE ¼ of from the middle Eocene Humptulips Formation in
Recommended publications
  • The Peristerniinae (Mollusca: Gastropoda, Buccinoidea, Fasciolariidae) from the Neogene of Venezuela
    Cainozoic Research, 9(1), pp. 87-99, June 2012 The Peristerniinae (Mollusca: Gastropoda, Buccinoidea, Fasciolariidae) from the Neogene of Venezuela Bernard Landau!* & Geerat J. Vermeij" 1Centro de Geologia da Universidade de Lisboa. Campo Grande, 1749-016 Lisboa, Portugal and International Health Centres, Av. Infante de Henrique 7, Areias São João, P-8200 Albufeira, Portugal; [email protected] 2Department of Geology, University of California at Davis, One Shields Avenue, Davis, CA 95616 USA; gjver- [email protected] *Corresponding author Received: 15 April 2012; revised version accepted 16 April 2012 The Latirus-group of Peristerniinae Tryon, 1881 present in the early Miocene, late Burdigalian, Cantaure Formation assemblage of Ven- ezuela, and other less well-known Venezuelan Miocene assemblages, is described and discussed. Seven species taxa representing three genera are present in the northern Venezuelan Miocene assemblages, six are new to science; Hemipolygona snyderi nov. sp., Hemipoly- gona carrizalensis nov. sp., Polygona praeanapetes nov. sp., Polygona barbascoensis nov. sp., Polygona sepulcralis nov. sp. and Poly- gona buenevaraensis nov. sp. The presence of Pustulatirus tumbeziensis (Olsson, 1932) in the Cantaure Formation of Venezuela is con- firmed. For all three genera, Pustulatirus, Hemipolygona and Polygona these represent the earliest records in the Caribbean portion of the Tropical American Neogene Gatunian biogeographical province. KEY WORDS: Peristerniinae, Mollusca, Miocene, Cantaure Formation, Venezuela, new species Introduction Systematic palaeontology In this paper we continue with the description of the mol- Superfamily Buccinoidea Rafinesque, 1815 luscan assemblage found in the early Miocene, late Burdi- Family Fasciolariidae Gray, 1853 galian, Cantaure Formation of Venezuela, describing the Subfamily Peristerniinae Tryon, 1881 Latirus-group (sensu Vermeij & Snyder, 2006) of Genus Pustulatirus Vermeij & Snyder, 2006 Peristerniinae Tryon, 1881 found in these deposits.
    [Show full text]
  • Biodiversity and Trophic Ecology of Hydrothermal Vent Fauna Associated with Tubeworm Assemblages on the Juan De Fuca Ridge
    Biogeosciences, 15, 2629–2647, 2018 https://doi.org/10.5194/bg-15-2629-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Biodiversity and trophic ecology of hydrothermal vent fauna associated with tubeworm assemblages on the Juan de Fuca Ridge Yann Lelièvre1,2, Jozée Sarrazin1, Julien Marticorena1, Gauthier Schaal3, Thomas Day1, Pierre Legendre2, Stéphane Hourdez4,5, and Marjolaine Matabos1 1Ifremer, Centre de Bretagne, REM/EEP, Laboratoire Environnement Profond, 29280 Plouzané, France 2Département de sciences biologiques, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada 3Laboratoire des Sciences de l’Environnement Marin (LEMAR), UMR 6539 9 CNRS/UBO/IRD/Ifremer, BP 70, 29280, Plouzané, France 4Sorbonne Université, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France 5CNRS, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France Correspondence: Yann Lelièvre ([email protected]) Received: 3 October 2017 – Discussion started: 12 October 2017 Revised: 29 March 2018 – Accepted: 7 April 2018 – Published: 4 May 2018 Abstract. Hydrothermal vent sites along the Juan de Fuca community structuring. Vent food webs did not appear to be Ridge in the north-east Pacific host dense populations of organised through predator–prey relationships. For example, Ridgeia piscesae tubeworms that promote habitat hetero- although trophic structure complexity increased with ecolog- geneity and local diversity. A detailed description of the ical successional stages, showing a higher number of preda- biodiversity and community structure is needed to help un- tors in the last stages, the food web structure itself did not derstand the ecological processes that underlie the distribu- change across assemblages.
    [Show full text]
  • Prof. Henry Ramos Matthews” of the Instituto De Ciências Do Mar, Universidade Federal Do Ceará
    MOLLUCAN TYPES IN THE MALACOLOGICAL COLLECTION “PROF. HENRY RAMOS MATTHEWS” OF THE INSTITUTO DE CIÊNCIAS DO MAR, UNIVERSIDADE FEDERAL DO CEARÁ Arquivos de Ciências do Mar Espécimes-tipos de moluscos da Coleção Malacologica professor “Henry Ramos Matthews” do Instituto de Ciências do Mar, Universidade Federal do Ceará Cristina de Almeida Rocha-Barreira1, Helena Matthews-Cascon2, Luzymeire da Silva Souza1 ABSTRACT The molluscan types incorporated during the last 50 years in the Malacological Collection “Prof. Henry Ramos Matthews” were inventoried and the original descriptions of each species presented. This Collection presents 18 types, representing 11 gastropods species and one scaphopod species: Metula anfractura Matthews & Rios, 1968; Mitra saldanha Matthews & Rios, 1970; Mitra lopesi Matthews & Coelho, 1969; Ancilla faustoi Matthews et al., 1977; Caducifer atlanticus Coelho et al., 1970; Bursa barcellosi Matthews et al., 1973; Bursa pacamoni Matthews & Coelho,1971; Bursa natalensis Coelho & Matthews,1970; Malea noronhensis Kempf & Matthews, 1969; Marginella cloveri Matthews & Rios, 1972; Latirus lacteum Matthews-Cascon et al, 1991; and Dentalium elegantulum Penna- Neme, 1974. Most of the molluscan taxa are from the North and Northeast of Brazil and were described by Dr. Henry Ramos Matthews and his colleagues. Key words: Malacological Collection “Prof. Henry Ramos Matthews’’, name-bearing types, Brazil. RESUMO Os espécimes-tipo de moluscos incorporados ao longo dos últimos 50 anos na Coleção Malacológica “Prof. Henry Ramos Matthews”
    [Show full text]
  • Species Trophic Guild – Nutritional Mode Reference(S) Annelida Polychaeta Siboglinidae Ridgeia Piscesae Symbiotic Jones (1985)*; Southward Et Al
    Species Trophic guild – nutritional mode Reference(s) Annelida Polychaeta Siboglinidae Ridgeia piscesae Symbiotic Jones (1985)*; Southward et al. (1995); Bergquist et al. (2007); this study Maldanidae Nicomache venticola Bacterivore – surface deposit feeder or grazer Blake and Hilbig (1990)*; Bergquist et al. (2007); this study Dorvilleidae Ophryotrocha globopalpata Predator Blake and Hilbig (1990)*; Bergquist et al. (2007); this study Orbiniidae Berkeleyia sp. nov. Scavenger/detritivore – suspension feeder Jumars et al. (2015); this study Hesionidae Hesiospina sp. nov.a Predator Bonifácio et al. (2018)*; this study Phyllodocidae Protomystides verenae Predator Blake and Hilbig (1990)*; Bergquist et al. (2007); this study Polynoidae Branchinotogluma tunnicliffeae Predator Pettibone (1988)*; Bergquist et al. (2007); this study Branchinotogluma sp. Predator – Lepidonotopodium piscesae Predator Pettibone (1988)*; Levesque et al. (2006); Bergquist et al. (2007); this study Levensteiniella kincaidi Predator Pettibone (1985)*; Bergquist et al. (2007); this study Sigalionidae Pholoe courtneyae Predator Blake (1995)*; Sweetman et al. (2013) Syllidae Sphaerosyllis ridgensis Predator Blake and Hilbig (1990)*; Bergquist et al. (2007); this study Alvinellidae Paralvinella dela Bacterivore – surface deposit feeder or grazer; suspension feeder Detinova (1988)*; this study Paralvinella palmiformis Bacterivore – surface deposit feeder or grazer; suspension feeder Desbruyères and Laubier (1986*, 1991); Levesque et al. (2003); this study Paralvinella pandorae Bacterivore – surface deposit feeder or grazer; suspension feeder Desbruyères and Laubier (1986*, 1991); Levesque et al. (2003); this study Paralvinella sulfincola Bacterivore – surface deposit feeder or grazer; suspension feeder Tunnicliffe et al. (1993)*; Levesque et al. (2003); this study Ampharetidae Amphisamytha carldarei Scavenger/detritivore – surface deposit feeder or grazer Stiller et al. (2013)*; McHugh and Tunnicliffe (1994); Bergquist et al.
    [Show full text]
  • 75 the Upper Triassic Events Recorded in Platform and Basin of the Austrian Alps. the Triassic/Jurassic GSSP and Norian/Rhaetian
    ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at und www.zobodat.at Berichte der Geologischen Bundesanstalt (ISSN 1017-8880), Band 111, Wien 2015 STRATI 2015 The Upper Triassic events recorded in platform and basin of the Austrian Alps. The Triassic/Jurassic GSSP and Norian/Rhaetian GSSP candidate Sylvain Richoz & Leopold Krystyn 47 figures Sylvain Richoz - Institute of Earth Sciences, Graz University, Heinrichstraße 26, 8010 Graz, Austria, [email protected] Leopold Krystyn - Department for Palaeontology, Vienna University, Geozentrum, Althansstr. 9, A-1090 Vienna, Austria; [email protected] Contents Abstract 1. Topics and area of the Field Trip 2. Introduction 2.1. The Northern Calcareous Alps 2.2. Principles of the structural evolution 2.3. Triassic depositional realms 2.3.1. General features 2.3.2. The Dachstein Mountains 2.3.3. The Zlambach facies – the deep shelf environment 2.3.4. The Hallstatt facies – the condensed deep shelf environment 2.3.5. The Eiberg Basin 3. The Field Trip 3.1. Shelf margin (Day 1) 3.1.1. Route 3.1.2. Locality 1 – Pötschenhöhe Quarry 3.1.3. Locality 2 – Großer Zlambach 3.1.4. Locality 3 – Steinbergkogel: Proposed Norian/Rhaetian GSSP section 3.1.5. Locality 4 – Gosausee: The Dachstein margin at Gosaukamm 3.2 Lagoon, fringing reef and Eiberg Basin (Day 2) 3.2.1. Route 3.2.2. Locality 5 – Pass Lueg: The classical Lofer cycle 3.2.3. Locality 6 – Adnet 3.2.4. Locality 7 – Steinplatte 3.2.5. Locality 8 – Eiberg 3.3. The Triassic/Jurassic GSSP (Day 3) 3.3.1.
    [Show full text]
  • Skagerrak Interconnecting Grids, Upgrade
    Skagerrak Interconnecting grids, Upgrade An excellent example of the benefits that can be achieved through interconnections. The Skagerrak HVDC transmission system comprises several The system will help overcome distance and grid constraints HVDC links which together provide a total of 1,640 MW trans- while ensuring robust performance, power quality and minimal mission capacity between Kristiansand in southern Norway electrical losses. In the rare case of a power system outage, and Tjele on Denmark’s Jutland peninsula. The link is owned the technology’s ‘black-start’ capability allows for a fast net- by Statnett in Norway, and Energinet.dk in Denmark. work restoration using power from the other end of the link. These factors were essential in the selection of the HVDC Light Skagerrak 1&2 rated 500 MW was commissioned in 1976-77 technology for the fourth Skagerrak HVDC link. and Skagerrak 3, rated 440 MW, became operational in 1993. The latest Skagerrak project was awarded to ABB in 2011, and comprises a fourth link using HVDC Light technology which will operate in a bipole mode together with the Skager- rak 3 HVDC Classic link and a control system upgrade of the latter. This is the first time an HVDC Classic and an HVDC Light link will be tied together in such a bipole configuration. This is possible because of ABB’s advanced MACH control system, which was also used for a Skagerrak 1-2 upgrade in 2007. The new link will boost transmission capacity between the mainly hydroelectric-based Norwegian system and the wind and thermal power-based Danish system by an additional 700 MW with a voltage rating of 500 kV.
    [Show full text]
  • Thyasirid Bivalves from Cretaceous and Paleogene Cold Seeps
    Thyasirid bivalves from Cretaceous and Paleogene cold seeps KRZYSZTOF HRYNIEWICZ, KAZUTAKA AMANO, ROBERT G. JENKINS, and STEFFEN KIEL Hryniewicz, K., Amano, K., Jenkins, R.G., and Kiel, S. 2017. Thyasirid bivalves from Cretaceous and Paleogene cold seeps. Acta Palaeontologica Polonica 62 (4): 705–728. We present a systematic study of thyasirid bivalves from Cretaceous to Oligocene seep carbonates worldwide. Eleven species of thyasirid bivalves are identified belonging to three genera: Conchocele, Maorithyas, and Thyasira. Two spe- cies are new: Maorithyas humptulipsensis sp. nov. from middle Eocene seep carbonates in the Humptulips Formation, Washington State, USA, and Conchocele kiritachiensis sp. nov. from the late Eocene seep deposit at Kiritachi, Hokkaido, Japan. Two new combinations are provided: Conchocele townsendi (White, 1890) from Maastrichtian strata of the James Ross Basin, Antarctica, and Maorithyas folgeri (Wagner and Schilling, 1923) from Oligocene rocks from California, USA. Three species are left in open nomenclature. We show that thyasirids have Mesozoic origins and appear at seeps be- fore appearing in “normal” marine environments. These data are interpreted as a record of seep origination of thyasirids, and their subsequent dispersal to non-seep environments. We discuss the age of origination of thyasirids in the context of the origin of the modern deep sea fauna and conclude that thyasirids could have deep sea origins. This hypothesis is supported by the observed lack of influence of the Cretaceous and Paleogene Oceanic Anoxic Events on the main evolutionary lineages of the thyasirids, as seen in several other members of the deep sea fauna. Key words: Bivalvia, Thyasiridae, cold seeps, deep sea, ecology, evolution, Cretaceous, Paleogene.
    [Show full text]
  • Names of Sub-Areas and Divisions of FAO Fishing Areas 27 and 37 NORTH-EAST ATLANTIC
    Names of Sub-areas and Divisions of FAO fishing areas 27 and 37 NORTH-EAST ATLANTIC Subarea I Barents Sea Subarea II Norwegian Sea, Spitzbergen, and Bear Island Division II a Norwegian Sea Division II b Spitzbergen and Bear Island Subarea III Skagerrak, Kattegat, Sound, Belt Sea, and Baltic Sea; the Sound and Belt together known also as the Transition Area Division III a Skagerrak and Kattegat Division III b,c Sound and Belt Sea or Transition Area Division III b (23) Sound Division III c (22) Belt Sea Division III d (24-32) Baltic Sea Subarea IV North Sea Division IV a Northern North Sea Division IV b Central North Sea Division IV c Southern North Sea Subarea V Iceland and Faroes Grounds Division V a Iceland Grounds Division V b Faroes Grounds Subarea VI Rockall, Northwest Coast of Scotland and North Ireland, the Northwest Coast of Scotland and North Ireland also known as the West of Scotland Division VI a Northwest Coast of Scotland and North Ireland or West of Scotland Division VI b Rockall Subarea VII Irish Sea, West of Ireland, Porcupine Bank, Eastern and Western English Channel, Bristol Channel, Celtic Sea North and South, and Southwest of Ireland - East and West Division VII a Irish Sea Division VII b West of Ireland Division VII c Porcupine Bank Division VII d Eastern English Channel Division VII e Western English Channel Division VII f Bristol Channel Division VII g Celtic Sea North Division VII h Celtic Sea South Division VII j South-West of Ireland - East Division VII k South-West of Ireland - West Subarea VIII Bay of Biscay
    [Show full text]
  • New Records of Non-Indigenous Molluscs from the Eastern Mediterranean Sea
    BioInvasions Records (2018) Volume 7, Issue 3: 245–257 Open Access DOI: https://doi.org/10.3391/bir.2018.7.3.05 © 2018 The Author(s). Journal compilation © 2018 REABIC Research Article New records of non-indigenous molluscs from the eastern Mediterranean Sea Jan Steger1,*, Martina Stockinger1, Angelina Ivkić1,2, Bella S. Galil3 and Paolo G. Albano1 1Department of Palaeontology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria 2Faculty of Geosciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands 3The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel Aviv University, Tel Aviv 69978, Israel Author e-mails: [email protected] (JS), [email protected] (MS), [email protected] (AI), [email protected] (BSG), [email protected] (PGA) *Corresponding author Received: 15 June 2018 / Accepted: 11 July 2018 / Published online: 2 August 2018 Handling editor: Fred Wells Abstract We report new findings of non-indigenous Indo-Pacific molluscs from shallow water habitats off Israel, Greece and Egypt, eastern Mediterranean Sea. The bivalves Pillucina vietnamica Zorina, 1978 and Alveinus miliaceus (Issel, 1869) were collected from sandy bottoms off Israel, whereas Gregariella cf. ehrenbergi (Issel, 1869) was recovered from a buoy originating from Port Said, Egypt, and stranded on the Israeli coast. The three species are first records for the Mediterranean Sea. Additionally, we report range extensions for several gastropods: Varicopeza pauxilla (A. Adams, 1855) is recorded from Israel, Phidiana militaris (Alder and Hancock, 1864) from southern Israel (Ashqelon), and Viriola cf. bayani Jousseaume, 1884 from Israel and Crete. Shells and valves of an unidentified lucinid bivalve morphologically distinct from any known Mediterranean species were found along the Israeli Mediterranean shore.
    [Show full text]
  • Turbinellidae
    WMSDB - Worldwide Mollusc Species Data Base Family: TURBINELLIDAE Author: Claudio Galli - [email protected] (updated 07/set/2015) Class: GASTROPODA --- Clade: CAENOGASTROPODA-HYPSOGASTROPODA-NEOGASTROPODA-MURICOIDEA ------ Family: TURBINELLIDAE Swainson, 1835 (Sea) - Alphabetic order - when first name is in bold the species has images Taxa=276, Genus=12, Subgenus=4, Species=91, Subspecies=13, Synonyms=155, Images=87 aapta , Coluzea aapta M.G. Harasewych, 1986 acuminata, Turbinella acuminata L.C. Kiener, 1840 - syn of: Latirus acuminatus (L.C. Kiener, 1840) aequilonius, Fulgurofusus aequilonius A.V. Sysoev, 2000 agrestis, Turbinella agrestis H.E. Anton, 1838 - syn of: Nicema subrostrata (J.E. Gray, 1839) aldridgei , Vasum aldridgei G.W. Nowell-Usticke, 1969 - syn of: Attiliosa aldridgei (G.W. Nowell-Usticke, 1969) altocanalis , Coluzea altocanalis R.K. Dell, 1956 amaliae , Turbinella amaliae H.C. Küster & W. Kobelt, 1874 - syn of: Hemipolygona amaliae (H.C. Küster & W. Kobelt, 1874) angularis , Coluzea angularis (K.H. Barnard, 1959) angularis , Turbinella angularis L.A. Reeve, 1847 - syn of: Leucozonia nassa (J.F. Gmelin, 1791) angularis riiseana , Turbinella angularis riiseana H.C. Küster & W. Kobelt, 1874 - syn of: Leucozonia nassa (J.F. Gmelin, 1791) angulata , Turbinella angulata (J. Lightfoot, 1786) annulata, Syrinx annulata P.F. Röding, 1798 - syn of: Pustulatirus annulatus (P.F. Röding, 1798) aptos , Columbarium aptos M.G. Harasewych, 1986 - syn of: Coluzea aapta M.G. Harasewych, 1986 ardeola , Vasum ardeola A. Valenciennes, 1832 - syn of: Vasum caestus (W.J. Broderip, 1833) armatum , Vasum armatum (W.J. Broderip, 1833) armigera , Tudivasum armigera A. Adams, 1855 - syn of: Tudivasum armigerum (A. Adams, 1856) armigera , Turbinella armigera J.B.P.A.
    [Show full text]
  • SESSION I : Geographical Names and Sea Names
    The 14th International Seminar on Sea Names Geography, Sea Names, and Undersea Feature Names Types of the International Standardization of Sea Names: Some Clues for the Name East Sea* Sungjae Choo (Associate Professor, Department of Geography, Kyung-Hee University Seoul 130-701, KOREA E-mail: [email protected]) Abstract : This study aims to categorize and analyze internationally standardized sea names based on their origins. Especially noting the cases of sea names using country names and dual naming of seas, it draws some implications for complementing logics for the name East Sea. Of the 110 names for 98 bodies of water listed in the book titled Limits of Oceans and Seas, the most prevalent cases are named after adjacent geographical features; followed by commemorative names after persons, directions, and characteristics of seas. These international practices of naming seas are contrary to Japan's argument for the principle of using the name of archipelago or peninsula. There are several cases of using a single name of country in naming a sea bordering more than two countries, with no serious disputes. This implies that a specific focus should be given to peculiar situation that the name East Sea contains, rather than the negative side of using single country name. In order to strengthen the logic for justifying dual naming, it is suggested, an appropriate reference should be made to the three newly adopted cases of dual names, in the respects of the history of the surrounding region and the names, people's perception, power structure of the relevant countries, and the process of the standardization of dual names.
    [Show full text]
  • Metagenomic Analysis Suggests Broad Metabolic Potential in Extracellular Symbionts of the Bivalve Thyasira Cf
    McCuaig et al. Animal Microbiome (2020) 2:7 Animal Microbiome https://doi.org/10.1186/s42523-020-00025-9 RESEARCH ARTICLE Open Access Metagenomic analysis suggests broad metabolic potential in extracellular symbionts of the bivalve Thyasira cf. gouldi Bonita McCuaig1, Lourdes Peña-Castillo1,2 and Suzanne C. Dufour1* Abstract Background: Next-generation sequencing has opened new avenues for studying metabolic capabilities of bacteria that cannot be cultured. Here, we provide a metagenomic description of chemoautotrophic gammaproteobacterial symbionts associated with Thyasira cf. gouldi, a sediment-dwelling bivalve from the family Thyasiridae. Thyasirid symbionts differ from those of other bivalves by being extracellular, and recent work suggests that they are capable of living freely in the environment. Results: Thyasira cf. gouldi symbionts appear to form mixed, non-clonal populations in the host, show no signs of genomic reduction and contain many genes that would only be useful outside the host, including flagellar and chemotaxis genes. The thyasirid symbionts may be capable of sulfur oxidation via both the sulfur oxidation and reverse dissimilatory sulfate reduction pathways, as observed in other bivalve symbionts. In addition, genes for hydrogen oxidation and dissimilatory nitrate reduction were found, suggesting varied metabolic capabilities under a range of redox conditions. The genes of the tricarboxylic acid cycle are also present, along with membrane bound sugar importer channels, suggesting that the bacteria may be mixotrophic. Conclusions: In this study, we have generated the first thyasirid symbiont genomic resources. In Thyasira cf. gouldi, symbiont populations appear non-clonal and encode genes for a plethora of metabolic capabilities; future work should examine whether symbiont heterogeneity and metabolic breadth, which have been shown in some intracellular chemosymbionts, are signatures of extracellular chemosymbionts in bivalves.
    [Show full text]