Categorical Quantum Mechanics an Introduction

Total Page:16

File Type:pdf, Size:1020Kb

Categorical Quantum Mechanics an Introduction Categorical Quantum Mechanics An Introduction Lectured by David Reutter and Jamie Vicary Notes by Chris Heunen and Jamie Vicary Department of Computer Science, University of Oxford 16 Lectures, Hilary Term 2019 1 The idea for this book came from a mini-course at a spring school in 2010, aimed at beginning graduate students from various fields. We first developed the notes in 2012, when they formed the basis for a graduate course at the Department of Computer Science in Oxford, which has run every year since. As of 2016 a version of this course has also run in the School of Informatics in Edinburgh. The text formed the basis for postgraduate summer and winter schools in Dalhousie, Pisa, and Palmse as well, and has improved with feedback from all these students. In selecting the material, we have strived to strike a balance between theory and application. Applications are interspersed throughout the main text and exercises, but at the same time, the theory aims at maximum reasonable generality. The emphasis is slightly on the theory, because there are so many applications that we can only hint at them. Proofs are written out in full, excepting a handful that are beyond the scope of this book, and a couple of chores that are left as exercises. We have tried to assign appropriate credit, including references, in historical notes at the end of each chapter. Of course the responsibility for mistakes remains entirely ours, and we hope that readers will point them out to us. To make this book as self-contained as possible, there is a zeroth chapter that briefly defines all prerequisites and fixes notation. This text would not exist were it not for the motivation of Bob Coecke. Between inception and publication of this book, he and Aleks Kissinger wrote another one, that targets a different audience but covers similar material [44]. Thanks are also due to the students who let us use them as guinea pigs for testing out this material. Finally, we are enormously grateful to John-Mark Allen, Pablo Andres Martinez, Miriam Backens, Bruce Bartlett, Oscar Cunningham, Brendan Fong, Pau Enrique Moliner, Tobias Fritz, Peter Hines, Martti Karvonen, Alex Kavvos, Aleks Kissinger, Bert Lindenhovius, Daniel Marsden, Alex Merry, Vaia Patta, David Reutter, Francisco Rios, Peter Selinger, Sean Tull, Dominic Verdon, Linde Wester and Vladimir Zamdzhiev for careful reading and useful feedback on early versions. Chris Heunen and Jamie Vicary Edinburgh and Oxford, December 2018 Introduction Physical systems cannot be studied in isolation. After all, we can only observe their behaviour with respect to other systems, such as a measurement device. The central premise of this book is that the ability to group individual systems into compound systems should be taken seriously. We adopt the action of grouping systems together as a primitive notion, and investigate models of quantum theory from there. The judicious language for this story is that of categories. Category theory teaches that a lot can be learned about a given type of mathematical species by studying how specimens of the species interact with each other, and it provides a potent instrument to discover patterns in these interactions. No knowledge of specimens’ insides is needed; in fact, this often only leads to tunnel vision. The methods of categories might look nothing like what you would expect from a treatise on quantum theory. But a crucial theme of quantum theory naturally fits with our guiding principle of compositionality: entanglement says that complete knowledge of the parts is not enough to determine the whole. In providing an understanding of the way physical systems interact, category theory draws closely on mathematics and computer science as well as physics. The unifying language of categories accentuates connections between its subjects. In particular, all physical systems are really quantum systems, including those in computer science. This book applies its foundations to describe protocols and algorithms that leverage quantum theory. Operational foundations An operational scientist tries to describe the world in terms of operations she can perform. The only things one is allowed to talk about are such operations – preparing a physical system in some state, manipulating a physical system via some experimental setup, or measuring a physical quantity – and their outcomes, or what can be derived from those outcomes by mathematical reasoning. This is a very constructive way of doing science. After all, these operations and outcomes are what really matter when you build a machine, design a protocol, or otherwise put your knowledge of nature to practical use. But traditional quantum theory contains many ingredients for which we have no operational explanation, even though many people have tried to find one. For example, if states are unit vectors in a Hilbert space, what are the other vectors? If a measurement is a hermitian operator on a Hilbert space, what do other operators signify? Why do we work with complex numbers, when at the end of 2 3 the day all probabilities are real numbers? Categories offer a way out of these details, while maintaining powerful conclusions from basic assumptions. They let us focus on what is going on conceptually, showcasing the forest rather than the trees. Graphical calculus When thinking operationally, one cannot help but draw schematic pictures similar to flowcharts to represent what is going on. For example, the quantum teleportation protocol, which we will meet many times in this book, has the following schematic representation: Alice Bob correction measurement preparation We read time upwards, and space extends left-to-right. We say “time” and “space”, but we mean this in a very loose sense. Space is only important in so far as Alice and Bob’s operations influence their part of the system. Time is only important in that there is a notion of start and finish. All that matters in such a diagram is its connectivity. Such operational diagrams seem like informal, non-mathematical devices, useful for illustration and intuitive understanding, but not for precise deduction. In fact, we will see that they can literally be taken as pieces of formal category theory. The “time-like” lines become identity morphisms, and “spatial” separation is modeled by tensor products of objects, leading to monoidal categories. Monoidal categories form a branch that does not play a starring role, or even any role at all, in most standard courses on category theory. Nevertheless, they put working with operational diagrams on a completely rigorous footing. Conversely, the graphical calculus is an effective tool for calculation in monoidal categories. This graphical language is perhaps one of the most compelling features that monoidal categories have to offer. By the end of the book we hope to have convinced you that this is the appropriate language for describing and understanding many phenomena in quantum theory. Nonstandard models Once we have made the jump from operational diagrams to monoidal categories, many options open up. In particular, rather than interpreting diagrams in the category of Hilbert spaces, where quantum theory traditionally takes place, we can instead interpret diagrams in a different 4 category, and thereby explore alternatives to quantum theory. Any calculation that was performed purely using the graphical calculus will also hold without additional work in these novel settings. For example, when we present quantum teleportation in the graphical calculus, and represent it in the category of sets and relations, we obtain a description of classical one-time-pad encryption. Thus we can investigate exactly what it is that makes quantum theory ‘tick’, and what features set it apart from other compositional theories. Thus monoidal categories provide a unifying language for a wide variety of phenomena, drawn from areas including quantum theory, quantum information, logic, topology, representation theory, quantum algebra, quantum field theory, and even linguistics. Within quantum theory, categories highlight different aspects than other approaches. Instruments like tensor products and dual spaces are of course available in the traditional Hilbert space setting, but their relevance is heightened here, as they become the central focus. How we represent mathematical ideas affects how we think about them. Outline After this somewhat roundabout discussion of the subject, it is time to stop beating about the bush, and describe the contents of each chapter. Chapter 0 covers the background material. It fixes notations and conventions while very briefly recalling the basic notions from category theory, linear algebra and quantum theory that we will be using. Our running example categories are introduced: functions between sets, relations between sets, and bounded linear maps between Hilbert spaces. Chapter 1 introduces our main object of study: monoidal categories. These are categories that have a good notion of tensor product, which groups multiple objects together into a single compound object. We also introduce the graphical calculus, the visual notation for monoidal categories. This gives a notion of compositionality for an abstract physical theory. The next few chapters will add more structure, so that the resulting categories exhibit more features of quantum theory. Section 1.3 investigates coherence, a technical topic which is essential to the correctness of the graphical calculus, but which is not needed to understand later chapters. To someone who equates quantum theory with Hilbert space geometry – and this will probably include most readers – the obvious next structure to consider is linear algebra. Chapter 2 shows that important notions such as scalars, superposition, adjoints, and the Born rule can all be represented in the categorical setting. Chapter 3 investigates entanglement in terms of monoidal categories, using the notion of dual object, building up to the important notion of compact category. This structure is quite simple and powerful: it gives rise to abstract notions of trace and dimension, and is already enough to talk about the quantum teleportation protocol.
Recommended publications
  • A Subtle Introduction to Category Theory
    A Subtle Introduction to Category Theory W. J. Zeng Department of Computer Science, Oxford University \Static concepts proved to be very effective intellectual tranquilizers." L. L. Whyte \Our study has revealed Mathematics as an array of forms, codify- ing ideas extracted from human activates and scientific problems and deployed in a network of formal rules, formal definitions, formal axiom systems, explicit theorems with their careful proof and the manifold in- terconnections of these forms...[This view] might be called formal func- tionalism." Saunders Mac Lane Let's dive right in then, shall we? What can we say about the array of forms MacLane speaks of? Claim (Tentative). Category theory is about the formal aspects of this array of forms. Commentary: It might be tempting to put the brakes on right away and first grab hold of what we mean by formal aspects. Instead, rather than trying to present \the formal" as the object of study and category theory as our instrument, we would nudge the reader to consider another perspective. Category theory itself defines formal aspects in much the same way that physics defines physical concepts or laws define legal (and correspondingly illegal) aspects: it embodies them. When we speak of what is formal/physical/legal we inescapably speak of category/physical/legal theory, and vice versa. Thus we pass to the somewhat grammatically awkward revision of our initial claim: Claim (Tentative). Category theory is the formal aspects of this array of forms. Commentary: Let's unpack this a little bit. While individual forms are themselves tautologically formal, arrays of forms and everything else networked in a system lose this tautological formality.
    [Show full text]
  • Compactly Accessible Categories and Quantum Key Distribution
    COMPACTLY ACCESSIBLE CATEGORIES AND QUANTUM KEY DISTRIBUTION CHRIS HEUNEN Institute for Computing and Information Sciences, Radboud University, Nijmegen, the Netherlands Abstract. Compact categories have lately seen renewed interest via applications to quan- tum physics. Being essentially finite-dimensional, they cannot accomodate (co)limit-based constructions. For example, they cannot capture protocols such as quantum key distribu- tion, that rely on the law of large numbers. To overcome this limitation, we introduce the notion of a compactly accessible category, relying on the extra structure of a factorisation system. This notion allows for infinite dimension while retaining key properties of compact categories: the main technical result is that the choice-of-duals functor on the compact part extends canonically to the whole compactly accessible category. As an example, we model a quantum key distribution protocol and prove its correctness categorically. 1. Introduction Compact categories were first introduced in 1972 as a class of examples in the con- text of the coherence problem [Kel72]. They were subsequently studied first categori- cally [Day77, KL80], and later in relation to linear logic [See89]. Interest has rejuvenated since the exhibition of another aspect: compact categories provide a semantics for quantum computation [AC04, Sel07]. The main virtue of compact categories as models of quantum computation is that from very few axioms, surprisingly many consequences ensue that were postulates explicitly in the traditional Hilbert space formalism, e.g. scalars [Abr05]. More- over, the connection to linear logic provides quantum computation with a resource sensitive type theory of its own [Dun06]. Much of the structure of compact categories is due to a seemingly ingrained ‘finite- dimensionality'.
    [Show full text]
  • Categories of Quantum and Classical Channels (Extended Abstract)
    Categories of Quantum and Classical Channels (extended abstract) Bob Coecke∗ Chris Heunen† Aleks Kissinger∗ University of Oxford, Department of Computer Science fcoecke,heunen,[email protected] We introduce the CP*–construction on a dagger compact closed category as a generalisation of Selinger’s CPM–construction. While the latter takes a dagger compact closed category and forms its category of “abstract matrix algebras” and completely positive maps, the CP*–construction forms its category of “abstract C*-algebras” and completely positive maps. This analogy is justified by the case of finite-dimensional Hilbert spaces, where the CP*–construction yields the category of finite-dimensional C*-algebras and completely positive maps. The CP*–construction fully embeds Selinger’s CPM–construction in such a way that the objects in the image of the embedding can be thought of as “purely quantum” state spaces. It also embeds the category of classical stochastic maps, whose image consists of “purely classical” state spaces. By allowing classical and quantum data to coexist, this provides elegant abstract notions of preparation, measurement, and more general quantum channels. 1 Introduction One of the motivations driving categorical treatments of quantum mechanics is to place classical and quantum systems on an equal footing in a single category, so that one can study their interactions. The main idea of categorical quantum mechanics [1] is to fix a category (usually dagger compact) whose ob- jects are thought of as state spaces and whose morphisms are evolutions. There are two main variations. • “Dirac style”: Objects form pure state spaces, and isometric morphisms form pure state evolutions.
    [Show full text]
  • Rewriting Structured Cospans: a Syntax for Open Systems
    UNIVERSITY OF CALIFORNIA RIVERSIDE Rewriting Structured Cospans: A Syntax For Open Systems A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics by Daniel Cicala June 2019 Dissertation Committee: Dr. John C. Baez, Chairperson Dr. Wee Liang Gan Dr. Jacob Greenstein Copyright by Daniel Cicala 2019 The Dissertation of Daniel Cicala is approved: Committee Chairperson University of California, Riverside Acknowledgments First and foremost, I would like to thank my advisor John Baez. In these past few years, I have learned more than I could have imagined about mathematics and the job of doing mathematics. I also want to thank the past and current Baez Crew for the many wonderful discussions. I am indebted to Math Department at the University of California, Riverside, which has afforded me numerous opportunities to travel to conferences near and far. Almost certainly, I would never have had a chance to pursue my doctorate had it not been for my parents who were there for me through every twist and turn on this, perhaps, too scenic route that I traveled. Most importantly, this project would have been impossible without the full-hearted support of my love, Elizabeth. I would also like to acknowledge the previously published material in this disser- tation. The interchange law in Section 3.1 was published in [15]. The material in Sections 3.2 and 3.3 appear in [16]. Also, the ZX-calculus example in Section 4.3 appears in [18]. iv Elizabeth. It’s finally over, baby! v ABSTRACT OF THE DISSERTATION Rewriting Structured Cospans: A Syntax For Open Systems by Daniel Cicala Doctor of Philosophy, Graduate Program in Mathematics University of California, Riverside, June 2019 Dr.
    [Show full text]
  • Most Human Things Go in Pairs. Alcmaeon, ∼ 450 BC
    Most human things go in pairs. Alcmaeon, 450 BC ∼ true false good bad right left up down front back future past light dark hot cold matter antimatter boson fermion How can we formalize a general concept of duality? The Chinese tried yin-yang theory, which inspired Leibniz to develop binary notation, which in turn underlies digital computation! But what's the state of the art now? In category theory the fundamental duality is the act of reversing an arrow: • ! • • • We use this to model switching past and future, false and true, small and big... Every category has an opposite op, where the arrows are C C reversed. This is a symmetry of the category of categories: op : Cat Cat ! and indeed the only nontrivial one: Aut(Cat) = Z=2 In logic, the simplest duality is negation. It's order-reversing: if P implies Q then Q implies P : : and|ignoring intuitionism!|it's an involution: P = P :: Thus if is a category of propositions and proofs, we C expect a functor: : op : C ! C with a natural isomorphism: 2 = 1 : ∼ C This has two analogues in quantum theory. One shows up already in the category of finite-dimensional vector spaces, FinVect. Every vector space V has a dual V ∗. Taking the dual is contravariant: if f : V W then f : W V ! ∗ ∗ ! ∗ and|ignoring infinite-dimensional spaces!|it's an involution: V ∗∗ ∼= V This kind of duality is captured by the idea of a -autonomous ∗ category. Recall that a symmetric monoidal category is roughly a category with a unit object I and a tensor product C 2 C : ⊗ C × C ! C that is unital, associative and commutative up to coherent natural isomorphisms.
    [Show full text]
  • The Way of the Dagger
    The Way of the Dagger Martti Karvonen I V N E R U S E I T H Y T O H F G E R D I N B U Doctor of Philosophy Laboratory for Foundations of Computer Science School of Informatics University of Edinburgh 2018 (Graduation date: July 2019) Abstract A dagger category is a category equipped with a functorial way of reversing morph- isms, i.e. a contravariant involutive identity-on-objects endofunctor. Dagger categor- ies with additional structure have been studied under different names in categorical quantum mechanics, algebraic field theory and homological algebra, amongst others. In this thesis we study the dagger in its own right and show how basic category theory adapts to dagger categories. We develop a notion of a dagger limit that we show is suitable in the following ways: it subsumes special cases known from the literature; dagger limits are unique up to unitary isomorphism; a wide class of dagger limits can be built from a small selection of them; dagger limits of a fixed shape can be phrased as dagger adjoints to a diagonal functor; dagger limits can be built from ordinary limits in the presence of polar decomposition; dagger limits commute with dagger colimits in many cases. Using cofree dagger categories, the theory of dagger limits can be leveraged to provide an enrichment-free understanding of limit-colimit coincidences in ordinary category theory. We formalize the concept of an ambilimit, and show that it captures known cases. As a special case, we show how to define biproducts up to isomorphism in an arbitrary category without assuming any enrichment.
    [Show full text]
  • Grothendieck and the Six Operations
    The Fifth International Conference on History of Modern Mathematics Xi’an, China August 18–24, 2019 Grothendieck and the six operations Luc Illusie Université Paris-Sud Plan 1. Serre’s duality theorem 2. Derived categories: Grothendieck’s revolution 3. The f ! functor: duality in the coherent setting 4. Duality in étale cohomology and the six operations 5. Further developments 1. Serre’s duality theorem Theorem 1 (ICM Amsterdam, 1954) k algebraically closed, X =k smooth, projective, irreducible, of dimension m, _ V a vector bundle on X , V = Hom(V ; OX ), i i 1 Ω := Λ ΩX =k . Then: m m (a) dimk H (X ; Ω ) = 1; (b) For all q 2 Z, the pairing Hq(X ; V ) ⊗ Hm−q(X ; V _ ⊗ Ωm) ! Hm(X ; Ωm)(!∼ k) is perfect. Remarks (a) Serre had previously proved (FAC) that, for any coherent sheaf q q F on X , and all q, dimk H (X ; F) < 1 and H (X ; F) = 0 for q > m. (b) Serre doesn’t exhibit a distinguished basis of Hm(X ; Ωm). Proof by induction on m, his vanishing theorems on Hq(X ; F(n)) for q > 0 and n large play a key role. Construction of a distinguished basis crucial in further work by Grothendieck et al. (c) Serre proved analogue for X =C smooth, compact analytic, V a vector bundle on X (Comm. Helv., 1955). Quite different techniques. Th. 1 revisited by Grothendieck: 1955-56, Sém. Bourbaki 149, May 1957 X =k smooth, projective, irreducible, dimension m as above. Theorem 2 (Grothendieck, loc. cit., Th.
    [Show full text]
  • Thom-Sebastiani and Duality for Matrix Factorizations, and Results on the Higher Structures of the Hochschild Invariants by Anatoly Preygel
    Thom-Sebastiani and Duality for Matrix Factorizations, and Results on the Higher Structures of the Hochschild Invariants by Anatoly Preygel Submitted to the Department of Mathematics on March 30, 2012, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract The derived category of a hypersurface has an action by \cohomology operations" k[[β]], deg β = 2, underlying the 2-periodic structure on its category of singularities (as matrix factorizations). We prove a Thom-Sebastiani type Theorem, identifying the k[[β]]-linear tensor products of these dg categories with coherent complexes on the zero locus of the sum potential on the product (with a support condition), and identify the dg category of colimit-preserving k[[β]]-linear functors between Ind-completions with Ind-coherent complexes on the zero locus of the difference potential (with a support condition). These results imply the analogous statements for the 2-periodic dg categories of matrix factorizations. We also present a viewpoint on matrix factorizations in terms of (formal) groups actions on categories that is conducive to formulating functorial statements and in particular to the computation of higher algebraic structures on Hochschild invariants. Some applications include: we refine and establish the expected computation of 2-periodic Hochschild invariants of matrix factorizations; we show that the category of matrix factorizations is smooth, and is proper when the critical locus is proper; we show how Calabi-Yau structures on matrix factorizations arise from volume forms on the total space; we establish a version of Kn¨orrer Periodicity for eliminating metabolic quadratic bundles over a base.
    [Show full text]
  • DUALITY for SCHEMES 0DWE Contents 1. Introduction 2 2
    DUALITY FOR SCHEMES 0DWE Contents 1. Introduction 2 2. Dualizing complexes on schemes 2 3. Right adjoint of pushforward 5 4. Right adjoint of pushforward and restriction to opens 8 5. Right adjoint of pushforward and base change, I 11 6. Right adjoint of pushforward and base change, II 16 7. Right adjoint of pushforward and trace maps 19 8. Right adjoint of pushforward and pullback 21 9. Right adjoint of pushforward for closed immersions 23 10. Right adjoint of pushforward for closed immersions and base change 26 11. Right adjoint of pushforward for finite morphisms 27 12. Right adjoint of pushforward for proper flat morphisms 29 13. Right adjoint of pushforward for perfect proper morphisms 33 14. Right adjoint of pushforward for effective Cartier divisors 34 15. Right adjoint of pushforward in examples 35 16. Upper shriek functors 39 17. Properties of upper shriek functors 46 18. Base change for upper shriek 50 19. A duality theory 52 20. Glueing dualizing complexes 52 21. Dimension functions 58 22. Dualizing modules 60 23. Cohen-Macaulay schemes 62 24. Gorenstein schemes 63 25. Gorenstein morphisms 64 26. More on dualizing complexes 69 27. Duality for proper schemes over fields 69 28. Relative dualizing complexes 72 29. The fundamental class of an lci morphism 77 30. Extension by zero for coherent modules 78 31. Preliminaries to compactly supported cohomology 84 32. Compactly supported cohomology for coherent modules 87 33. Duality for compactly supported cohomology 91 34. Lichtenbaum’s theorem 94 35. Other chapters 95 References 96 This is a chapter of the Stacks Project, version fac02ecd, compiled on Sep 14, 2021.
    [Show full text]
  • Ramified Class Field Theory and Duality Over Finite Fields 3
    RAMIFIED CLASS FIELD THEORY AND DUALITY OVER FINITE FIELDS RAHUL GUPTA, AMALENDU KRISHNA Abstract. We prove a duality theorem for the p-adic ´etale motivic coho- mology of a variety U which is the complement of a divisor on a smooth projective variety over Fp. This extends the duality theorems of Milne and 1 Jannsen-Saito-Zhao. The duality introduces a filtration on Het´ (U, Q~Z). We identify this filtration to the classically known Matsuda filtration when the reduced part of the divisor is smooth. We prove a reciprocity theorem for the idele class groups with modulus introduced by Kerz-Zhao and R¨ulling-Saito. As an application, we derive the failure of Nisnevich descent for Chow groups with modulus. Contents 1. Introduction 1 2. Relative Milnor K-theory 6 3. The idele class group of Kerz-Zhao 9 4. Comparison theorem for cohomology of K-sheaves 12 5. Relative logarithmic Hodge-Witt sheaves 16 6. Cartier map for twisted de Rham-Witt complex 22 7. The pairing of cohomology groups 27 8. Perfectness of the pairing 30 9. Reciprocity theorem for CKS(XSD) 35 10. Counterexamples to Nisnevich descent 41 References 42 Introduction arXiv:2104.03029v1 [math.AG] 7 Apr 2021 1. The objective of this paper is to study the duality and reciprocity theorems for non- complete smooth varieties over finite fields and draw consequences. Below we describe the contexts and statements of our main results. 1.1. The duality theorem. Let k be a finite field of characteristic p and X a smooth r projective variety of dimension d over k.
    [Show full text]
  • Categories for the Practising Physicist
    Categories for the practising physicist Bob Coecke and Eric´ Oliver Paquette OUCL, University of Oxford coecke/[email protected] Summary. In this chapter we survey some particular topics in category theory in a somewhat unconventional manner. Our main focus will be on monoidal categories, mostly symmetric ones, for which we propose a physical interpretation. Special attention is given to the category which has finite dimensional Hilbert spaces as objects, linear maps as morphisms, and the tensor product as its monoidal structure (FdHilb). We also provide a detailed discussion of the category which has sets as objects, relations as morphisms, and the cartesian product as its monoidal structure (Rel), and thirdly, categories with manifolds as objects and cobordisms between these as morphisms (2Cob). While sets, Hilbert spaces and manifolds do not share any non-trivial common structure, these three categories are in fact structurally very similar. Shared features are diagrammatic calculus, compact closed structure and particular kinds of internal comonoids which play an important role in each of them. The categories FdHilb and Rel moreover admit a categorical matrix calculus. Together these features guide us towards topological quantum field theories. We also discuss posetal categories, how group represen- tations are in fact categorical constructs, and what strictification and coherence of monoidal categories is all about. In our attempt to complement the existing literature we omitted some very basic topics. For these we refer the reader to other available sources. 0 Prologue: cooking with vegetables Consider a ‘raw potato’. Conveniently, we refer to it as A. Raw potato A admits several states e.g.
    [Show full text]
  • 6 Serre Duality
    6 Serre duality Recall the famous Poincar´eduality, which is a basic result on the structure of singular homology and cohomology groups of manifolds: Let X be an n-dimensional orientable closed manifold. Then for any integer i i,wehaveH (X, R) Hn i(X, R). ' − n i Thanks to the universal coefficient theorem, the right-hand-side is isomorphic to H − (X, R)_, the dual of the (n i)-th cohomology group. Assume that X is a smooth manifold. Then − one may interpret this duality as a perfect pairing as follows. Applying de Rham’s the- i i orem, one may identify H (X, R)=HdR(X, R), and hence, the composition of the cup product map and the integration map Hi(X, R) n i n ⇥ H − (X, R) H (X, R) R defined by (⌘,⇠) (⌘ ⇠) gives a perfect ! ! 7! X ^ pairing. R Since the sheaf cohomology generalizes the singular cohomology, we may expect there is an analogous “duality” theorem for varieties/schemes – at least, under mild assumptions on the underlying space. Serre duality is a special case of the duality called the coherent duality in a much general setting. It is based on earlier works in several complex variables, however, we will observe it algebraically. One di↵erence between the Poincar´eduality and the Serre duality is the role of the “dualizing sheaf”. We will see that the dualizing sheaf coincides with the canonical sheaf when the underlying space X is a nonsingular variety over an algebraically closed field. n First, we begin with the duality on the projective space.
    [Show full text]