Hexb Enzyme Deficiency Leads to Lysosomal Abnormalities in Radial Glia and Microglia in Zebrafish Brain Development
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Counsyl Foresight™ Carrier Screen
The Counsyl Foresight™ Carrier Screen 180 Kimball Way | South San Francisco, CA 94080 www.counsyl.com | [email protected] | (888) COUNSYL The Counsyl Foresight Carrier Screen - Disease Reference Book 11-beta-hydroxylase-deficient Congenital Adrenal Hyperplasia .................................................................................................................................................................................... 8 21-hydroxylase-deficient Congenital Adrenal Hyperplasia ...........................................................................................................................................................................................10 6-pyruvoyl-tetrahydropterin Synthase Deficiency ..........................................................................................................................................................................................................12 ABCC8-related Hyperinsulinism........................................................................................................................................................................................................................................ 14 Adenosine Deaminase Deficiency .................................................................................................................................................................................................................................... 16 Alpha Thalassemia............................................................................................................................................................................................................................................................. -
Oral Ambroxol Increases Brain Glucocerebrosidase Activity in a Nonhuman Primate
Received: 17 November 2016 | Revised: 24 January 2017 | Accepted: 12 February 2017 DOI 10.1002/syn.21967 SHORT COMMUNICATION Oral ambroxol increases brain glucocerebrosidase activity in a nonhuman primate Anna Migdalska-Richards1 | Wai Kin D. Ko2 | Qin Li2,3 | Erwan Bezard2,3,4,5 | Anthony H. V. Schapira1 1Department of Clinical Neurosciences, Institute of Neurology, University College Abstract London, NW3 2PF, United Kingdom Mutations in the glucocerebrosidase 1 (GBA1) gene are related to both Parkinson disease (PD) and 2Motac Neuroscience, Manchester, United Gaucher disease (GD). In both cases, the condition is associated with deficiency of glucocerebrosi- Kingdom dase (GCase), the enzyme encoded by GBA1. Ambroxol is a small molecule chaperone that has 3 Institute of Laboratory Animal Sciences, been shown in mice to cross the blood-brain barrier, increase GCase activity and reduce alpha- China Academy of Medical Sciences, Beijing synuclein protein levels. In this study, we analyze the effect of ambroxol treatment on GCase City, People’s Republic of China activity in healthy nonhuman primates. We show that daily administration of ambroxol results in 4University de Bordeaux, Institut des Maladies Neurodeg en eratives, UMR 5293, increased brain GCase activity. Our work further indicates that ambroxol should be investigated as Bordeaux F-33000, France a novel therapy for both PD and neuronopathic GD in humans. 5CNRS, Institut des Maladies Neurodeg en eratives, UMR 5293, Bordeaux F-33000, France KEYWORDS Correspondence ambroxol, glucocerebrosidase, -
Assessment of a Targeted Gene Panel for Identification of Genes Associated with Movement Disorders
Supplementary Online Content Montaut S, Tranchant C, Drouot N, et al; French Parkinson’s and Movement Disorders Consortium. Assessment of a targeted gene panel for identification of genes associated with movement disorders. JAMA Neurol. Published online June 18, 2018. doi:10.1001/jamaneurol.2018.1478 eMethods. Supplemental methods. eTable 1. Name, phenotype and inheritance of the genes included in the panel. eTable 2. Probable pathogenic variants identified in a cohort of 23 patients with cerebellar ataxia using WES analysis. eTable 3. Negative cases in a cohort of 23 patients with cerebellar ataxia studied using WES analysis. eTable 4. Variants of unknown significance (VUSs) identified in the cohort. eFigure 1. Examples of pedigrees of cases with identified causative variants. eFigure 2. Pedigrees suggesting mendelian inheritance in negative cases. eFigure 3. Examples of pedigrees of cases with identified VUSs. eResults. Supplemental results. This supplementary material has been provided by the authors to give readers additional information about their work. © 2018 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/26/2021 eMethods. Supplemental methods Patients selection In the multicentric, prospective study, patients were selected from 25 French, 1 Luxembourg and 1 Algerian tertiary MDs centers between September 2014 and July 2016. Inclusion criteria were patients (1) who had developed one or several chronic MDs (2) with an age of onset below 40 years and/or presence of a family history of MDs. Patients suffering from essential tremor, tic or Gilles de la Tourette syndrome, pure cerebellar ataxia or with clinical/paraclinical findings suggestive of an acquired cause were excluded. -
Sphingolipids and Cell Signaling: Relationship Between Health and Disease in the Central Nervous System
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 April 2021 doi:10.20944/preprints202104.0161.v1 Review Sphingolipids and cell signaling: Relationship between health and disease in the central nervous system Andrés Felipe Leal1, Diego A. Suarez1,2, Olga Yaneth Echeverri-Peña1, Sonia Luz Albarracín3, Carlos Javier Alméciga-Díaz1*, Angela Johana Espejo-Mojica1* 1 Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., 110231, Colombia; [email protected] (A.F.L.), [email protected] (D.A.S.), [email protected] (O.Y.E.P.) 2 Faculty of Medicine, Universidad Nacional de Colombia, Bogotá D.C., Colombia; [email protected] (D.A.S.) 3 Nutrition and Biochemistry Department, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., Colombia; [email protected] (S.L.A.) * Correspondence: [email protected]; Tel.: +57-1-3208320 (Ext 4140) (C.J.A-D.). [email protected]; Tel.: +57-1-3208320 (Ext 4099) (A.J.E.M.) Abstract Sphingolipids are lipids derived from an 18-carbons unsaturated amino alcohol, the sphingosine. Ceramide, sphingomyelins, sphingosine-1-phosphates, gangliosides and globosides, are part of this group of lipids that participate in important cellular roles such as structural part of plasmatic and organelle membranes maintaining their function and integrity, cell signaling response, cell growth, cell cycle, cell death, inflammation, cell migration and differentiation, autophagy, angiogenesis, immune system. The metabolism of these lipids involves a broad and complex network of reactions that convert one lipid into others through different specialized enzymes. Impairment of sphingolipids metabolism has been associated with several disorders, from several lysosomal storage diseases, known as sphingolipidoses, to polygenic diseases such as diabetes and Parkinson and Alzheimer diseases. -
GM2 Gangliosidoses: Clinical Features, Pathophysiological Aspects, and Current Therapies
International Journal of Molecular Sciences Review GM2 Gangliosidoses: Clinical Features, Pathophysiological Aspects, and Current Therapies Andrés Felipe Leal 1 , Eliana Benincore-Flórez 1, Daniela Solano-Galarza 1, Rafael Guillermo Garzón Jaramillo 1 , Olga Yaneth Echeverri-Peña 1, Diego A. Suarez 1,2, Carlos Javier Alméciga-Díaz 1,* and Angela Johana Espejo-Mojica 1,* 1 Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; [email protected] (A.F.L.); [email protected] (E.B.-F.); [email protected] (D.S.-G.); [email protected] (R.G.G.J.); [email protected] (O.Y.E.-P.); [email protected] (D.A.S.) 2 Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 110231, Colombia * Correspondence: [email protected] (C.J.A.-D.); [email protected] (A.J.E.-M.); Tel.: +57-1-3208320 (ext. 4140) (C.J.A.-D.); +57-1-3208320 (ext. 4099) (A.J.E.-M.) Received: 6 July 2020; Accepted: 7 August 2020; Published: 27 August 2020 Abstract: GM2 gangliosidoses are a group of pathologies characterized by GM2 ganglioside accumulation into the lysosome due to mutations on the genes encoding for the β-hexosaminidases subunits or the GM2 activator protein. Three GM2 gangliosidoses have been described: Tay–Sachs disease, Sandhoff disease, and the AB variant. Central nervous system dysfunction is the main characteristic of GM2 gangliosidoses patients that include neurodevelopment alterations, neuroinflammation, and neuronal apoptosis. Currently, there is not approved therapy for GM2 gangliosidoses, but different therapeutic strategies have been studied including hematopoietic stem cell transplantation, enzyme replacement therapy, substrate reduction therapy, pharmacological chaperones, and gene therapy. -
Genetics and Epigenetics in Parkinson´S Disease
Genetics and epigenetics in Parkinson´s disease. Luis Navarro Sánchez. Thesis supervisor: Jordi Pérez Tur. Unitat de Genètica Molecular, Institut de Biomedicina de València, CSIC. Doctoral studies: Biotechnology. Facultat de Ciències Biològiques, Universitat de València. Tras preguntas y más preguntas y miedo y nervios y ansiedad y más ansiedad y bloqueos y periodos depresivos y tristeza y mucha, pero mucha, mierda… acabas. Tarde y reventado, pero acabas. Y lo único que quieres es pasar página y que esto no te pase más nunca. ¿Y? Pues que te surgen más preguntas y más miedo y más nervios…. Y te das cuenta de que vives en un puto bucle científico que se está comiendo tu vida. ¿Y? No lo sé, estoy en ello. Terapia y medicación, supongo. Aunque la autodestrucción y los realities son muy apetecibles. En primer lugar, las formalidades. Gracias Jordi por dejarme que trabajara en la UGM. A estas alturas, creo que los dos nos habremos planteado muchas veces si fue una buena decisión, pero ya da igual. A continuación, el momento pasteleo, aunque si no sé dar un abrazo, no penséis que esto me va a salir fluido. Y menos aún, estando sobrio. Y que no se me enfade nadie si no he puesto su nombre o si no he escrito un parrafazo lacrimógeno y azucarado exaltando la belleza de nuestra relación. Si dejo que leas esto, significa que también eres importante para mí. Lo mejor de todo este tiempo sois, de calle, vosotros y vosotras: Bea, Carolina, Eva, Fer, LauraA, LauraG, María, Marta, Pili, Silvia, Vicente/Andreu y VicenteH. -
DNA Sequence Analysis of Spontaneous Mutagenesis in Saccharomyces Cerevisiae
Copyright 1998 by the Genetics Society of America DNA Sequence Analysis of Spontaneous Mutagenesis in Saccharomyces cerevisiae Bernard A. Kunz, Karthikeyan Ramachandran and Edward J. Vonarx School of Biological and Chemical Sciences, Deakin University, Geelong, Victoria, 3217, Australia ABSTRACT To help elucidate the mechanisms involved in spontaneous mutagenesis, DNA sequencing has been applied to characterize the types of mutation whose rates are increased or decreased in mutator or antimutator strains, respectively. Increased spontaneous mutation rates point to malfunctions in genes that normally act to reduce spontaneous mutation, whereas decreased rates are associated with defects in genes whose products are necessary for spontaneous mutagenesis. In this article, we survey and discuss the mutational speci®cities conferred by mutator and antimutator genes in the budding yeast Saccharomyces cerevisiae. The implications of selected aspects of the data are considered with respect to the mechanisms of spontaneous mutagenesis. PONTANEOUS mutations play a fundamental role in the production of single and multiple base pair alter- S in evolution and have been implicated in aging, ations (Ripley and Glickman 1983; Kunkel 1990). In- carcinogenesis, and human genetic disease (Harmon sertions of transposable elements generally constitute 1981; Kirkwood 1989; Cooper and Krawczak 1990; larger sequence changes in DNA. Although transposon Arber 1991; Drake 1991a; Loeb 1991, 1994; Win- movement can be a relatively infrequent event, transpo- tersberger 1991; Caskey et al. 1992; Strauss 1992). sition rates may be increased by the presence of DNA They are thought to originate as a consequence of intra- damage, including that which occurs spontaneously cellular events, including the formation of DNA lesions, (Bradshaw and McEntee 1989; Kunz et al. -
Diagnostic Methods for Lysosomal Storage Disease
Reports of Biochemistry & Molecular Biology Vol.7, No.2, Jan 2019 Review article www.RBMB.net Diagnostic methods for Lysosomal Storage Disease Armin Mokhtariye1,3, Lida Hagh-Nazari1, Abdol-Reza Varasteh2, Fatemeh Keyfi*3 Abstract Lysosomal storage disorders (LSD) are a class of metabolic disturbance in which manifested by the accumulation of large molecules (complex lipids, glycoproteins, glycosaminoglycans, etc.) in lysosomes. LSDs have a wide range of clinical symptoms that may contain organ dysfunction, neurological and skeletal disorders. The first stage of diagnosis is clinically suspected by a physician. Next stage is enzyme activity assays including Fluorometry and MS/MS methods. These methods usually placed in newborn program screening. The second laboratory diagnostic stage is molecular examination (RFLP-PCR and ARMS-PCR, Mutations Scanning Methods, DNA sequencing, MLPA and NGS methods) that is confirmation of the enzyme assays. In this article, routine diagnostic methods for LSDs were discussed. The gold standard for enzyme activity assay and molecular diagnosis is TMS and NGS, respectively. Keywords: Diagnostic methods, Enzyme activity, Lysosomal storage disease, Molecular assay. Introduction Pompe disease is a rare and neuromuscular The last operators in the endocytic process are disorder due to a lack or decrease of the acid alpha lysosomes that cleavage the large molecules into glucosidase (GAA) that leads to a deposit of simpler component (1). Hydrolytic enzymes are glycogen in lysosomes of many tissues, particularly proprietary for multiple substrates in the lysosomes- heart and skeletal muscle (6, 7). This enzyme is which are activated in the acidic pH (between 4.5 coded by GAA gene, located on chromosome 17 and 5.0) in the organelles' intracellular (1). -
Polymorphisms in the Glucocerebrosidase Gene And
BMC Medical Genetics BioMed Central Technical advance Open Access Polymorphisms in the glucocerebrosidase gene and pseudogene urge caution in clinical analysis of Gaucher disease allele c.1448T>C (L444P) Justin T Brown*, Cora Lahey, Walairat Laosinchai-Wolf and Andrew G Hadd Address: Asuragen, Inc., Austin, Texas, USA Email: Justin T Brown* - [email protected]; Cora Lahey - [email protected]; Walairat Laosinchai- Wolf - [email protected]; Andrew G Hadd - [email protected] * Corresponding author Published: 03 August 2006 Received: 17 March 2006 Accepted: 03 August 2006 BMC Medical Genetics 2006, 7:69 doi:10.1186/1471-2350-7-69 This article is available from: http://www.biomedcentral.com/1471-2350/7/69 © 2006 Brown et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Gaucher disease is a potentially severe lysosomal storage disorder caused by mutations in the human glucocerebrosidase gene (GBA). We have developed a multiplexed genetic assay for eight diseases prevalent in the Ashkenazi population: Tay-Sachs, Gaucher type I, Niemann- Pick types A and B, mucolipidosis type IV, familial dysautonomia, Canavan, Bloom syndrome, and Fanconi anemia type C. This assay includes an allelic determination for GBA allele c.1448T>C (L444P). The goal of this study was to clinically evaluate this assay. Methods: Biotinylated, multiplex PCR products were directly hybridized to capture probes immobilized on fluorescently addressed microspheres. After incubation with streptavidin- conjugated fluorophore, the reactions were analyzed by Luminex IS100. -
Molecular Therapy for Lysosomal Storage Diseases
Chapter 24 Molecular Therapy for Lysosomal Storage Diseases Daisuke Tsuji and Kohji Itoh Additional information is available at the end of the chapter http://dx.doi.org/10.5772/54074 1. Introduction Lysosomes are organella involving the catabolism of biomolecules extracellularly and intra‐ cellularly incorporated, which contain more than 60 distinct acidic hydrolases (lysosomal enzymes) and their co-factors. Lysosomal storage diseases (LSDs) are caused by germ-line gene mutations encoding lysosomal enzymes, their activator proteins, integral membrane proteins, cholesterol transporters and proteins concerning intracellular trafficking of lysoso‐ mal enzymes [1,2]. The LSDs associate with excessive accumulation of natural substrates, in‐ cluding glycoconjugates (glycosphingolipids, oligosaccharides derived from glycoproteins, and glycosaminoglycans from proteoglycans) as well as heterogeneous manifestations in both visceral and nervous systems [1,2]. LSDs comprise greater than 40 diseases, of which incidence is about 1 per 100 thousand births, and recognized as so-called ‘Orphan diseases’. In the biosynthesis of lysosomal matrix enzymes, newly synthesized enzymes are N-glyco‐ sylated in the endoplasmic reticulum (ER) and then phosphorylated in the Golgi apparatus on the 6 position of the terminal mannose residues (M6P) via two step reactions catalyzed by Golgi-localized phosphotransferase and uncovering enzyme necessary to expose the ter‐ minal M6P residues [3,4]. The M6P-carrying enzymes then bind the cation-dependent man‐ nose 6-phosphate receptor (CD-M6PR) at physiological pH in the Golgi. The enzyme– receptor complex is then transported to late-endosomes where the M6P-carrying enzymes dissociate from the receptor at acidic pH, while the CD-M6PR then traffics back to the Golgi as a shuttle. -
Protein Network Analyses of Pulmonary Endothelial Cells In
www.nature.com/scientificreports OPEN Protein network analyses of pulmonary endothelial cells in chronic thromboembolic pulmonary hypertension Sarath Babu Nukala1,8,9*, Olga Tura‑Ceide3,4,5,9, Giancarlo Aldini1, Valérie F. E. D. Smolders2,3, Isabel Blanco3,4, Victor I. Peinado3,4, Manuel Castell6, Joan Albert Barber3,4, Alessandra Altomare1, Giovanna Baron1, Marina Carini1, Marta Cascante2,7,9 & Alfonsina D’Amato1,9* Chronic thromboembolic pulmonary hypertension (CTEPH) is a vascular disease characterized by the presence of organized thromboembolic material in pulmonary arteries leading to increased vascular resistance, heart failure and death. Dysfunction of endothelial cells is involved in CTEPH. The present study describes for the frst time the molecular processes underlying endothelial dysfunction in the development of the CTEPH. The advanced analytical approach and the protein network analyses of patient derived CTEPH endothelial cells allowed the quantitation of 3258 proteins. The 673 diferentially regulated proteins were associated with functional and disease protein network modules. The protein network analyses resulted in the characterization of dysregulated pathways associated with endothelial dysfunction, such as mitochondrial dysfunction, oxidative phosphorylation, sirtuin signaling, infammatory response, oxidative stress and fatty acid metabolism related pathways. In addition, the quantifcation of advanced oxidation protein products, total protein carbonyl content, and intracellular reactive oxygen species resulted increased -
DNA Repair Mechanisms and the Bypass of DNA Damage in Saccharomyces Cerevisiae
YEASTBOOK GENOME ORGANIZATION & INTEGRITY DNA Repair Mechanisms and the Bypass of DNA Damage in Saccharomyces cerevisiae Serge Boiteux* and Sue Jinks-Robertson†,1 *Centre National de la Recherche Scientifique UPR4301 Centre de Biophysique Moléculaire, 45071 Orléans cedex 02, France, and yDepartment of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710 ABSTRACT DNA repair mechanisms are critical for maintaining the integrity of genomic DNA, and their loss is associated with cancer predisposition syndromes. Studies in Saccharomyces cerevisiae have played a central role in elucidating the highly conserved mech- anisms that promote eukaryotic genome stability. This review will focus on repair mechanisms that involve excision of a single strand from duplex DNA with the intact, complementary strand serving as a template to fill the resulting gap. These mechanisms are of two general types: those that remove damage from DNA and those that repair errors made during DNA synthesis. The major DNA-damage repair pathways are base excision repair and nucleotide excision repair, which, in the most simple terms, are distinguished by the extent of single-strand DNA removed together with the lesion. Mistakes made by DNA polymerases are corrected by the mismatch repair pathway, which also corrects mismatches generated when single strands of non-identical duplexes are exchanged during homologous recombination. In addition to the true repair pathways, the postreplication repair pathway allows lesions or structural aberrations that block replicative DNA polymerases to be tolerated. There are two bypass mechanisms: an error-free mechanism that involves a switch to an undamaged template for synthesis past the lesion and an error-prone mechanism that utilizes specialized translesion synthesis DNA polymerases to directly synthesize DNA across the lesion.