Asteroseismology and Interferometry

Total Page:16

File Type:pdf, Size:1020Kb

Asteroseismology and Interferometry The Astronomy and Astrophysics Review (2011) DOI 10.1007/s00159-007-0007-0 REVIEWARTICLE M. S. Cunha · C. Aerts · J. Christensen-Dalsgaard · A. Baglin · L. Bigot · T. M. Brown · C. Catala · O. L. Creevey · A. Domiciano de Souza · P. Eggenberger · P. J. V. Garcia · F. Grundahl · P. Kervella · D. W. Kurtz · P. Mathias · A. Miglio · M. J. P. F. G. Monteiro · G. Perrin · F. P. Pijpers · D. Pourbaix · A. Quirrenbach · K. Rousselet-Perraut · T. C. Teixeira · F. Thevenin´ · M. J. Thompson Asteroseismology and interferometry Received: 17 August 2007 c Springer-Verlag 2007 Abstract Asteroseismology provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Recent developments, including the first systematic studies of solar-like pulsators, have boosted the impact of this field of research within astrophysics and have led to a significant increase in the size of the research community. In the present paper we start by reviewing the ba- sic observational and theoretical properties of classical and solar-like pulsators and present results from some of the most recent and outstanding studies of these stars. We centre our review on those classes of pulsators for which interferometric stud- ies are expected to provide a significant input. We discuss current limitations to asteroseismic studies, including difficulties in mode identification and in the accu- rate determination of global parameters of pulsating stars, and, after a brief review of those aspects of interferometry that are most relevant in this context, anticipate M. S. Cunha (B) · T. C. Teixeira · P. J. V. Garcia Centro de Astrof´ısica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal [email protected] · C. Aerts Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200 D, 3001 Leu- ven, Belgium · C. Aerts Afdeling Sterrenkunde, Radboud University Nijmegen, PO Box 9010, 6500 GL Nijmegen, The Netherlands · J. Christensen-Dalsgaard · F. Grundahl Institut for Fysik og Astronomi, Aarhus Universitet, Aarhus, Denmark · A. Baglin · C. Catala · P. Kervella · G. Perrin LESIA, UMR CNRS 8109, Observatoire de Paris, Paris, France · P. Mathias Observatoire de la Coteˆ d’Azur, UMR 6203, BP 4229, 06304 Nice Cedex 4, France · L. Bigot · F. Thevenin´ · P. Mathias Observatoire de la Coteˆ d’Azur, UMR 6202, BP 4229, 06304 Nice Cedex 4, France · T. M. Brown Las Cumbres Observatory Inc., Goleta, CA 93117, USA · O. L. Creevey High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO 80301, USA · O. L. Creevey 2 M. S. Cunha et al. how interferometric observations may contribute to overcome these limitations. Moreover, we present results of recent pilot studies of pulsating stars involving both asteroseismic and interferometric constraints and look into the future, sum- marizing ongoing efforts concerning the development of future instruments and satellite missions which are expected to have an impact in this field of research. Keywords Stars: variables: general · , Stars: interiors · , Techniques: interfero- metric 1 Introduction 1.1 Historical perspective Periodic variable stars have been known to exist since the seventeenth century, when Jan Fokkens Holwarda realized that the magnitude of Mira, a variable star discovered almost a century earlier by David Fabricius, varied periodically with a period of 11 months (Hoffleit 1997). The periodic variability observed by Hol- warda is intrinsic to Mira and results from consecutive contractions and expan- sions of its surface, associated with waves that propagate within its interior. Stars which owe their variability to this phenomenon are known as pulsating (variable) stars. Despite the early discovery by Holwarda, the understanding that some variable stars owe their variability to intrinsic pulsations came almost three centuries later, following a suggestion by Shapley (1914) driven by the difficulties with recon- ciling the observed variability with the hypothesis of binarity. At about the same time, pulsating stars started being systematically used as tools for astrophysics research following the discovery of the Period-Luminosity relation by Henrietta Leavitt (Leavitt 1908; Pickering 1912). Classical pulsating stars have since been Instituto de Astrofsica de Canarias, Tenerife 38200, Spain · A. Domiciano de Souza Max-Planck-Institut fur¨ Radioastronomie, Auf dem Hugel¨ 69, 53121 Bonn, Germany · P. Eggen- berger Observatoire de Geneve,` 51 chemin des Maillettes, 1290 Sauverny, Switzerland · P. Eggen- berger · A. Miglio Institut d’Astrophysique et de Geophysique´ de l’Universite´ de Liege` Allee´ du 6 Aout,ˆ 17, 4000 Liege,` Belgium · P. J. V. Garcia Departamento de Engenharia F´ısica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal · D. W. Kurtz Centre for Astrophysics, University of Central Lancashire, Preston PR1 2HE, UK · M. J. P. F. G. Monteiro Centro de Astrof´ısica e Departamento de Matematica´ Aplicada da Faculdade de Ciencias,ˆ Uni- versidade do Porto, Porto, Portugal · F. P. Pijpers Space and Atmospheric Physics Group, Imperial College London, Exhibition Road, London SW7 2AZ, UK · D. Pourbaix F.R.S-FNRS, Institut d’Astronomie et d’Astrophysique, Universite´ Libre de Bruxelles, 1050 Brussels, Belgium · A. Quirrenbach Zentrum fur¨ Astronomie der Universitat¨ Heidelberg, Landessternwarte Konigstuhl,¨ 69117 Hei- delberg, Germany · K. Rousselet-Perraut Laboratoire d’Astrophysique de l’Observatoire de Grenoble, BP 53, 38041 Grenoble Cedex 9, France · M. J. Thompson School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Sheffield S3 7RH, UK Asteroseismology and interferometry 3 Fig. 1 Hertzsprung-Russell diagram showing different classes of pulsating stars. Some of these are named after a particular member of the class. Others are acronyms, standing, respectively, for: rapidly oscillating Ap (roAp); Slowly Pulsating B (SPB); subdwarf B variables (sdBV). The group labelled GW Vir includes what has formerly been known as the PNNV stars (for Planetary Nebulae Nuclei Variables), and the variable hot DO white dwarfs (DOV); the DBV and DAV stars are variable DB (helium-rich) and DA (hydrogen-rich) white dwarfs. The parallel long-dashed lines indicate the Cepheid instability strip used as “standard candles” of the Universe and, still today, are of fundamental importance for the determination of astrophysical distances. During the decades that followed the discovery by Henrietta Leavitt, the the- oretical studies of classical pulsating stars were directed towards the mathemati- cal description of the pulsations and the understanding of the mechanism behind their excitation (e.g. Zhevakin 1963, and references therein). In the early 1960s, the discovery and interpretation of solar oscillations (Leighton et al. 1962; Fra- zier (1968); Ulrich (1970)) opened a new era in the study of pulsating stars. So- lar oscillations have been shown to be amazing tools to “look” inside the Sun and image its structure and dynamics. The study of solar oscillations fostered the development of an entire new field of research—known as Helioseismology (e.g. Gough 1977a; Duvall 1982; Duvall et al. 1984; Christensen-Dalsgaard et al. 1985)—which has proved extremely successful in probing the physics of the solar interior (see Christensen-Dalsgaard 2002, for a recent review on helioseismology). Following the success of helioseismology, attempts to use intrinsic oscillations of stars other than the Sun to learn about their internal structure and dynamics have led to the development of Asteroseismology. However, the road-map to success of asteroseismology proved much harder, as a result of the limitations brought about by our incapacity to resolve distant stars, and also by the limited number of oscillation frequencies observed in most of them. In fact, even though many different classes of pulsating stars are presently known—most of these are shown in Fig. 1—not all classes of pulsators are suitable for asteroseismic studies (cf. Sect. 1.4). The twenty-first century has brought important new developments to astero- seismology. With highly precise spectrometers such as CORALIE and HARPS (at ESO-La Silla), UCLES (at AAT), and UVES (at ESO-Paranal) fully operational, it was finally possible to make clear detections of solar-like oscillations in stars other than the Sun (see Bedding and Kjeldsen 2007, for a recent review), thus confirming earlier evidence, found by different authors with different observing techniques and instruments, of excess power in the oscillation spectra of some of these stars (e.g. Brown et al. 1991; Schou and Buzasi 2001). Our understanding of the Sun and solar oscillations, as well as the tools developed in the context of helioseismology, make us confident that the detection of solar-like pulsations in stars other than the Sun will lead to major developments in our understanding of stellar structure, dynamics and evolution. 1.2 Stellar modelling and the ultimate goal of asteroseismology Broadly speaking, “classical” stellar observables, such as the effective tempera- ture, gravity and metallicity, are insensitive to the details of the internal structure 4 M. S. Cunha et al. of stars, and do not provide sufficient constraints for the determination of the basic stellar parameters, not to mention the calibration of parameters commonly used in stellar modelling. Pulsation frequencies, on the other hand, are very sensitive to the details of the internal structure of stars. Each individual frequency probes
Recommended publications
  • Mathématiques Et Espace
    Atelier disciplinaire AD 5 Mathématiques et Espace Anne-Cécile DHERS, Education Nationale (mathématiques) Peggy THILLET, Education Nationale (mathématiques) Yann BARSAMIAN, Education Nationale (mathématiques) Olivier BONNETON, Sciences - U (mathématiques) Cahier d'activités Activité 1 : L'HORIZON TERRESTRE ET SPATIAL Activité 2 : DENOMBREMENT D'ETOILES DANS LE CIEL ET L'UNIVERS Activité 3 : D'HIPPARCOS A BENFORD Activité 4 : OBSERVATION STATISTIQUE DES CRATERES LUNAIRES Activité 5 : DIAMETRE DES CRATERES D'IMPACT Activité 6 : LOI DE TITIUS-BODE Activité 7 : MODELISER UNE CONSTELLATION EN 3D Crédits photo : NASA / CNES L'HORIZON TERRESTRE ET SPATIAL (3 ème / 2 nde ) __________________________________________________ OBJECTIF : Détermination de la ligne d'horizon à une altitude donnée. COMPETENCES : ● Utilisation du théorème de Pythagore ● Utilisation de Google Earth pour évaluer des distances à vol d'oiseau ● Recherche personnelle de données REALISATION : Il s'agit ici de mettre en application le théorème de Pythagore mais avec une vision terrestre dans un premier temps suite à un questionnement de l'élève puis dans un second temps de réutiliser la même démarche dans le cadre spatial de la visibilité d'un satellite. Fiche élève ____________________________________________________________________________ 1. Victor Hugo a écrit dans Les Châtiments : "Les horizons aux horizons succèdent […] : on avance toujours, on n’arrive jamais ". Face à la mer, vous voyez l'horizon à perte de vue. Mais "est-ce loin, l'horizon ?". D'après toi, jusqu'à quelle distance peux-tu voir si le temps est clair ? Réponse 1 : " Sans instrument, je peux voir jusqu'à .................. km " Réponse 2 : " Avec une paire de jumelles, je peux voir jusqu'à ............... km " 2. Nous allons maintenant calculer à l'aide du théorème de Pythagore la ligne d'horizon pour une hauteur H donnée.
    [Show full text]
  • Insidethisissue
    Publications and Products of April / avril 2005 Volume/volume 99 Number/numéro 2 [711] The Royal Astronomical Society of Canada Observer’s Calendar — 2005 The award-winning RASC Observer's Calendar is your annual guide Created by the Royal Astronomical Society of Canada and richly illustrated by photographs from leading amateur astronomers, the calendar pages are packed with detailed information including major lunar and planetary conjunctions, The Journal of the Royal Astronomical Society of Canada Le Journal de la Société royale d’astronomie du Canada meteor showers, eclipses, lunar phases, and daily Moonrise and Moonset times. Canadian and US holidays are highlighted. Perfect for home, office, or observatory. Individual Order Prices: $16.95 Cdn/ $13.95 US RASC members receive a $3.00 discount Shipping and handling not included. The Beginner’s Observing Guide Extensively revised and now in its fifth edition, The Beginner’s Observing Guide is for a variety of observers, from the beginner with no experience to the intermediate who would appreciate the clear, helpful guidance here available on an expanded variety of topics: constellations, bright stars, the motions of the heavens, lunar features, the aurora, and the zodiacal light. New sections include: lunar and planetary data through 2010, variable-star observing, telescope information, beginning astrophotography, a non-technical glossary of astronomical terms, and directions for building a properly scaled model of the solar system. Written by astronomy author and educator, Leo Enright; 200 pages, 6 colour star maps, 16 photographs, otabinding. Price: $19.95 plus shipping & handling. Skyways: Astronomy Handbook for Teachers Teaching Astronomy? Skyways Makes it Easy! Written by a Canadian for Canadian teachers and astronomy educators, Skyways is Canadian curriculum-specific; pre-tested by Canadian teachers; hands-on; interactive; geared for upper elementary, middle school, and junior-high grades; fun and easy to use; cost-effective.
    [Show full text]
  • Astronomy Astrophysics
    A&A 432, 219–224 (2005) Astronomy DOI: 10.1051/0004-6361:20041125 & c ESO 2005 Astrophysics Whole Earth Telescope observations of BPM 37093: A seismological test of crystallization theory in white dwarfs A. Kanaan1, A. Nitta2,D.E.Winget3,S.O.Kepler4, M. H. Montgomery5,3,T.S.Metcalfe6,3, H. Oliveira1, L. Fraga1,A.F.M.daCosta4,J.E.S.Costa4,B.G.Castanheira4, O. Giovannini7,R.E.Nather3, A. Mukadam3, S. D. Kawaler8, M. S. O’Brien8,M.D.Reed8,9,S.J.Kleinman2,J.L.Provencal10,T.K.Watson11,D.Kilkenny12, D. J. Sullivan13, T. Sullivan13, B. Shobbrook14,X.J.Jiang15, B. N. Ashoka16,S.Seetha16, E. Leibowitz17, P. Ibbetson17, H. Mendelson17,E.G.Meištas18,R.Kalytis18, D. Ališauskas19, D. O’Donoghue12, D. Buckley12, P. Martinez12,F.vanWyk12,R.Stobie12, F. Marang12,L.vanZyl12,W.Ogloza20, J. Krzesinski20,S.Zola20,21, P. Moskalik22,M.Breger23,A.Stankov23, R. Silvotti24,A.Piccioni25, G. Vauclair26,N.Dolez26, M. Chevreton27, J. Deetjen28, S. Dreizler28,29,S.Schuh28,29, J. M. Gonzalez Perez30, R. Østensen31, A. Ulla32, M. Manteiga32, O. Suarez32,M.R.Burleigh33, and M. A. Barstow33 Received 20 April 2004 / Accepted 31 October 2004 Abstract. BPM 37093 is the only hydrogen-atmosphere white dwarf currently known which has sufficient mass (∼1.1 M)to theoretically crystallize while still inside the ZZ Ceti instability strip (Teff ∼ 12 000 K). As a consequence, this star represents our first opportunity to test crystallization theory directly. If the core is substantially crystallized, then the inner boundary for each pulsation mode will be located at the top of the solid core rather than at the center of the star, affecting mainly the average period spacing.
    [Show full text]
  • The SONG Prototype: Efficiency of a Robotic Telescope
    To appear in “RevMexAA (Serie de Conferencias), 00, 14 (2015)” RevMexAA(SC) THE SONG PROTOTYPE: EFFICIENCY OF A ROBOTIC TELESCOPE M. F. Andersen,1 F. Grundahl,1 A. H. Beck,1 and P. Pall´e2 RESUMEN El telescopio prototipo del Grupo de la Red de Observaciones Estelares (SONG) ha operado en modo cient`ıfico desde marzo de 2014. El primer a˜no de observaciones se ha dedicado por completo al espectr`ografo. Varios objetos de inter`es astros`ısmico se han observado para verificaci`on cient`ıfica y t`ecnica. Algunas estrellas subgi- gantes brillantes y una gigante roja fueron elegidas para prueba ya que las oscilaciones en estas estrellas tienen grandes amplitudes y los periodos son lo suficientemente largos para ser detectados. Estos objetos ser`an usados para evaluar los instrumentos ya que las observaciones a largo plazo de los objetos de estudio podr`ıan presentar algunos problemas. En este art`ıculo describimos como opera el primero de los telescopios de la Red SONG para ilustrar la eficiencia y las capacidades de un telescopio robtico. ABSTRACT The Stellar Observations Network Group prototype telescope at the Teide Observatory has been operating in scientific mode since March 2014. The first year of observations has entirely been carried out using the high resolution echelle spectrograph. Several asteroseismic targets were selected for scientific and technical verification. A few bright subgiants and one red giant were chosen since the oscillations in these stars have large amplitudes and the periods long enough to easily be detected. These targets would also be used for evaluation of the instruments since long term observations of single targets would reveal potential problems.
    [Show full text]
  • FIXED STARS a SOLAR WRITER REPORT for Churchill Winston WRITTEN by DIANA K ROSENBERG Page 2
    FIXED STARS A SOLAR WRITER REPORT for Churchill Winston WRITTEN BY DIANA K ROSENBERG Page 2 Prepared by Cafe Astrology cafeastrology.com Page 23 Churchill Winston Natal Chart Nov 30 1874 1:30 am GMT +0:00 Blenhein Castle 51°N48' 001°W22' 29°‚ 53' Tropical ƒ Placidus 02' 23° „ Ý 06° 46' Á ¿ 21° 15° Ý 06' „ 25' 23° 13' Œ À ¶29° Œ 28° … „ Ü É Ü 06° 36' 26' 25° 43' Œ 51'Ü áá Œ 29° ’ 29° “ àà … ‘ à ‹ – 55' á á 55' á †32' 16° 34' ¼ † 23° 51'Œ 23° ½ † 06' 25° “ ’ † Ê ’ ‹ 43' 35' 35' 06° ‡ Š 17° 43' Œ 09° º ˆ 01' 01' 07° ˆ ‰ ¾ 23° 22° 08° 02' ‡ ¸ Š 46' » Ï 06° 29°ˆ 53' ‰ Page 234 Astrological Summary Chart Point Positions: Churchill Winston Planet Sign Position House Comment The Moon Leo 29°Le36' 11th The Sun Sagittarius 7°Sg43' 3rd Mercury Scorpio 17°Sc35' 2nd Venus Sagittarius 22°Sg01' 3rd Mars Libra 16°Li32' 1st Jupiter Libra 23°Li34' 1st Saturn Aquarius 9°Aq35' 5th Uranus Leo 15°Le13' 11th Neptune Aries 28°Ar26' 8th Pluto Taurus 21°Ta25' 8th The North Node Aries 25°Ar51' 8th The South Node Libra 25°Li51' 2nd The Ascendant Virgo 29°Vi55' 1st The Midheaven Gemini 29°Ge53' 10th The Part of Fortune Capricorn 8°Cp01' 4th Chart Point Aspects Planet Aspect Planet Orb App/Sep The Moon Semisquare Mars 1°56' Applying The Moon Trine Neptune 1°10' Separating The Moon Trine The North Node 3°45' Separating The Moon Sextile The Midheaven 0°17' Applying The Sun Semisquare Jupiter 0°50' Applying The Sun Sextile Saturn 1°52' Applying The Sun Trine Uranus 7°30' Applying Mercury Square Uranus 2°21' Separating Mercury Opposition Pluto 3°49' Applying Venus Sextile
    [Show full text]
  • The Brightest Stars Seite 1 Von 9
    The Brightest Stars Seite 1 von 9 The Brightest Stars This is a list of the 300 brightest stars made using data from the Hipparcos catalogue. The stellar distances are only fairly accurate for stars well within 1000 light years. 1 2 3 4 5 6 7 8 9 10 11 12 13 No. Star Names Equatorial Galactic Spectral Vis Abs Prllx Err Dist Coordinates Coordinates Type Mag Mag ly RA Dec l° b° 1. Alpha Canis Majoris Sirius 06 45 -16.7 227.2 -8.9 A1V -1.44 1.45 379.21 1.58 9 2. Alpha Carinae Canopus 06 24 -52.7 261.2 -25.3 F0Ib -0.62 -5.53 10.43 0.53 310 3. Alpha Centauri Rigil Kentaurus 14 40 -60.8 315.8 -0.7 G2V+K1V -0.27 4.08 742.12 1.40 4 4. Alpha Boötis Arcturus 14 16 +19.2 15.2 +69.0 K2III -0.05 -0.31 88.85 0.74 37 5. Alpha Lyrae Vega 18 37 +38.8 67.5 +19.2 A0V 0.03 0.58 128.93 0.55 25 6. Alpha Aurigae Capella 05 17 +46.0 162.6 +4.6 G5III+G0III 0.08 -0.48 77.29 0.89 42 7. Beta Orionis Rigel 05 15 -8.2 209.3 -25.1 B8Ia 0.18 -6.69 4.22 0.81 770 8. Alpha Canis Minoris Procyon 07 39 +5.2 213.7 +13.0 F5IV-V 0.40 2.68 285.93 0.88 11 9. Alpha Eridani Achernar 01 38 -57.2 290.7 -58.8 B3V 0.45 -2.77 22.68 0.57 144 10.
    [Show full text]
  • Solar Writer Report for Abraham Lincoln
    FIXED STARS A Solar Writer Report for Abraham Lincoln Written by Diana K Rosenberg Compliments of:- Stephanie Johnson Seeing With Stars Astrology PO Box 159 Stepney SA 5069 Australia Tel/Fax: +61 (08) 8331 3057 Email: [email protected] Web: www.esotech.com.au Page 2 Abraham Lincoln Natal Chart 12 Feb 1809 12:40:56 PM UT +0:00 near Hodgenville 37°N35' 085°W45' Tropical Placidus 22' 13° 08°ˆ ‡ 17' ¾ 06' À ¿É ‰ 03° ¼ 09° 00° 06° 09°06° ˆ ˆ ‡ † ‡ 25° 16' 41'08' 40' † 01' 09' Œ 29' ‰ 9 10 23° ¶ 8 27°‰ 11 Ï 27° 01' ‘ ‰02' á 7 12 ‘ áá 23° á 23° ¸ 23°Š27' á Š à „ 28' 28' 6 18' 1 10°‹ º ‹37' 13° 05' ‹ 5 Á 22° ½ 27' 2 4 01' Ü 3 07° Œ ƒ » 09' 23° 09° Ý Ü 06° 16' 06' Ê 00°ƒ 13° 22' Ý 17' 08°‚ Page 23 Astrological Summary Chart Point Positions: Abraham Lincoln Planet Sign Position House Comment The Moon Capricorn 27°Cp01' 12th The Sun Aquarius 23°Aq27' 12th read into 1st House Mercury Pisces 10°Pi18' 1st Venus Aries 7°Ar27' 1st read into 2nd House Mars Libra 25°Li29' 8th Jupiter Pisces 22°Pi05' 1st Saturn Sagittarius 3°Sg08' 9th read into 10th House Uranus Scorpio 9°Sc40' 8th Neptune Sagittarius 6°Sg41' 9th read into 10th House Pluto Pisces 13°Pi37' 1st The North Node Scorpio 6°Sc09' 8th The South Node Taurus 6°Ta09' 2nd The Ascendant Aquarius 23°Aq28' 1st The Midheaven Sagittarius 8°Sg22' 10th The Part of Fortune Capricorn 27°Cp02' 12th Chart Point Aspects Planet Aspect Planet Orb App/Sep The Moon Square Mars 1°32' Separating The Moon Conjunction The Part of Fortune 0°00' Applying The Sun Trine Mars 2°02' Applying The Sun Conjunction The Ascendant
    [Show full text]
  • Arxiv:0908.2624V1 [Astro-Ph.SR] 18 Aug 2009
    Astronomy & Astrophysics Review manuscript No. (will be inserted by the editor) Accurate masses and radii of normal stars: Modern results and applications G. Torres · J. Andersen · A. Gim´enez Received: date / Accepted: date Abstract This paper presents and discusses a critical compilation of accurate, fun- damental determinations of stellar masses and radii. We have identified 95 detached binary systems containing 190 stars (94 eclipsing systems, and α Centauri) that satisfy our criterion that the mass and radius of both stars be known to ±3% or better. All are non-interacting systems, so the stars should have evolved as if they were single. This sample more than doubles that of the earlier similar review by Andersen (1991), extends the mass range at both ends and, for the first time, includes an extragalactic binary. In every case, we have examined the original data and recomputed the stellar parameters with a consistent set of assumptions and physical constants. To these we add interstellar reddening, effective temperature, metal abundance, rotational velocity and apsidal motion determinations when available, and we compute a number of other physical parameters, notably luminosity and distance. These accurate physical parameters reveal the effects of stellar evolution with un- precedented clarity, and we discuss the use of the data in observational tests of stellar evolution models in some detail. Earlier findings of significant structural differences between moderately fast-rotating, mildly active stars and single stars, ascribed to the presence of strong magnetic and spot activity, are confirmed beyond doubt. We also show how the best data can be used to test prescriptions for the subtle interplay be- tween convection, diffusion, and other non-classical effects in stellar models.
    [Show full text]
  • Arxiv:2006.10868V2 [Astro-Ph.SR] 9 Apr 2021 Spain and Institut D’Estudis Espacials De Catalunya (IEEC), C/Gran Capit`A2-4, E-08034 2 Serenelli, Weiss, Aerts Et Al
    Noname manuscript No. (will be inserted by the editor) Weighing stars from birth to death: mass determination methods across the HRD Aldo Serenelli · Achim Weiss · Conny Aerts · George C. Angelou · David Baroch · Nate Bastian · Paul G. Beck · Maria Bergemann · Joachim M. Bestenlehner · Ian Czekala · Nancy Elias-Rosa · Ana Escorza · Vincent Van Eylen · Diane K. Feuillet · Davide Gandolfi · Mark Gieles · L´eoGirardi · Yveline Lebreton · Nicolas Lodieu · Marie Martig · Marcelo M. Miller Bertolami · Joey S.G. Mombarg · Juan Carlos Morales · Andr´esMoya · Benard Nsamba · KreˇsimirPavlovski · May G. Pedersen · Ignasi Ribas · Fabian R.N. Schneider · Victor Silva Aguirre · Keivan G. Stassun · Eline Tolstoy · Pier-Emmanuel Tremblay · Konstanze Zwintz Received: date / Accepted: date A. Serenelli Institute of Space Sciences (ICE, CSIC), Carrer de Can Magrans S/N, Bellaterra, E- 08193, Spain and Institut d'Estudis Espacials de Catalunya (IEEC), Carrer Gran Capita 2, Barcelona, E-08034, Spain E-mail: [email protected] A. Weiss Max Planck Institute for Astrophysics, Karl Schwarzschild Str. 1, Garching bei M¨unchen, D-85741, Germany C. Aerts Institute of Astronomy, Department of Physics & Astronomy, KU Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium and Department of Astrophysics, IMAPP, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands G.C. Angelou Max Planck Institute for Astrophysics, Karl Schwarzschild Str. 1, Garching bei M¨unchen, D-85741, Germany D. Baroch J. C. Morales I. Ribas Institute of· Space Sciences· (ICE, CSIC), Carrer de Can Magrans S/N, Bellaterra, E-08193, arXiv:2006.10868v2 [astro-ph.SR] 9 Apr 2021 Spain and Institut d'Estudis Espacials de Catalunya (IEEC), C/Gran Capit`a2-4, E-08034 2 Serenelli, Weiss, Aerts et al.
    [Show full text]
  • Korotangi (The Dove)
    Korotangi (The Dove) The legend of the korotangi is that it came in the Tainui waka as one of the heirlooms which had been blessed by the high priests in Hawaiiki and which in the new country, would ensure good hunting for the tribe. It was said that the Kawhia and Waikato tribes, who descended from Tainui stock, took the korotangi into battle with them, setting it up on a hill and consulting it as an oracle. The "korotangi" can mean "to roar and rush as the sound of water" in either Maori, Hawaiian or Samoan has been used to support the legend that it was bought on the Tainui waka from afar. The expression “Korotangi” is still used as a term of endearment, or as a simile for any object treasured or loved. A mother lamenting the death of a child will, in her lament, refer to her lost one as her “Korotangi.” 1 No doubt the simile has its origin in the above tradition, which also seems to be a fea- sible explanation of the waiata. It certainly explains the reference to the eat- ing of the pohata leaves and the huahua from Rotorua, as well as the allu- sion to the taumata (hill-top or ridge). The Korotangi, Tawhio Throne, and the art work depicting The Lost Child TeManawa and Korotangi, arrived at Turangawaewae Marae on the same day. The Heart of Heaven is in part the sharing of the walk of TeManawa who lives these things, has fulfilled prophesy. Her journey has been documented since 1992 to current.
    [Show full text]
  • M.A. De Leo-Winkler · G. Wilson · W. Green L. Chute · E. Henderson · T
    THE VIBRATING UNIVERSE M.A. De Leo-Winkler · G. Wilson · W. Green L. Chute · E. Henderson · T. Mitchell Audio: Blitz - I love you, man 0 Sound is a vibration M.A. De Leo-Winkler · G. Wilson · W. Green L. Chute · E. Henderson · T. Mitchell Thunderstorms create light and vibrations. M.A. De Leo-Winkler · G. Wilson · W. Green L. Chute · E. Henderson · T. Mitchell https://www.youtube.com/watch?v=KgIKVWGLUUo&t=668s 1 M.A. De Leo-Winkler · G. Wilson · W. Green L. Chute · E. Henderson · T. Mitchell Auroras are lights formed in Earth’s atmosphere when hit by energy from the Sun. They also create light and vibrations. [Real radio sound] M.A. De Leo-Winkler · G. Wilson · W. Green L. Chute · E. Henderson · T. Mitchell Auroras M.A. De Leo-Winkler · G. Wilson · W. Green L. Chute · E. Henderson · T. Mitchell Stephane Vetter - Iceland Video: Chris Tandy - Aurora Borealis in Norway Audio: European Space Agency 2 M.A. De Leo-Winkler · G. Wilson · W. Green L. Chute · E. Henderson · T. Mitchell Let’s leave Earth on a rocket! M.A. De Leo-Winkler · G. Wilson · W. Green L. Chute · E. Henderson · T. Mitchell Video: ChrisIMAX Tandy - Aurora Borealis in Norway Audio: European Space Agency 3 M.A. De Leo-Winkler · G. Wilson · W. Green L. Chute · E. Henderson · T. Mitchell Let’s travel super fast to the Sun ! M.A. De Leo-Winkler · G. Wilson · W. Green L. Chute · E. Henderson · T. Mitchell 4 M.A. De Leo-Winkler · G. Wilson · W. Green L. Chute · E. Henderson · T.
    [Show full text]
  • Dazzling Desire
    VISITOR GUIDE DAZZLING 18/10/2017 14/01/2018 DESIRE Diamonds and their emotional meaning Please return this visitor guide after your visit. Do you want to read the texts again? You can download them from our website (www.mas.be) or buy the publication in the MASshop. Photo credits 13. / 15. © Antwerp, MAS – 32. © Chantilly, Musée Condé – 53. © Vienna, Museum für Völker- kunde (Foto-archiv nr.5125) – 54. © St-Petersburg, Russisch Etnografisch Museum (nr. 850-139) – 56. © Collection Staf Daems – 71. Private collection - 103. © Antwerp, Cathedral – Chapel of Our Lady/Brussels, KIK-IRPA, cliché KN008630 – 126. © Lennik, Kasteel van Gaasbeek – 131. © Antwerp, Royal Museum of Fine Arts (560) / Lucas Art in Flanders – 134. © Rotterdam, Museum Boijmans Van Beuningen, foto: Studio Tromp, Rotterdam – 148. © Vienna, Bundesmobilienverwaltung – Hofburg Wien, Sisi-Museum, Photographer: Gerald Schedy – 153. © Brussels, Archives of the Royal Palace – 160. © Victoria, Royal BC Museum and Archives (193501-001) – 161. / 162. © Washington, Library of Congress, Prints & Photographs Division, Edward S. Curtis Collection – 167. © St-Petersburg, The State Hermitage Museum (GE-1352) – 170. © St-Petersburg, The State Hermitage Museum (ERR-1104) – 171. © London, Royal Collection Trust / © Her Majesty Queen Elizabeth II 2017 (RCIN 2153177) – 176. © Geneva, Herbert Horovitz Collection – 179. © Brussels, Chancellery of the prime minister – 184. © bpk – Bildagentur – 185. © Julien Mattia / ZUMA Wire / Alamy Live News – 193. © Tervuren, Royal Museum for Central Afrika, Casimir Zagourski (EP.0.0.3342) – 194. © Washington, Smithsonian Institution, National Museum of African Art (Eliot Elisofon Photographic Archives) – 200. – 204. © Kadir van Lohuizen / NOOR – 205. © Felipe Dana / AP / Isopix – b. / n2. © Antwerp, Hendrik Conscience Heritage Library – c.
    [Show full text]