Hyperfine Splitting in Non-Relativistic Bound States Marc E. Baker Doctor
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effective Quantum Field Theories Thomas Mannel Theoretical Physics I (Particle Physics) University of Siegen, Siegen, Germany
Generating Functionals Functional Integration Renormalization Introduction to Effective Quantum Field Theories Thomas Mannel Theoretical Physics I (Particle Physics) University of Siegen, Siegen, Germany 2nd Autumn School on High Energy Physics and Quantum Field Theory Yerevan, Armenia, 6-10 October, 2014 T. Mannel, Siegen University Effective Quantum Field Theories: Lecture 1 Generating Functionals Functional Integration Renormalization Overview Lecture 1: Basics of Quantum Field Theory Generating Functionals Functional Integration Perturbation Theory Renormalization Lecture 2: Effective Field Thoeries Effective Actions Effective Lagrangians Identifying relevant degrees of freedom Renormalization and Renormalization Group T. Mannel, Siegen University Effective Quantum Field Theories: Lecture 1 Generating Functionals Functional Integration Renormalization Lecture 3: Examples @ work From Standard Model to Fermi Theory From QCD to Heavy Quark Effective Theory From QCD to Chiral Perturbation Theory From New Physics to the Standard Model Lecture 4: Limitations: When Effective Field Theories become ineffective Dispersion theory and effective field theory Bound Systems of Quarks and anomalous thresholds When quarks are needed in QCD É. T. Mannel, Siegen University Effective Quantum Field Theories: Lecture 1 Generating Functionals Functional Integration Renormalization Lecture 1: Basics of Quantum Field Theory Thomas Mannel Theoretische Physik I, Universität Siegen f q f et Yerevan, October 2014 T. Mannel, Siegen University Effective Quantum -
Dirac Equation - Wikipedia
Dirac equation - Wikipedia https://en.wikipedia.org/wiki/Dirac_equation Dirac equation From Wikipedia, the free encyclopedia In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it 1 describes all spin-2 massive particles such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity,[1] and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine details of the hydrogen spectrum in a completely rigorous way. The equation also implied the existence of a new form of matter, antimatter, previously unsuspected and unobserved and which was experimentally confirmed several years later. It also provided a theoretical justification for the introduction of several component wave functions in Pauli's phenomenological theory of spin; the wave functions in the Dirac theory are vectors of four complex numbers (known as bispinors), two of which resemble the Pauli wavefunction in the non-relativistic limit, in contrast to the Schrödinger equation which described wave functions of only one complex value. Moreover, in the limit of zero mass, the Dirac equation reduces to the Weyl equation. Although Dirac did not at first fully appreciate the importance of his results, the entailed explanation of spin as a consequence of the union of quantum mechanics and relativity—and the eventual discovery of the positron—represents one of the great triumphs of theoretical physics. -
A Tale of Three Equations: Breit, Eddington-Gaunt, and Two-Body
View metadata, citation and similarA Tale papers of at Three core.ac.uk Equations: Breit, Eddington-Gaunt, and Two-Body Dirac brought to you by CORE Peter Van Alstine provided by CERN Document Server 12474 Sunny Glenn Drive, Moorpark, Ca. 90125 Horace W. Crater The University of Tennessee Space Institute Tullahoma,Tennessee 37388 G.Breit’s original paper of 1929 postulates the Breit equation as a correction to an earlier defective equation due to Eddington and Gaunt, containing a form of interaction suggested by Heisenberg and Pauli. We observe that manifestly covariant electromagnetic Two-Body Dirac equations previously obtained by us in the framework of Relativistic Constraint Mechanics reproduce the spectral results of the Breit equation but through an interaction structure that contains that of Eddington and Gaunt. By repeating for our equation the analysis that Breit used to demonstrate the superiority of his equation to that of Eddington and Gaunt, we show that the historically unfamiliar interaction structures of Two-Body Dirac equations (in Breit-like form) are just what is needed to correct the covariant Eddington Gaunt equation without resorting to Breit’s version of retardation. 1 I. INTRODUCTION Three score and seven years ago, Gregory Breit extended Dirac’s spin-1/2 wave equation to a system of two charged particles [1]. He formed his equation by summing two free-particle Dirac Hamiltonians with an interaction obtained by substituting Dirac α~’s for velocities in the semi-relativistic electrodynamic interaction of Darwin:. α 1 EΨ= α~ ·p~ +β m +α~ ·p~ +β m − [1 − (α~ · α~ + α~ · r~ˆ α ·rˆ)] Ψ. -
Arxiv:Hep-Ph/9412261V1 8 Dec 1994
IPNO/TH 94-85 How to obtain a covariant Breit type equation from relativistic Constraint Theory J. Mourad Laboratoire de Mod`eles de Physique Math´ematique, Universit´ede Tours, Parc de Grandmont, F-37200 Tours, France H. Sazdjian Division de Physique Th´eorique∗, Institut de Physique Nucl´eaire, Universit´eParis XI, F-91406 Orsay Cedex, France arXiv:hep-ph/9412261v1 8 Dec 1994 October 1994 ∗Unit´ede Recherche des Universit´es Paris 11 et Paris 6 associ´ee au CNRS. 1 Abstract It is shown that, by an appropriate modification of the structure of the interaction po- tential, the Breit equation can be incorporated into a set of two compatible manifestly covariant wave equations, derived from the general rules of Constraint Theory. The com- plementary equation to the covariant Breit type equation determines the evolution law in the relative time variable. The interaction potential can be systematically calculated in perturbation theory from Feynman diagrams. The normalization condition of the Breit wave function is determined. The wave equation is reduced, for general classes of poten- tial, to a single Pauli-Schr¨odinger type equation. As an application of the covariant Breit type equation, we exhibit massless pseudoscalar bound state solutions, corresponding to a particular class of confining potentials. PACS numbers : 03.65.Pm, 11.10.St, 12.39.Ki. 2 1 Introduction Historically, The Breit equation [1] represents the first attempt to describe the relativistic dynamics of two interacting fermion systems. It consists in summing the free Dirac hamiltonians of the two fermions and adding mutual and, eventually, external potentials. This equation, when applied to QED, with one-photon exchange diagram considered in the Coulomb gauge, and solved in the linearized approximation, provides the correct spectra to order α4 [1, 2] for various bound state problems. -
On Topological Vertex Formalism for 5-Brane Webs with O5-Plane
DIAS-STP-20-10 More on topological vertex formalism for 5-brane webs with O5-plane Hirotaka Hayashi,a Rui-Dong Zhub;c aDepartment of Physics, School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan bInstitute for Advanced Study & School of Physical Science and Technology, Soochow University, Suzhou 215006, China cSchool of Theoretical Physics, Dublin Institute for Advanced Studies 10 Burlington Road, Dublin, Ireland E-mail: [email protected], [email protected] Abstract: We propose a concrete form of a vertex function, which we call O-vertex, for the intersection between an O5-plane and a 5-brane in the topological vertex formalism, as an extension of the work of [1]. Using the O-vertex it is possible to compute the Nekrasov partition functions of 5d theories realized on any 5-brane web diagrams with O5-planes. We apply our proposal to 5-brane webs with an O5-plane and compute the partition functions of pure SO(N) gauge theories and the pure G2 gauge theory. The obtained results agree with the results known in the literature. We also compute the partition function of the pure SU(3) gauge theory with the Chern-Simons level 9. At the end we rewrite the O-vertex in a form of a vertex operator. arXiv:2012.13303v2 [hep-th] 12 May 2021 Contents 1 Introduction1 2 O-vertex 3 2.1 Topological vertex formalism with an O5-plane3 2.2 Proposal for O-vertex6 2.3 Higgsing and O-planee 9 3 Examples 11 3.1 SO(2N) gauge theories 11 3.1.1 Pure SO(4) gauge theory 12 3.1.2 Pure SO(6) and SO(8) Theories 15 3.2 SO(2N -
Quantum Electrodynamics in Strong Magnetic Fields. 111* Electron-Photon Interactions
Aust. J. Phys., 1983, 36, 799-824 Quantum Electrodynamics in Strong Magnetic Fields. 111* Electron-Photon Interactions D. B. Melrose and A. J. Parle School of Physics, University of Sydney. Sydney, N.S.W. 2006. Abstract A version of QED is developed which allows one to treat electron-photon interactions in the magnetized vacuum exactly and which allows one to calculate the responses of a relativistic quantum electron gas and include these responses in QED. Gyromagnetic emission and related crossed processes, and Compton scattering and related processes are discussed in some detail. Existing results are corrected or generalized for nonrelativistic (quantum) gyroemission, one-photon pair creation, Compton scattering by electrons in the ground state and two-photon excitation to the first Landau level from the ground state. We also comment on maser action in one-photon pair annihilation. 1. Introduction A full synthesis of quantum electrodynamics (QED) and the classical theory of plasmas requires that the responses of the medium (plasma + vacuum) be included in the photon properties and interactions in QED and that QED be used to calculate the responses of the medium. It was shown by Melrose (1974) how this synthesis could be achieved in the unmagnetized case. In the present paper we extend the synthesized theory to include the magnetized case. Such a synthesized theory is desirable even when the effects of a material medium are negligible. The magnetized vacuum is birefringent with a full hierarchy of nonlinear response tensors, and for many purposes it is convenient to treat the magnetized vacuum as though it were a material medium. -
Solvable Two-Body Dirac Equation As a Potential Model of Light Mesons?
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 4 (2008), 048, 19 pages Solvable Two-Body Dirac Equation as a Potential Model of Light Mesons? Askold DUVIRYAK Institute for Condensed Matter Physics of National Academy of Sciences of Ukraine, 1 Svientsitskii Str., UA–79011 Lviv, Ukraine E-mail: [email protected] Received October 29, 2007, in final form May 07, 2008; Published online May 30, 2008 Original article is available at http://www.emis.de/journals/SIGMA/2008/048/ Abstract. The two-body Dirac equation with general local potential is reduced to the pair of ordinary second-order differential equations for radial components of a wave function. The class of linear + Coulomb potentials with complicated spin-angular structure is found, for which the equation is exactly solvable. On this ground a relativistic potential model of light mesons is constructed and the mass spectrum is calculated. It is compared with experimental data. Key words: two body Dirac equation; Dirac oscillator; solvable model; Regge trajectories 2000 Mathematics Subject Classification: 81Q05; 34A05 1 Introduction It is well known that light meson spectra are structured into Regge trajectories which are approximately linear and degenerated due to a weak dependence of masses of resonances on their spin state. These features are reproduced well within the exactly solvable simple relativistic oscillator model (SROM) [1, 2, 3] describing two Klein–Gordon particles harmonically bound. Actually, mesons consist of quarks, i.e., spin-1/2 constituents. Thus potential models based on the Dirac equation are expected to be more appropriate for mesons spectroscopy. In recent years the two body Dirac equations (2BDE) in different formulations1 with various confining potentials are used as a relativistic constituent quark models [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. -
Dirac-Exact Relativistic Methods: the Normalized Elimination of the Small Component Method† Dieter Cremer,∗ Wenli Zou and Michael Filatov
Advanced Review Dirac-exact relativistic methods: the normalized elimination of the small component method† Dieter Cremer,∗ Wenli Zou and Michael Filatov Dirac-exact relativistic methods, i.e., 2- or 1-component methods which exactly reproduce the one-electron energies of the original 4-component Dirac method, have established a standard for reliable relativistic quantum chemical calculations targeting medium- and large-sized molecules. Their development was initiated and facilitated in the late 1990s by Dyall’s development of the normalized elimination of the small component (NESC). Dyall’s work has fostered the conversion of NESC and related (later developed) methods into routinely used, multipurpose Dirac- exact methods by which energies, first-order, and second-order properties can be calculated at computational costs, which are only slightly higher than those of nonrelativistic methods. This review summarizes the development of a generally applicable 1-component NESC algorithm leading to the calculation of reliable energies, geometries, electron density distributions, electric moments, electric field gradients, hyperfine structure constants, contact densities and Mossbauer¨ isomer shifts, nuclear quadrupole coupling constants, vibrational frequencies, infrared intensities, and static electric dipole polarizabilities. In addition, the derivation and computational possibilities of 2-component NESC methods are discussed and their use for the calculation of spin-orbit coupling (SOC) effects in connection with spin-orbit splittings and SOC-corrected -
Eigenvalues of the Breit Equation
Prog. Theor. Exp. Phys. 2013, 063B03 (13 pages) DOI: 10.1093/ptep/ptt041 Eigenvalues of the Breit equation Yoshio Yamaguchi1,† and Hikoya Kasari2,∗ 1Nishina Center, RIKEN, 350-0198 2-1 Hirosawa, Wako, Saitama, Japan 2Department of Physics, School of Science, Tokai University 259-1292 4-1-1 Kitakaname, Hiratsuka, Kanagawa, Japan ∗E-mail: [email protected] Received January 9, 2013; Accepted April 12, 2013; Published June 1, 2013 ............................................................................... Eigenvalues of the Breit equation Downloaded from e2 (α p + β m)αα δββ + δαα (−α p + β M)ββ − δαα δββ αβ = Eαβ , 1 1 2 2 r in which only the static Coulomb potential is considered, have been found. Here a detailed 1 discussion of the simple cases, S0, m = M, and m = M, is given, deriving the exact energy eigenvalues. An α2 expansion is used to find radial wave functions. The leading term is given by http://ptep.oxfordjournals.org/ the classical Coulomb wave function. The technique used here can be applied to other cases. ............................................................................... Subject Index B87 1. Introduction and the Breit equation at CERN LIBRARY on June 21, 2013 1.1. Introduction The Breit equation [1–3] has traditionally [4] been considered to be singular, and no attempt has ever been made to solve it. Instead, the Pauli approximation or a generalized Foldy–Wouthuysen trans- formation has been applied to derive the effective Hamiltonian Heff, consisting of the Schrödinger Hamiltonian 1 1 1 e2 H =− + p2 − 0 2 m M r and many other relativistic correction terms [4–6]. The perturbation method was then used to evaluate the eigenvalues (binding energies) in a power series with α as high as possible (or as high as necessary for experimental verification of quantum electrodynamics). -
On the Spectra of Atoms and Hadrons
TTP/05-22 Nov. 2005 On the spectra of atoms and hadrons Hartmut Pilkuhn Institut f¨ur Theoretische Teilchenphysik, Universit¨at, D-76128 Karlsruhe, Germany For relativistic closed systems, an operator is explained which has as stationary eigenvalues the squares of the total cms energies, while the wave function has only half as many components as the corresponding Dirac wave function. The operator’s time dependence is generalized to a Klein-Gordon equation. It ensures relativistic kinematics in radiative decays. The new operator is not hermitian. Energy levels of bound states are calculated by a variety of methods, which include relativity at least approximately. In atomic theory, the equation HψD = EψD is used, where H is the n-body Dirac-Breit Hamiltonian, and ψD is an n-electron Dirac spinor with 4n components. For half a century, great hopes were attached to the Bethe-Salpeter equation, for example in the calculation of positronium spectra [1]. Most of these methods have been adapted to hadrons, namely to mesons as quark-antiquark bound states and baryons as three-quark bound states. New methods such as nonrelativistic quantum electro- dynamics (NRQED) and numerical calculations on a space-time lattice have been added. In this note, the recent extension of another new method to radiative decays is presented. 2 2 Its time-independent form is similar to HψD = EψD, namely M ψ = E ψ, but ψ has only half as many components as ψD. It applies only to closed systems, where E denotes the total cms energy. For atoms, this implies a relativistic inclusion of the nucleus, which is of little practical importance. -
Arxiv:Atom-Ph/9605005V1 22 May 1996
TTP96–16 atom-ph/9605005 Mai 1996 HYPERFINE INTERACTIONS BETWEEN ELECTRONS Ruth H¨ackl and Hartmut Pilkuhn Institut f¨ur Theoretische Teilchenphysik, Universit¨at Karlsruhe, Postfach 6980, D–76228 Karlsruhe, Germany arXiv:atom-ph/9605005v1 22 May 1996 ——– Internet : [email protected] [email protected] Abstract The relativistic Breit Hamiltonian between electrons is transformed into an effective vector potential Ai for the i.th electron, Ai having the structure of a recoil–corrected hyperfine operator. Apart from a small three–body oper- ator, the Dirac–Breit equation is now easier applied to relativistic magnetic properties of complex systems. Relativistic n–electron systems of atoms or molecules are quite precisely described by the Dirac–Breit equation [1]. In addition to the ordinary Dirac–Coulomb Hamiltonian, the equation contains the Breit Hamiltonian [2] 2 α α HB = X Bij , Bij = −e ( i j + αirαjr)/2rij , (1) i<j where the α are Dirac matrices and αir and αjr are the components of αi and αj along the direction ˆr of ri − rj. HB contributes to the electronic fine structure. The term hyperfine interaction is normally reserved for the interaction with the nuclear spin [3]. Breit operators are somewhat inconvenient. Firstly, HB is the only operator in the Dirac–Breit equation which exchanges large and small components of two electrons simulta- neously. Secondly, the use of HB beyond first–order perturbation theory requires complicated 2 improved versions of Bij [4]. This is so because Bij is too large. In this letter we present a transformation which removes both inconveniences. -
Sum Rules and Vertex Corrections for Electron-Phonon Interactions
Sum rules and vertex corrections for electron-phonon interactions O. R¨osch,∗ G. Sangiovanni, and O. Gunnarsson Max-Planck-Institut f¨ur Festk¨orperforschung, Heisenbergstr. 1, D-70506 Stuttgart, Germany We derive sum rules for the phonon self-energy and the electron-phonon contribution to the electron self-energy of the Holstein-Hubbard model in the limit of large Coulomb interaction U. Their relevance for finite U is investigated using exact diagonalization and dynamical mean-field theory. Based on these sum rules, we study the importance of vertex corrections to the electron- phonon interaction in a diagrammatic approach. We show that they are crucial for a sum rule for the electron self-energy in the undoped system while a sum rule related to the phonon self-energy of doped systems is satisfied even if vertex corrections are neglected. We provide explicit results for the vertex function of a two-site model. PACS numbers: 63.20.Kr, 71.10.Fd, 74.72.-h I. INTRODUCTION the other hand, a sum rule for the phonon self-energy is fulfilled also without vertex corrections. This suggests that it can be important to include vertex corrections for Recently, there has been much interest in the pos- studying properties of cuprates and other strongly corre- sibility that electron-phonon interactions may play an lated materials. important role for properties of cuprates, e.g., for The Hubbard model with electron-phonon interaction 1–3 superconductivity. In particular, the interest has fo- is introduced in Sec. II. In Sec. III, sum rules for the cused on the idea that the Coulomb interaction U might electron and phonon self-energies are derived focusing on enhance effects of electron-phonon interactions, e.g., due the limit U and in Sec.