Hopf algebra approach to Feynman diagram calculations KURUSCH EBRAHIMI-FARD1 Universit¨at Bonn - Physikalisches Institut Nussallee 12, D-53115 Bonn, Germany DIRK KREIMER2 C.N.R.S.-I.H.E.S.´ Le Bois-Marie, 35, Route de Chartres F-91440 Bures-sur-Yvette, France December 6, 2005 J. Phys. A: Math. Gen., 38, (2005), R385-R406. Abstract The Hopf algebra structure underlying Feynman diagrams which governs the pro- cess of renormalization in perturbative quantum field theory is reviewed. Recent arXiv:hep-th/0510202v2 7 Dec 2005 progress is briefly summarized with an emphasis on further directions of research. Keywords: perturbative renormalization, Feynman diagrams, Hopf algebra of renormalization, Rota– Baxter algebra, Spitzer’s identity, Atkinson’s theorem, Baker–Campbell–Hausdorff formula, Birkhoff decom- position, Hochschild cohomology, Dyson–Schwinger equation PACS numbers: 02.10.Hh, 02.10.Ox, 11.10.-z, 11.10.Gh
[email protected]; currently visiting the Fields Institute, Toronto, Canada.
[email protected] and
[email protected], Center for Math.Phys., Boston University. Hopf algebra approach to Feynman diagram calculations, December 6, 2005 1 Contents 1 Introduction and Overview 2 2 From the Lie and Hopf algebras of graphs to Bogoliubov’s formula 7 2.1 The Pre-Lie Structure of Feynman Graphs . ..... 8 2.2 Bogoliubov’s recursive subtraction formula . .......... 11 3 Example: QED 14 4 Renormalization as a factorization problem 17 5 Diffeomorphisms of physical parameters 20 6 The role of Hochschild cohomology 21 A Basic facts about general Rota–Baxter algebras 22 1 Introduction and Overview Quantum field theory (QFT) by now has a long and outstandingly successful history in all theories of physics.