Inflammation Alters Histone Methylation in the Central Nervous System: Implications for Neuropsychiatric Disease: a Dissertation

Total Page:16

File Type:pdf, Size:1020Kb

Inflammation Alters Histone Methylation in the Central Nervous System: Implications for Neuropsychiatric Disease: a Dissertation University of Massachusetts Medical School eScholarship@UMMS GSBS Dissertations and Theses Graduate School of Biomedical Sciences 2011-05-27 Inflammation Alters Histone Methylation in the Central Nervous System: Implications for Neuropsychiatric Disease: A Dissertation Caroline M. Connor University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss Part of the Amino Acids, Peptides, and Proteins Commons, Bacterial Infections and Mycoses Commons, Cells Commons, Genetic Phenomena Commons, Maternal and Child Health Commons, Mental Disorders Commons, Nervous System Commons, Neuroscience and Neurobiology Commons, and the Pathological Conditions, Signs and Symptoms Commons Repository Citation Connor CM. (2011). Inflammation Alters Histone Methylation in the Central Nervous System: Implications for Neuropsychiatric Disease: A Dissertation. GSBS Dissertations and Theses. https://doi.org/10.13028/ 9s7h-s649. Retrieved from https://escholarship.umassmed.edu/gsbs_diss/542 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. INFLAMMATION ALTERS HISTONE METHYLATION IN CENTRAL NERVOUS SYSTEM: IMPLICATIONS FOR NEUROPSYCHIATRIC DISEASE A Dissertation Presented By Caroline Martine Connor Submitted to the Faculty of the University of Massachusetts Graduate School of Biomedical Sciences Worcester, Massachusetts in partial fulfillment for the requirements for the degree of DOCTOR OF PHILOSOPHY May 27, 2011 Program in Neuroscience ii INFLAMMATION ALTERS HISTONE METHYLATION IN CENTRAL NERVOUS SYSTEM: IMPLICATIONS FOR NEUROPSYCHIATRIC DISEASE A Dissertation Presented By Caroline Martine Connor The signatures of the Dissertation Defense Committee signifies completion and approval as to style and content of the Dissertation __________________________________________ Schahram Akbarian, MD/PhD, Thesis Advisor __________________________________________ Charles Sagerstrom, PhD, Member of Committee __________________________________________ David Paydarfar, MD/PhD, Member of Committee __________________________________________ David Weaver, PhD, Member of Committee __________________________________________ Thomas Kemper, MD, Member of Committee The signature of the Chair of the Committee signifies that the written dissertation meets the requirements of the Dissertation Committee __________________________________________ Job Dekker, PhD, Chair of Committee The signature of the Dean of the Graduate School of Biomedical Sciences signifies that the student has met all graduation requirements of the school. __________________________________________ Anthony Carruthers, PhD, Dean of the Graduate School of Biomedical Sciences Program in Neuroscience May 27, 2011 iii ABSTRACT Maternal infection during pregnancy is associated with increased risk of both schizophrenia and autism in offspring. Based on this observation, the maternal immune activation mouse model was developed, in which pregnant rodents are treated with immune-activating agents and the brains and behavior of the adult offspring studied. This model has been found to recapitulate a variety of molecular, cellular, and behavioral abnormalities observed in both schizophrenia and autism. However, despite the abundant evidence provided by these studies that prenatal exposure to inflammation alters brain development and function later in life, the molecular mechanisms by which inflammation mediates these effects remains unclear. It has been suggested that other prenatal risk factors for neuropsychiatric disease may alter brain development, in part, via epigenetic mechanisms such as DNA methylation and histone modification. However, a link between inflammation and epigenetic modification in brain has not been established. Therefore, the focus of my thesis was to examine the effect of inflammation on the histone modification, trimethylated histone H3 lysine 4 (H3K4me3), which has been implicated in both normal brain development and in schizophrenia. In Chapter II, I describe experiments examining the effect of a specific, cytokine, interleukin-6 (IL-6), on H3K4me3 in rat forebrain culture. I show that IL-6 treatment results in altered levels of H3K4me3 at multiple gene iv promoters, frequently in conjunction with altered mRNA expression levels, and demonstrate that a subset of these alterations appear to be dependent on signaling via the signal transducer and activator of transcription 3 (Stat3) pathway. Furthermore, some of the genes affected by IL-6 also showed altered H3K4me3 levels in autism postmortem brain. Though a direct link still remains to be established, this observation suggests that epigenetic changes observed in neuropsychiatric disease may have been induced by prenatal exposure to inflammation. In Chapter III, I describe in vivo experiments employing the maternal immune activation (MIA) mouse model to examine the effects of prenatal inflammation on H3K4me3 in the brain of the offspring, at both fetal and adult stages. I found that immune activation resulted in increased levels of IL-6 protein in fetal brain, working memory deficits in the adult offspring, and subtle changes in H3K4me3 levels in fetal and adult brain. Taken together, these findings demonstrate that an environmental risk factor for schizophrenia and autism—namely, inflammation—is capable of inducing robust and widespread histone modifications in a model of the central nervous system and smaller changes in vivo. This suggests that prenatal exposure to inflammation in human populations may lead to increased susceptibility for neuropsychiatric disorders, in part, by altering chromatin modifications in developing brain. v TABLE OF CONTENTS Approval Page............................................................................................ ii Abstract......................................................................................................iii Table of Contents....................................................................................... v List of Figures............................................................................................vii Copyright................................................................................................... ix Chapter 1: Introduction...............................................................................1 Schizophrenia and Autism: An Overview.........................................1 Epigenetics......................................................................................3 Epigenetics and Neuropsychiatric Disease .....................................4 Environment and Epigenetics..........................................................5 Maternal Infection, Schizophrenia, and Autism ...............................8 Immune Dysregulation in Schizophrenia and Autism ....................10 Inflammation and Epigenetics .......................................................13 Chapter 2: Interleukin-6 Alters Histone H3 Lysine 4 Trimethylation in Rat Forebrain Culture: Implications for Neuropsychiatric Disease..................15 Introduction....................................................................................16 Materials and Methods ..................................................................20 Results ..........................................................................................33 Discussion.....................................................................................43 Chapter II Figures..........................................................................51 vi Chapter 3: Maternal Immune Activation Induces Subtle Alterations in Histone H3 Lysine 4 Trimethylation in Fetal and Adult Mouse Brain.....................66 Introduction....................................................................................67 Materials and Methods ..................................................................70 Results ..........................................................................................74 Discussion.....................................................................................83 Chapter III Figures.........................................................................88 Chapter 4: General Discussion ..............................................................103 Appendix 1: A Simple Method for Improving the Specificity of Anti-Methyl Histone Antibodies .................................................................................114 Appendix 2: Cingulate White Matter Neurons in Schizophrenia and Bipolar Disorder .................................................................................................125 Appendix 3: DNA Methylation Changes in Schizophrenia and Bipolar Disorder .................................................................................................161 Appendix 4: DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons .170 References.............................................................................................199 vii LIST OF FIGURES Figure 2-1: Signaling pathways activated by IL-6 binding to IL-6R................. 17 Figure 2-2: Gfap mRNA and protein demonstrate a dose-dependent upregulation in rat forebrain culture following IL-6 and IL-6R treatment........
Recommended publications
  • Genetic Variations in the PSMA6 and PSMC6 Proteasome Genes Are Associated with Multiple Sclerosis and Response to Interferon‑Β Therapy in Latvians
    EXPERIMENTAL AND THERAPEUTIC MEDICINE 21: 478, 2021 Genetic variations in the PSMA6 and PSMC6 proteasome genes are associated with multiple sclerosis and response to interferon‑β therapy in Latvians NATALIA PARAMONOVA1, JOLANTA KALNINA1, KRISTINE DOKANE1, KRISTINE DISLERE1, ILVA TRAPINA1, TATJANA SJAKSTE1 and NIKOLAJS SJAKSTE1,2 1Genomics and Bioinformatics, Institute of Biology of The University of Latvia; 2Department of Medical Biochemistry of The University of Latvia, LV‑1004 Riga, Latvia Received July 8, 2020; Accepted December 8, 2020 DOI: 10.3892/etm.2021.9909 Abstract. Several polymorphisms in genes related to the Introduction ubiquitin‑proteasome system exhibit an association with pathogenesis and prognosis of various human autoimmune Multiple sclerosis (MS) is a lifelong demyelinating disease of diseases. Our previous study reported the association the central nervous system. The clinical onset of MS tends to between multiple sclerosis (MS) and the PSMA3‑rs2348071 be between the second and fourth decade of life. Similarly to polymorphism in the Latvian population. The current study other autoimmune diseases, women are affected 3‑4 times more aimed to evaluate the PSMA6 and PSMC6 genetic variations, frequently than men (1). About 10% of MS patients experience their interaction between each other and with the rs2348071, a primary progressive MS form characterized by the progres‑ on the susceptibility to MS risk and response to therapy in sion of neurological disability from the onset. In about 90% the Latvian population. PSMA6‑rs2277460, ‑rs1048990 and of MS patients, the disease undergoes the relapse‑remitting PSMC6‑rs2295826, ‑rs2295827 were genotyped in the MS MS course (RRMS); in most of these patients, the condition case/control study and analysed in terms of genotype‑protein acquires secondary progressive course (SPMS) (2).
    [Show full text]
  • Harnessing Gene Expression Profiles for the Identification of Ex Vivo Drug
    cancers Article Harnessing Gene Expression Profiles for the Identification of Ex Vivo Drug Response Genes in Pediatric Acute Myeloid Leukemia David G.J. Cucchi 1 , Costa Bachas 1 , Marry M. van den Heuvel-Eibrink 2,3, Susan T.C.J.M. Arentsen-Peters 3, Zinia J. Kwidama 1, Gerrit J. Schuurhuis 1, Yehuda G. Assaraf 4, Valérie de Haas 3 , Gertjan J.L. Kaspers 3,5 and Jacqueline Cloos 1,* 1 Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; [email protected] (D.G.J.C.); [email protected] (C.B.); [email protected] (Z.J.K.); [email protected] (G.J.S.) 2 Department of Pediatric Oncology/Hematology, Erasmus MC–Sophia Children’s Hospital, 3015 CN Rotterdam, The Netherlands; [email protected] 3 Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; [email protected] (S.T.C.J.M.A.-P.); [email protected] (V.d.H.); [email protected] (G.J.L.K.) 4 The Fred Wyszkowski Cancer Research, Laboratory, Department of Biology, Technion-Israel Institute of Technology, 3200003 Haifa, Israel; [email protected] 5 Emma’s Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, 1081 HV Amsterdam, The Netherlands * Correspondence: [email protected] Received: 21 April 2020; Accepted: 12 May 2020; Published: 15 May 2020 Abstract: Novel treatment strategies are of paramount importance to improve clinical outcomes in pediatric AML. Since chemotherapy is likely to remain the cornerstone of curative treatment of AML, insights in the molecular mechanisms that determine its cytotoxic effects could aid further treatment optimization.
    [Show full text]
  • Downloaded from [266]
    Patterns of DNA methylation on the human X chromosome and use in analyzing X-chromosome inactivation by Allison Marie Cotton B.Sc., The University of Guelph, 2005 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate Studies (Medical Genetics) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) January 2012 © Allison Marie Cotton, 2012 Abstract The process of X-chromosome inactivation achieves dosage compensation between mammalian males and females. In females one X chromosome is transcriptionally silenced through a variety of epigenetic modifications including DNA methylation. Most X-linked genes are subject to X-chromosome inactivation and only expressed from the active X chromosome. On the inactive X chromosome, the CpG island promoters of genes subject to X-chromosome inactivation are methylated in their promoter regions, while genes which escape from X- chromosome inactivation have unmethylated CpG island promoters on both the active and inactive X chromosomes. The first objective of this thesis was to determine if the DNA methylation of CpG island promoters could be used to accurately predict X chromosome inactivation status. The second objective was to use DNA methylation to predict X-chromosome inactivation status in a variety of tissues. A comparison of blood, muscle, kidney and neural tissues revealed tissue-specific X-chromosome inactivation, in which 12% of genes escaped from X-chromosome inactivation in some, but not all, tissues. X-linked DNA methylation analysis of placental tissues predicted four times higher escape from X-chromosome inactivation than in any other tissue. Despite the hypomethylation of repetitive elements on both the X chromosome and the autosomes, no changes were detected in the frequency or intensity of placental Cot-1 holes.
    [Show full text]
  • Tesislzingaretti13junio2016 (1).Pdf (10.14Mb)
    UNIVERSIDAD NACIONAL DE CORDOBA´ MAESTR´IA EN ESTAD´ISTICA APLICADA INTEGRACION´ DE DATOS DE EXPRESION´ GENICA´ ASOCIADOS A L´INEAS CELULARES DE CANCERES:´ UN ENFOQUE UTILIZANDO LA METODOLOG´IA STATIS-ACT, METODOS´ BIPLOT Y MINER´IA DE TEXTO Prof. Mar´ıaLaura Zingaretti Junio-2016 Director: Prof. Dr. Jhonny Rafael Demey Co-Director: Prof. Dr. Julio Alejandro Di Rienzo INTEGRACiON DE DATOS DE EXPRESION GENICA ASOCIADOS A LINEAS CELULARES DE CANCERES: UN ENFOQUE UTILIZANDO LA METODOLOGIA STATIS-ACT, METODOS BIPLOT Y MINERIA DE TEXTO por Zingaretti, María Laura se distribuye bajo una Licencia Creative Commons Atribución – No Comercial – Sin Obra Derivada 4.0 Internacional. Agradecimientos Al director de este trabajo, el Prof. Dr. Jhonny Demey por su confianza y gu´ıaconstantes, por su paciencia y su infinita generosidad para ense~narme y especialmente, por transmitirme la pasi´onpor esta disciplina. Al Dr. Julio Di Rienzo por su confianza y por sus orientaciones, tanto en la realizaci´onde este trabajo como en los cursos de la maestr´ıa. Al Dr. Crist´obalFresno porque siempre ha estado para ayudarme. A todo el cuerpo de profesores y trabajadores no docentes de la Maestr´ıaen Estad´ısticaAplicada por su dedicaci´onconstante. A la Universidad Nacional de Villa Mar´ıa,por haber financiado parte de mis estudios y por la formaci´onque he recibido durante a~nosen esta instituci´on, tanto como estudiante como en mi tarea docente. A las amigas que encontr´een la maestr´ıa:Jime, Vale y Belu. Sin duda, ha sido una de las cosas m´aslindas de este camino.
    [Show full text]
  • Modulating Antiviral Response Via CRISPR–Cas Systems
    viruses Review Immunity and Viral Infections: Modulating Antiviral Response via CRISPR–Cas Systems Sergey Brezgin 1,2,3,† , Anastasiya Kostyusheva 1,†, Ekaterina Bayurova 4 , Elena Volchkova 5, Vladimir Gegechkori 6 , Ilya Gordeychuk 4,7, Dieter Glebe 8 , Dmitry Kostyushev 1,3,*,‡ and Vladimir Chulanov 1,3,5,‡ 1 National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; [email protected] (S.B.); [email protected] (A.K.); [email protected] (V.C.) 2 Institute of Immunology, Federal Medical Biological Agency, 115522 Moscow, Russia 3 Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia 4 Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; [email protected] (E.B.); [email protected] (I.G.) 5 Department of Infectious Diseases, Sechenov University, 119991 Moscow, Russia; [email protected] 6 Department of Pharmaceutical and Toxicological Chemistry, Sechenov University, 119991 Moscow, Russia; [email protected] 7 Department of Organization and Technology of Immunobiological Drugs, Sechenov University, 119991 Moscow, Russia 8 National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, Institute of Medical Virology, Justus Liebig University of Giessen, 35392 Giessen, Germany; [email protected] * Correspondence: [email protected] † Co-first authors. Citation: Brezgin, S.; Kostyusheva, ‡ Co-senior authors. A.; Bayurova, E.; Volchkova, E.; Gegechkori, V.; Gordeychuk, I.; Glebe, Abstract: Viral infections cause a variety of acute and chronic human diseases, sometimes resulting D.; Kostyushev, D.; Chulanov, V. Immunity and Viral Infections: in small local outbreaks, or in some cases spreading across the globe and leading to global pandemics.
    [Show full text]
  • Literature Mining Sustains and Enhances Knowledge Discovery from Omic Studies
    LITERATURE MINING SUSTAINS AND ENHANCES KNOWLEDGE DISCOVERY FROM OMIC STUDIES by Rick Matthew Jordan B.S. Biology, University of Pittsburgh, 1996 M.S. Molecular Biology/Biotechnology, East Carolina University, 2001 M.S. Biomedical Informatics, University of Pittsburgh, 2005 Submitted to the Graduate Faculty of School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2016 UNIVERSITY OF PITTSBURGH SCHOOL OF MEDICINE This dissertation was presented by Rick Matthew Jordan It was defended on December 2, 2015 and approved by Shyam Visweswaran, M.D., Ph.D., Associate Professor Rebecca Jacobson, M.D., M.S., Professor Songjian Lu, Ph.D., Assistant Professor Dissertation Advisor: Vanathi Gopalakrishnan, Ph.D., Associate Professor ii Copyright © by Rick Matthew Jordan 2016 iii LITERATURE MINING SUSTAINS AND ENHANCES KNOWLEDGE DISCOVERY FROM OMIC STUDIES Rick Matthew Jordan, M.S. University of Pittsburgh, 2016 Genomic, proteomic and other experimentally generated data from studies of biological systems aiming to discover disease biomarkers are currently analyzed without sufficient supporting evidence from the literature due to complexities associated with automated processing. Extracting prior knowledge about markers associated with biological sample types and disease states from the literature is tedious, and little research has been performed to understand how to use this knowledge to inform the generation of classification models from ‘omic’ data. Using pathway analysis methods to better understand the underlying biology of complex diseases such as breast and lung cancers is state-of-the-art. However, the problem of how to combine literature- mining evidence with pathway analysis evidence is an open problem in biomedical informatics research.
    [Show full text]
  • Plasma Cells in Vitro Generation of Long-Lived Human
    Downloaded from http://www.jimmunol.org/ by guest on September 24, 2021 is online at: average * The Journal of Immunology , 32 of which you can access for free at: 2012; 189:5773-5785; Prepublished online 16 from submission to initial decision 4 weeks from acceptance to publication November 2012; doi: 10.4049/jimmunol.1103720 http://www.jimmunol.org/content/189/12/5773 In Vitro Generation of Long-lived Human Plasma Cells Mario Cocco, Sophie Stephenson, Matthew A. Care, Darren Newton, Nicholas A. Barnes, Adam Davison, Andy Rawstron, David R. Westhead, Gina M. Doody and Reuben M. Tooze J Immunol cites 65 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription http://www.jimmunol.org/content/suppl/2012/11/16/jimmunol.110372 0.DC1 This article http://www.jimmunol.org/content/189/12/5773.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 24, 2021. The Journal of Immunology In Vitro Generation of Long-lived Human Plasma Cells Mario Cocco,*,1 Sophie Stephenson,*,1 Matthew A.
    [Show full text]
  • Locating Gene Conversions on the X-Chromosome
    Sexy Gene Conversions: Locating Gene Conversions on the X-Chromosome Mark J. Lawson1, Liqing Zhang1;2∗ Department of Computer Science, Virginia Tech 2Program in Genetics, Bioinformatics, and Computational Biology ∗To whom correspondence should be addressed; E-mail: [email protected] April 3, 2009 Abstract Gene conversion can have a profound impact on both the short-term and long-term evolution of genes and genomes. Here we examined the gene families that are located on the X-chromosomes of human, chimp, mouse, and rat for evidence of gene conversion. We identified seven gene families (WD repeat protein family, Ferritin Heavy Chain family, RAS-related Protein RAB-40 family, Diphosphoinositol polyphosphate phosphohydrolase family, Transcription Elongation Factor A family, LDOC1 Related family, Zinc Finger Protein ZIC, and GLI family) that show evidence of gene conversion. Through phylogenetic analyses and synteny evidence, we show that gene conversion has played an important role in the evolution of these gene families and that gene conversion has occured independently in both primates and rodents. Comparing the results with those of two gene conversion prediction programs (GENECONV and Partimatrix), we found that both GENECONV and Partimatrix have very high false negative rates (i.e. failed to predict gene conversions), leading to many undetected gene conversions. The combination of phylogenetic analyses with physical synteny evidence exhibits high power in the detection of gene conversions. 1 1 Introduction Gene conversions are the exchange of genetic information between two genes, initiated by a double-strand break in one gene (acceptor) followed by the repair of this gene through the copying of the sequence of a similar gene (donor).
    [Show full text]
  • A Peripheral Blood Gene Expression Signature to Diagnose Subclinical Acute Rejection
    CLINICAL RESEARCH www.jasn.org A Peripheral Blood Gene Expression Signature to Diagnose Subclinical Acute Rejection Weijia Zhang,1 Zhengzi Yi,1 Karen L. Keung,2 Huimin Shang,3 Chengguo Wei,1 Paolo Cravedi,1 Zeguo Sun,1 Caixia Xi,1 Christopher Woytovich,1 Samira Farouk,1 Weiqing Huang,1 Khadija Banu,1 Lorenzo Gallon,4 Ciara N. Magee,5 Nader Najafian,5 Milagros Samaniego,6 Arjang Djamali ,7 Stephen I. Alexander,2 Ivy A. Rosales,8 Rex Neal Smith,8 Jenny Xiang,3 Evelyne Lerut,9 Dirk Kuypers,10,11 Maarten Naesens ,10,11 Philip J. O’Connell,2 Robert Colvin,8 Madhav C. Menon,1 and Barbara Murphy1 Due to the number of contributing authors, the affiliations are listed at the end of this article. ABSTRACT Background In kidney transplant recipients, surveillance biopsies can reveal, despite stable graft function, histologic features of acute rejection and borderline changes that are associated with undesirable graft outcomes. Noninvasive biomarkers of subclinical acute rejection are needed to avoid the risks and costs associated with repeated biopsies. Methods We examined subclinical histologic and functional changes in kidney transplant recipients from the prospective Genomics of Chronic Allograft Rejection (GoCAR) study who underwent surveillance biopsies over 2 years, identifying those with subclinical or borderline acute cellular rejection (ACR) at 3 months (ACR-3) post-transplant. We performed RNA sequencing on whole blood collected from 88 indi- viduals at the time of 3-month surveillance biopsy to identify transcripts associated with ACR-3, developed a novel sequencing-based targeted expression assay, and validated this gene signature in an independent cohort.
    [Show full text]
  • Cysteine‑Rich 61‑Associated Gene Expression Profile Alterations in Human Glioma Cells
    MOLECULAR MEDICINE REPORTS 16: 5561-5567, 2017 Cysteine‑rich 61‑associated gene expression profile alterations in human glioma cells RUI WANG1, BO WEI2, JUN WEI3, YU TIAN2 and CHAO DU2 Departments of 1Radiology, 2Neurosurgery and 3Science and Education Section, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China Received January 28, 2016; Accepted February 20, 2017 DOI: 10.3892/mmr.2017.7216 Abstract. The present study aimed to investigate gene be critical for maintaining the role of CYR61 during cancer expression profile alterations associated with cysteine‑rich 61 progression. (CYR61) expression in human glioma cells. The GSE29384 dataset, downloaded from the Gene Expression Omnibus, Introduction includes three LN229 human glioma cell samples expressing CYR61 induced by doxycycline (Dox group), and three Cysteine‑rich 61 (CYR61) is a secreted, cysteine‑rich, control samples not exposed to doxycycline (Nodox group). heparin‑binding protein (1) involved in a variety of cellular Differentially expressed genes (DEGs) between the Dox and functions including adhesion, migration and proliferation (2). Nodox groups were identified with cutoffs of |log2 fold change Previously, Xie et al (3) reported that CYR61 was overexpressed (FC)|>0.5 and P<0.05. Gene ontology and Kyoto Encyclopedia in 66 primary gliomas compared with healthy brain samples, of Genes and Genomes pathway enrichment analyses for and that CYR61 expression was significantly correlated with DEGs were performed. Protein‑protein interaction (PPI) tumor grade and patient survival (3). CYR61‑overexpressing network and module analyses were performed to identify glioma cells were observed to have an increased proliferation the most important genes.
    [Show full text]
  • "The Genecards Suite: from Gene Data Mining to Disease Genome Sequence Analyses". In: Current Protocols in Bioinformat
    The GeneCards Suite: From Gene Data UNIT 1.30 Mining to Disease Genome Sequence Analyses Gil Stelzer,1,5 Naomi Rosen,1,5 Inbar Plaschkes,1,2 Shahar Zimmerman,1 Michal Twik,1 Simon Fishilevich,1 Tsippi Iny Stein,1 Ron Nudel,1 Iris Lieder,2 Yaron Mazor,2 Sergey Kaplan,2 Dvir Dahary,2,4 David Warshawsky,3 Yaron Guan-Golan,3 Asher Kohn,3 Noa Rappaport,1 Marilyn Safran,1 and Doron Lancet1,6 1Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel 2LifeMap Sciences Ltd., Tel Aviv, Israel 3LifeMap Sciences Inc., Marshfield, Massachusetts 4Toldot Genetics Ltd., Hod Hasharon, Israel 5These authors contributed equally to the paper 6Corresponding author GeneCards, the human gene compendium, enables researchers to effectively navigate and inter-relate the wide universe of human genes, diseases, variants, proteins, cells, and biological pathways. Our recently launched Version 4 has a revamped infrastructure facilitating faster data updates, better-targeted data queries, and friendlier user experience. It also provides a stronger foundation for the GeneCards suite of companion databases and analysis tools. Improved data unification includes gene-disease links via MalaCards and merged biological pathways via PathCards, as well as drug information and proteome expression. VarElect, another suite member, is a phenotype prioritizer for next-generation sequencing, leveraging the GeneCards and MalaCards knowledgebase. It au- tomatically infers direct and indirect scored associations between hundreds or even thousands of variant-containing genes and disease phenotype terms. Var- Elect’s capabilities, either independently or within TGex, our comprehensive variant analysis pipeline, help prepare for the challenge of clinical projects that involve thousands of exome/genome NGS analyses.
    [Show full text]
  • Rnaseq Reveals the Contribution of Interferon Stimulated Genes to the Increased Host Defense and Decreased PPR Viral Replication in Cattle
    viruses Article RNAseq Reveals the Contribution of Interferon Stimulated Genes to the Increased Host Defense and Decreased PPR Viral Replication in Cattle 1, 1, Krishnaswamy Gopalan Tirumurugaan y , Rahul Mohanchandra Pawar y, Gopal Dhinakar Raj 2,* , Arthanari Thangavelu 3, John A. Hammond 4 and Satya Parida 4,* 1 Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600007, India; [email protected] (K.G.T.); [email protected] (R.M.P.) 2 Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600051, India 3 Department of Veterinary Microbiology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600007, India; [email protected] 4 The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK; [email protected] * Correspondence: [email protected] (G.D.R.); [email protected] (S.P.) These authors contributed equally. y Received: 7 March 2020; Accepted: 16 April 2020; Published: 20 April 2020 Abstract: Peste des petits ruminants virus (PPRV) is known to replicate in a wide variety of ruminants causing very species-specific clinical symptoms. Small ruminants (goats and sheep) are susceptible to disease while domesticated cattle and buffalo are dead-end hosts and do not display clinical symptoms. Understanding the host factors that influence differential pathogenesis and disease susceptibility could help the development of better diagnostics and control measures. To study this, we generated transcriptome data from goat and cattle peripheral blood mononuclear cells (PBMC) experimentally infected with PPRV in-vitro. After identifying differentially expressed genes, we further analyzed these immune related pathway genes using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and selected candidate genes were validated using in-vitro experiments.
    [Show full text]