Tesislzingaretti13junio2016 (1).Pdf (10.14Mb)

Total Page:16

File Type:pdf, Size:1020Kb

Tesislzingaretti13junio2016 (1).Pdf (10.14Mb) UNIVERSIDAD NACIONAL DE CORDOBA´ MAESTR´IA EN ESTAD´ISTICA APLICADA INTEGRACION´ DE DATOS DE EXPRESION´ GENICA´ ASOCIADOS A L´INEAS CELULARES DE CANCERES:´ UN ENFOQUE UTILIZANDO LA METODOLOG´IA STATIS-ACT, METODOS´ BIPLOT Y MINER´IA DE TEXTO Prof. Mar´ıaLaura Zingaretti Junio-2016 Director: Prof. Dr. Jhonny Rafael Demey Co-Director: Prof. Dr. Julio Alejandro Di Rienzo INTEGRACiON DE DATOS DE EXPRESION GENICA ASOCIADOS A LINEAS CELULARES DE CANCERES: UN ENFOQUE UTILIZANDO LA METODOLOGIA STATIS-ACT, METODOS BIPLOT Y MINERIA DE TEXTO por Zingaretti, María Laura se distribuye bajo una Licencia Creative Commons Atribución – No Comercial – Sin Obra Derivada 4.0 Internacional. Agradecimientos Al director de este trabajo, el Prof. Dr. Jhonny Demey por su confianza y gu´ıaconstantes, por su paciencia y su infinita generosidad para ense~narme y especialmente, por transmitirme la pasi´onpor esta disciplina. Al Dr. Julio Di Rienzo por su confianza y por sus orientaciones, tanto en la realizaci´onde este trabajo como en los cursos de la maestr´ıa. Al Dr. Crist´obalFresno porque siempre ha estado para ayudarme. A todo el cuerpo de profesores y trabajadores no docentes de la Maestr´ıaen Estad´ısticaAplicada por su dedicaci´onconstante. A la Universidad Nacional de Villa Mar´ıa,por haber financiado parte de mis estudios y por la formaci´onque he recibido durante a~nosen esta instituci´on, tanto como estudiante como en mi tarea docente. A las amigas que encontr´een la maestr´ıa:Jime, Vale y Belu. Sin duda, ha sido una de las cosas m´aslindas de este camino. A todos mis amigos, <gracias por estar siempre a mi lado! y por todo lo compartido, pues \>de qu´eme sirve a mi la virtud, si no tengo un canto hermoso?" I Resumen Los datos ´omicos,donde se analiza la expresi´onde miles de genes, prote´ınas, metabolitos en distintas muestras biol´ogicas,comprenden una gran cantidad de ´areasde aplicaci´ony su estudio ha crecido de manera exponencial en los ´ultimosa~nos.La integraci´onde datos es uno de los principales objetivos actuales en bio-ciencias, dado que es com´unmedir expresi´onsimult´anea de genes, prote´ınasy metabolitos o bien tener mediciones de la expresi´on gen´eticade las mismas muestras en diferentes plataformas de an´alisis,gene- rando, por lo tanto, distintas fuentes de informaci´on.La integraci´onimplica el meta-an´alisisde sus resultados o el an´alisissimult´aneosde los datos ori- ginales. En el marco de este trabajo, se realiza una propuesta metodol´ogicapara abordar el problema de estudio y comparaci´onde datos gen´eticosprove- nientes de distintas plataformas de microarreglos y el problema de selecci´on de genes basada en los m´etodos estad´ısticosde k-tablas y Biplot. Se realiza una aplicaci´onde la metodolog´ıapropuesta a datos de expresi´ongen´etica de 60 l´ıneascelulares de 9 tipos diferentes de c´ancerprovenientes de cuatro plataformas de an´alisisdel panel NCI-60. Palabras clave Biplot; Datos ´omicos;Microarreglos, k-tablas, STATIS; STATIS-Dual. II ´Indice general AgradecimientosI Resumen II Lista de figuras VIII Lista de tablasIX Introducci´on1 Objetivo general............................3 Objetivos espec´ıficos..........................3 1. Marco Te´orico5 1.1 Nuevas perspectivas en la investigaci´onsobre c´ancer......5 1.2 An´alisisde datos ´omicos...................... 12 1.2.1 Normalizaci´onde datos.................. 23 1.3 Ontolog´ıade genes......................... 27 1.4 Los m´etodos de k-tablas...................... 32 1.4.1 STATIS........................... 33 1.4.1.1 Interestructura.................. 33 1.4.1.2 Compromiso................... 36 1.4.1.3 Intraestructura.................. 39 1.4.2 STATIS-Dual........................ 40 III ´INDICE GENERAL IV 1.4.2.1 Interestructura.................. 41 1.4.2.2 Compromiso................... 42 1.4.2.3 Intraestructura.................. 43 1.4.3 An´alisisParcial Tri´adico.................. 43 1.5 Medidas de calidad de representaci´on.............. 45 1.5.1 Calidad de representaci´onde las tablas.......... 45 1.5.2 Calidad de representaci´onde los individuos....... 45 1.5.3 Calidad de representaci´onde las variables........ 46 1.6 Variabilidad muestral....................... 47 1.7 Representaci´onBiplot para medir interacci´onentre individuos y variables............................. 52 1.7.1 Formulaci´on......................... 52 1.8 Redes y Grafos........................... 57 2. Ilustraci´onde la metodolog´ıade an´alisis: integraci´onde datos ´omicosprovenientes de l´ıneascelulares de c´ancerdel panel NCI60 59 2.1 Conjunto de Datos NCI60..................... 59 2.2 Procesamiento de Datos...................... 61 2.2.1 An´alisisde ontolog´ıas:integraci´onde datos en una red. 63 2.3 Resultados............................. 64 2.3.1 Interestructura....................... 64 2.3.2 Configuraci´onCompromiso................ 65 2.3.3 Proyecci´onde genes usando Biplot............ 66 2.3.4 Selecci´onde genes comunes a todas las tablas usando Biplot........................... 67 2.4 An´alisisde ontolog´ıas: red de relaciones de genes seleccionados y genes activados ante la presencia de distintos tejidos.... 79 2.5 Discusi´on.............................. 95 Conclusiones 97 Bibliograf´ıa 110 Anexo 111 ´Indice de figuras 1 Evoluci´onde la cantidad de trabajos publicados sobre: expre- si´ongen´eticaen c´ancera lo largo de los ´ultimos36 a~nos.... 10 2 Evoluci´ontemporal de los trabajos publicados sobre integra- ci´onde conjuntos de datos ´omicos................ 12 3 Evoluci´ontemporal de los trabajos publicados sobre integra- ci´onde datos ´omicosen c´ancer.................. 13 4 Estructura de doble h´elicedel ADN............... 14 5 Esquema de un experimento de dos tintes............ 15 6 Esquema del conjunto de datos obtenidos a partir de varios experimentos de microarreglos. Se mide variabilidad gen´etica sobre las mismas muestras.................... 19 7 Esquema del conjunto de la matriz de datos generada a partir de varios experimentos de microarreglos realizados sobre las mismas muestras.......................... 21 8 Esquema para obtener t´erminosy genes asociados al c´ancer.. 29 9 Proyecci´onde la configuraci´oneucl´ıdeade las tablas originales 0 Wks................................. 36 10 Esquema de remuestreo sobre la matriz compromiso...... 50 11 Flujo de trabajo pre-procesamiento de datos.......... 61 12 Diagrama de Venn que muestra las intersecciones de los genes entre las distintas tablas..................... 62 VI ´INDICE DE FIGURAS VII 13 Proyecci´onde la configuraci´oneucl´ıdeade las tablas. Las pla- taformas Affymetrix HGU133 y HGU95 tienen la misma es- tructura y son similares a la plataforma Agilent........ 69 14 Proyecci´onde las observaciones medias (l´ıneascelulares) en el compromiso........................... 70 15 Proyecci´onde las observaciones medias (l´ıneascelulares) en el compromiso. En cada uno de los gr´aficos,se destaca la proyecci´onde un tejido...................... 71 16 Elipses de confianza para las l´ıneas celulares.......... 72 17 Razones bootstrap para la primer dimensi´ondel compromiso. 73 18 Razones bootstrap para la segunda dimensi´ondel compromiso. 74 19 Proyecci´onde los genes de todas las tablas sobre el compro- miso usando Biplot........................ 75 20 Proyecci´onde los genes de todas las tablas sobre el compro- miso usando Biplot........................ 76 21 Mapa de calor de los genes seleccionados y tejidos tumorales. 79 22 Proyecci´onde los tejidos tumorales en el compromiso, usando s´ololos genes seleccionados.................... 80 23 Genes relacionados a la presencia de carcinoma de mama... 82 24 Genes relacionados a la presencia de carcinoma de colon.... 83 25 Genes relacionados a la presencia de leucemia.......... 84 26 Genes relacionados a la presencia de carcinoma de pulm´on.. 85 27 Genes relacionados a la presencia de melanoma......... 86 28 Genes relacionados a la presencia de carcinoma de ovarios... 87 29 Genes relacionados a la presencia de c´ancerde pr´ostata.... 88 30 Genes relacionados a la presencia de c´ancerrenal........ 89 31 Genes relacionados a la presencia de c´ancerde SNC...... 90 32 Red funcional: lista de genes seleccionados........... 92 33 T´erminosenriquecidos presentes en varios grupos....... 94 34 Lista de genes relacionados con carcinoma por la literatura.. 113 35 Lista de genes relacionados con Genetical Disorden en la li- teratura............................... 114 36 Lista de genes relacionados con hiperplasia por la literatura.. 115 37 Lista de genes relacionados con neoplasma por la literatura.. 115 38 Lista de genes relacionados con NonNeoplastic por la literatura.116 39 Lista de genes relacionados con polipos por la literatura.... 116 40 Distancia entre los grupos derivados del an´alisisde ontolog´ıas. 117 ´Indice de cuadros 1 Dimensiones de las tablas de datos............... 62 2 Lista de genes seleccionados comunes a todas las tablas.... 67 3 Relaciones entre genes seleccionados y tejidos tumorales.... 77 4 Comparaci´onentre los enfoques cl´asicoy propuesto...... 96 5 Funciones y genes dentro de los grupos............. 112 Introducci´on Los m´etodos estad´ısticoscl´asicospermiten estudiar problemas en dos modos: individuos y variables. No obstante, numerosos problemas de diversas ´areas de conocimiento poseen una naturaleza m´ascompleja y requieren del estudio simult´aneode tres modos (individuos, variables y diferentes condiciones ex- perimentales o temporales). Para su abordaje, se han desarrollado distintas propuestas metodol´ogicas,entre ellas, las comprendidas bajo el nombre de \M´etodos
Recommended publications
  • Harnessing Gene Expression Profiles for the Identification of Ex Vivo Drug
    cancers Article Harnessing Gene Expression Profiles for the Identification of Ex Vivo Drug Response Genes in Pediatric Acute Myeloid Leukemia David G.J. Cucchi 1 , Costa Bachas 1 , Marry M. van den Heuvel-Eibrink 2,3, Susan T.C.J.M. Arentsen-Peters 3, Zinia J. Kwidama 1, Gerrit J. Schuurhuis 1, Yehuda G. Assaraf 4, Valérie de Haas 3 , Gertjan J.L. Kaspers 3,5 and Jacqueline Cloos 1,* 1 Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; [email protected] (D.G.J.C.); [email protected] (C.B.); [email protected] (Z.J.K.); [email protected] (G.J.S.) 2 Department of Pediatric Oncology/Hematology, Erasmus MC–Sophia Children’s Hospital, 3015 CN Rotterdam, The Netherlands; [email protected] 3 Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; [email protected] (S.T.C.J.M.A.-P.); [email protected] (V.d.H.); [email protected] (G.J.L.K.) 4 The Fred Wyszkowski Cancer Research, Laboratory, Department of Biology, Technion-Israel Institute of Technology, 3200003 Haifa, Israel; [email protected] 5 Emma’s Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, 1081 HV Amsterdam, The Netherlands * Correspondence: [email protected] Received: 21 April 2020; Accepted: 12 May 2020; Published: 15 May 2020 Abstract: Novel treatment strategies are of paramount importance to improve clinical outcomes in pediatric AML. Since chemotherapy is likely to remain the cornerstone of curative treatment of AML, insights in the molecular mechanisms that determine its cytotoxic effects could aid further treatment optimization.
    [Show full text]
  • Downloaded from [266]
    Patterns of DNA methylation on the human X chromosome and use in analyzing X-chromosome inactivation by Allison Marie Cotton B.Sc., The University of Guelph, 2005 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate Studies (Medical Genetics) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) January 2012 © Allison Marie Cotton, 2012 Abstract The process of X-chromosome inactivation achieves dosage compensation between mammalian males and females. In females one X chromosome is transcriptionally silenced through a variety of epigenetic modifications including DNA methylation. Most X-linked genes are subject to X-chromosome inactivation and only expressed from the active X chromosome. On the inactive X chromosome, the CpG island promoters of genes subject to X-chromosome inactivation are methylated in their promoter regions, while genes which escape from X- chromosome inactivation have unmethylated CpG island promoters on both the active and inactive X chromosomes. The first objective of this thesis was to determine if the DNA methylation of CpG island promoters could be used to accurately predict X chromosome inactivation status. The second objective was to use DNA methylation to predict X-chromosome inactivation status in a variety of tissues. A comparison of blood, muscle, kidney and neural tissues revealed tissue-specific X-chromosome inactivation, in which 12% of genes escaped from X-chromosome inactivation in some, but not all, tissues. X-linked DNA methylation analysis of placental tissues predicted four times higher escape from X-chromosome inactivation than in any other tissue. Despite the hypomethylation of repetitive elements on both the X chromosome and the autosomes, no changes were detected in the frequency or intensity of placental Cot-1 holes.
    [Show full text]
  • Literature Mining Sustains and Enhances Knowledge Discovery from Omic Studies
    LITERATURE MINING SUSTAINS AND ENHANCES KNOWLEDGE DISCOVERY FROM OMIC STUDIES by Rick Matthew Jordan B.S. Biology, University of Pittsburgh, 1996 M.S. Molecular Biology/Biotechnology, East Carolina University, 2001 M.S. Biomedical Informatics, University of Pittsburgh, 2005 Submitted to the Graduate Faculty of School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2016 UNIVERSITY OF PITTSBURGH SCHOOL OF MEDICINE This dissertation was presented by Rick Matthew Jordan It was defended on December 2, 2015 and approved by Shyam Visweswaran, M.D., Ph.D., Associate Professor Rebecca Jacobson, M.D., M.S., Professor Songjian Lu, Ph.D., Assistant Professor Dissertation Advisor: Vanathi Gopalakrishnan, Ph.D., Associate Professor ii Copyright © by Rick Matthew Jordan 2016 iii LITERATURE MINING SUSTAINS AND ENHANCES KNOWLEDGE DISCOVERY FROM OMIC STUDIES Rick Matthew Jordan, M.S. University of Pittsburgh, 2016 Genomic, proteomic and other experimentally generated data from studies of biological systems aiming to discover disease biomarkers are currently analyzed without sufficient supporting evidence from the literature due to complexities associated with automated processing. Extracting prior knowledge about markers associated with biological sample types and disease states from the literature is tedious, and little research has been performed to understand how to use this knowledge to inform the generation of classification models from ‘omic’ data. Using pathway analysis methods to better understand the underlying biology of complex diseases such as breast and lung cancers is state-of-the-art. However, the problem of how to combine literature- mining evidence with pathway analysis evidence is an open problem in biomedical informatics research.
    [Show full text]
  • Locating Gene Conversions on the X-Chromosome
    Sexy Gene Conversions: Locating Gene Conversions on the X-Chromosome Mark J. Lawson1, Liqing Zhang1;2∗ Department of Computer Science, Virginia Tech 2Program in Genetics, Bioinformatics, and Computational Biology ∗To whom correspondence should be addressed; E-mail: [email protected] April 3, 2009 Abstract Gene conversion can have a profound impact on both the short-term and long-term evolution of genes and genomes. Here we examined the gene families that are located on the X-chromosomes of human, chimp, mouse, and rat for evidence of gene conversion. We identified seven gene families (WD repeat protein family, Ferritin Heavy Chain family, RAS-related Protein RAB-40 family, Diphosphoinositol polyphosphate phosphohydrolase family, Transcription Elongation Factor A family, LDOC1 Related family, Zinc Finger Protein ZIC, and GLI family) that show evidence of gene conversion. Through phylogenetic analyses and synteny evidence, we show that gene conversion has played an important role in the evolution of these gene families and that gene conversion has occured independently in both primates and rodents. Comparing the results with those of two gene conversion prediction programs (GENECONV and Partimatrix), we found that both GENECONV and Partimatrix have very high false negative rates (i.e. failed to predict gene conversions), leading to many undetected gene conversions. The combination of phylogenetic analyses with physical synteny evidence exhibits high power in the detection of gene conversions. 1 1 Introduction Gene conversions are the exchange of genetic information between two genes, initiated by a double-strand break in one gene (acceptor) followed by the repair of this gene through the copying of the sequence of a similar gene (donor).
    [Show full text]
  • A Peripheral Blood Gene Expression Signature to Diagnose Subclinical Acute Rejection
    CLINICAL RESEARCH www.jasn.org A Peripheral Blood Gene Expression Signature to Diagnose Subclinical Acute Rejection Weijia Zhang,1 Zhengzi Yi,1 Karen L. Keung,2 Huimin Shang,3 Chengguo Wei,1 Paolo Cravedi,1 Zeguo Sun,1 Caixia Xi,1 Christopher Woytovich,1 Samira Farouk,1 Weiqing Huang,1 Khadija Banu,1 Lorenzo Gallon,4 Ciara N. Magee,5 Nader Najafian,5 Milagros Samaniego,6 Arjang Djamali ,7 Stephen I. Alexander,2 Ivy A. Rosales,8 Rex Neal Smith,8 Jenny Xiang,3 Evelyne Lerut,9 Dirk Kuypers,10,11 Maarten Naesens ,10,11 Philip J. O’Connell,2 Robert Colvin,8 Madhav C. Menon,1 and Barbara Murphy1 Due to the number of contributing authors, the affiliations are listed at the end of this article. ABSTRACT Background In kidney transplant recipients, surveillance biopsies can reveal, despite stable graft function, histologic features of acute rejection and borderline changes that are associated with undesirable graft outcomes. Noninvasive biomarkers of subclinical acute rejection are needed to avoid the risks and costs associated with repeated biopsies. Methods We examined subclinical histologic and functional changes in kidney transplant recipients from the prospective Genomics of Chronic Allograft Rejection (GoCAR) study who underwent surveillance biopsies over 2 years, identifying those with subclinical or borderline acute cellular rejection (ACR) at 3 months (ACR-3) post-transplant. We performed RNA sequencing on whole blood collected from 88 indi- viduals at the time of 3-month surveillance biopsy to identify transcripts associated with ACR-3, developed a novel sequencing-based targeted expression assay, and validated this gene signature in an independent cohort.
    [Show full text]
  • Cellular Mrnas Access Second Orfs Using a Novel Amino Acid Sequence-Dependent Coupled Translation Termination–Reinitiation Mechanism
    Downloaded from rnajournal.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Cellular mRNAs access second ORFs using a novel amino acid sequence-dependent coupled translation termination–reinitiation mechanism PHILLIP S. GOULD,1 NIGEL P. DYER,2 WAYNE CROFT,2 SASCHA OTT,2 and ANDREW J. EASTON1,3 1School of Life Sciences, 2Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom ABSTRACT Polycistronic transcripts are considered rare in the human genome. Initiation of translation of internal ORFs of eukaryotic genes has been shown to use either leaky scanning or highly structured IRES regions to access initiation codons. Studies on mammalian viruses identified a mechanism of coupled translation termination–reinitiation that allows translation of an additional ORF. Here, the ribosome terminating translation of ORF-1 translocates upstream to reinitiate translation of ORF-2. We have devised an algorithm to identify mRNAs in the human transcriptome in which the major ORF-1 overlaps a second ORF capable of encoding a product of at least 50 aa in length. This identified 4368 transcripts representing 2214 genes. We investigated 24 transcripts, 22 of which were shown to express a protein from ORF-2 highlighting that 3′ UTRs contain protein-coding potential more frequently than previously suspected. Five transcripts accessed ORF-2 using a process of coupled translation termination–reinitiation. Analysis of one transcript, encoding the CASQ2 protein, showed that the mechanism by which the coupling process of the cellular mRNAs was achieved was novel. This process was not directed by the mRNA sequence but required an aspartate-rich repeat region at the carboxyl terminus of the terminating ORF-1 protein.
    [Show full text]
  • Identification of Tammar Wallaby SIRH12, Derived from a Marsupial-Specific Retrotransposition Event
    DNA RESEARCH 18, 211–219, (2011) doi:10.1093/dnares/dsr012 Advance Access Publication on 2 June 2011 Identification of tammar wallaby SIRH12, derived from a marsupial-specific retrotransposition event RYUICHI Ono 1,YOKO Kuroki2,MIE Naruse 1,3,MASAYUKI Ishii 1,2,SAWA Iwasaki 1,ATSUSHI Toyoda 4, ASAO Fujiyama 4,5,GEOFF Shaw6,7,MARILYN B. Renfree6,7,TOMOKO Kaneko-Ishino 3, and FUMITOSHI Ishino 1,* Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan1; Laboratory for Immunogenomics, RIKEN Research Center for Allergy and Immunology, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan2; School of Health Sciences, Tokai University, Bohseidai, Isehara, Kanagawa 259-1193, Japan3; Comparative Genomics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan4; Department of Informatics, The Graduate University for Advanced Studies, and National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan5; Australian Research Council Centre of Excellence for Kangaroo Genomics, Victoria 3010, Australia6 and Department of Zoology, The University of Melbourne, Victoria 3010, Australia7 *To whom correspondence should be addressed. Tel./Fax. þ81-3-5803-4863. Email: fi[email protected] Edited by Toshihiko Shiroishi (Received 28 March 2011; accepted 1 May 2011) Abstract In humans and mice, there are 11 genes derived from sushi-ichi related retrotransposons, some of which are known to play essential roles in placental development. Interestingly, this family of retrotran- sposons was thought to exist only in eutherian mammals, indicating their significant contributions to the eutherian evolution, but at least one, PEG10, is conserved between marsupials and eutherians.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2016/0264934 A1 GALLOURAKIS Et Al
    US 20160264934A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0264934 A1 GALLOURAKIS et al. (43) Pub. Date: Sep. 15, 2016 (54) METHODS FOR MODULATING AND Publication Classification ASSAYING MI6AIN STEM CELL POPULATIONS (51) Int. Cl. CI2N5/0735 (2006.01) (71) Applicants: THE GENERAL, HOSPITAL AOIN I/02 (2006.01) CORPORATION, Boston, MA (US); CI2O I/68 (2006.01) The Regents of the University of GOIN 33/573 (2006.01) California, Oakland, CA (US) CI2N 5/077 (2006.01) CI2N5/0793 (2006.01) (72) Inventors: Cosmas GIALLOURAKIS, Boston, (52) U.S. Cl. MA (US); Alan C. MULLEN, CPC ............ CI2N5/0606 (2013.01); CI2N5/0657 Brookline, MA (US); Yi XING, (2013.01); C12N5/0619 (2013.01); C12O Torrance, CA (US) I/6888 (2013.01); G0IN33/573 (2013.01); A0IN I/0226 (2013.01); C12N 2501/72 (73) Assignees: THE GENERAL, HOSPITAL (2013.01); C12N 2506/02 (2013.01); C12O CORPORATION, Boston, MA (US); 2600/158 (2013.01); C12Y 201/01062 The Regents of the University of (2013.01); C12Y 201/01 (2013.01) California, Oakland, CA (US) (57) ABSTRACT (21) Appl. No.: 15/067,780 The present invention generally relates to methods, assays and kits to maintain a human stem cell population in an (22) Filed: Mar 11, 2016 undifferentiated state by inhibiting the expression or function of METTL3 and/or METTL4, and mA fingerprint methods, assays, arrays and kits to assess the cell state of a human stem Related U.S. Application Data cell population by assessing mA levels (e.g. mA peak inten (60) Provisional application No.
    [Show full text]
  • Content Based Search in Gene Expression Databases and a Meta-Analysis of Host Responses to Infection
    Content Based Search in Gene Expression Databases and a Meta-analysis of Host Responses to Infection A Thesis Submitted to the Faculty of Drexel University by Francis X. Bell in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2015 c Copyright 2015 Francis X. Bell. All Rights Reserved. ii Acknowledgments I would like to acknowledge and thank my advisor, Dr. Ahmet Sacan. Without his advice, support, and patience I would not have been able to accomplish all that I have. I would also like to thank my committee members and the Biomed Faculty that have guided me. I would like to give a special thanks for the members of the bioinformatics lab, in particular the members of the Sacan lab: Rehman Qureshi, Daisy Heng Yang, April Chunyu Zhao, and Yiqian Zhou. Thank you for creating a pleasant and friendly environment in the lab. I give the members of my family my sincerest gratitude for all that they have done for me. I cannot begin to repay my parents for their sacrifices. I am eternally grateful for everything they have done. The support of my sisters and their encouragement gave me the strength to persevere to the end. iii Table of Contents LIST OF TABLES.......................................................................... vii LIST OF FIGURES ........................................................................ xiv ABSTRACT ................................................................................ xvii 1. A BRIEF INTRODUCTION TO GENE EXPRESSION............................. 1 1.1 Central Dogma of Molecular Biology........................................... 1 1.1.1 Basic Transfers .......................................................... 1 1.1.2 Uncommon Transfers ................................................... 3 1.2 Gene Expression ................................................................. 4 1.2.1 Estimating Gene Expression ............................................ 4 1.2.2 DNA Microarrays ......................................................
    [Show full text]
  • SUPPORTING INFORMATION for Regulation of Gene Expression By
    SUPPORTING INFORMATION for Regulation of gene expression by the BLM helicase correlates with the presence of G4 motifs Giang Huong Nguyen1,2, Weiliang Tang3, Ana I. Robles1, Richard P. Beyer4, Lucas T. Gray5, Judith A. Welsh1, Aaron J. Schetter1, Kensuke Kumamoto1,6, Xin Wei Wang1, Ian D. Hickson2,7, Nancy Maizels5, 3,8 1 Raymond J. Monnat, Jr. and Curtis C. Harris 1Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, U.S.A; 2Department of Medical Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, U.K.; 3Department of Pathology, University of Washington, Seattle, WA U.S.A.; 4 Center for Ecogenetics and Environmental Health, University of Washington, Seattle, WA U.S.A.; 5Department of Immunology and Department of Biochemistry, University of Washington, Seattle, WA U.S.A.; 6Department of Organ Regulatory Surgery, Fukushima Medical University, Fukushima, Japan; 7Cellular and Molecular Medicine, Nordea Center for Healthy Aging, University of Copenhagen, Denmark; 8Department of Genome Sciences, University of WA, Seattle, WA U.S.A. SI Index: Supporting Information for this manuscript includes the following 19 items. A more detailed Materials and Methods section is followed by 18 Tables and Figures in order of their appearance in the manuscript text: 1) SI Materials and Methods 2) Figure S1. Study design and experimental workflow. 3) Figure S2. Immunoblot verification of BLM depletion from human fibroblasts. 4) Figure S3. PCA of mRNA and miRNA expression in BLM-depleted human fibroblasts. 5) Figure S4. qPCR confirmation of mRNA array data. 6) Table S1. BS patient and control detail.
    [Show full text]
  • Genomic and Transcriptomic Investigation of Endemic Burkitt Lymphoma and Epstein Barr Virus
    University of Massachusetts Medical School eScholarship@UMMS GSBS Dissertations and Theses Graduate School of Biomedical Sciences 2017-07-31 Genomic and Transcriptomic Investigation of Endemic Burkitt Lymphoma and Epstein Barr Virus Yasin Kaymaz University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss Part of the Bioinformatics Commons, Computational Biology Commons, Genetics Commons, Genomics Commons, Hematology Commons, Immunology of Infectious Disease Commons, Molecular Genetics Commons, Oncology Commons, Other Genetics and Genomics Commons, Parasitology Commons, Pathology Commons, and the Pediatrics Commons Repository Citation Kaymaz Y. (2017). Genomic and Transcriptomic Investigation of Endemic Burkitt Lymphoma and Epstein Barr Virus. GSBS Dissertations and Theses. https://doi.org/10.13028/M2R95Z. Retrieved from https://escholarship.umassmed.edu/gsbs_diss/914 Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. GENOMIC AND TRANSCRIPTOMIC INVESTIGATION OF ENDEMIC BURKITT LYMPHOMA AND EPSTEIN BARR VIRUS A Dissertation Presented by YASIN KAYMAZ Submitted to the Faculty of the University Of Massachusetts Graduate School Of Biomedical Sciences, Worcester in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY July 31st, 2017 1 GENOMIC AND TRANSCRIPTOMIC INVESTIGATION OF ENDEMIC BURKITT LYMPHOMA AND EPSTEIN BARR VIRUS A Dissertation Presented by YASIN KAYMAZ The signatures of the Dissertation Defense Committee signify completion and approval as to style and content of the Dissertation Jeffrey A.
    [Show full text]
  • SUPPLEMENTAL MATERIAL Quantitative Analysis Of
    SUPPLEMENTAL MATERIAL Quantitative analysis of Y-Chromosome gene expression across 36 human tissues Alexander K. Godfrey, Sahin Naqvi, Lukáš Chmátal, Joel M. Chick, Richard N. Mitchell, Steven P. Gygi, Helen Skaletsky, David C. Page. SUPPLEMENTAL METHODS...................................................................................................... 2 Human transcriptome annotation and MSY genes ................................................................. 2 RNA-seq simulations .............................................................................................................. 2 Quality control of GTEx RNA-seq analysis .............................................................................. 4 Estimating gene mappability ................................................................................................... 6 Correlated expression of X and Y homologs ........................................................................... 6 microRNA analyses ................................................................................................................. 7 Analyses of EIF1AX/Y sequence and expression across species ........................................... 8 Analysis of protein abundance in human heart tissue ............................................................. 8 Immunoblotting ..................................................................................................................... 13 SUPPLEMENT REFERENCES .................................................................................................
    [Show full text]