A New Combination in the Fern Genus Osmundastrum (Osmundaceae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Vascular Plants of Massachusetts
The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory, -
No Evidence for a Large Atmospheric CO2 Spike Across the Cretaceous
RESEARCH LETTER No Evidence for a Large Atmospheric CO2 Spike Across 10.1029/2018GL081215 the Cretaceous‐Paleogene Boundary Key Points: Joseph N. Milligan1,2 , Dana L. Royer1 , Peter J. Franks3 , Garland R. Upchurch4 , • Understanding atmospheric CO 2 1 across the Cretaceous‐Paleogene and Melissa L. McKee boundary has been limited due to 1 2 deficiencies in existing records Department of Earth and Environmental Sciences, Wesleyan University, Middletown, CT, USA, Department of Geology, • Our study highlights the utility of a Baylor University, Waco, TX, USA, 3School of Life and Environmental Sciences, University of Sydney, Sydney, New South proxy based on leaf gas exchange Wales, Australia, 4Department of Biology, Texas State University, San Marcos, TX, USA principles • We record a small transient rise in atmospheric CO2 that is more in line ‐ fi with modeled estimates of both Abstract Currently, there is only one paleo CO2 record from plant macrofossils that has suf cient Deccan volcanism and a bolide stratigraphic resolution to potentially capture a transient spike related to rapid carbon release at the impact Cretaceous‐Paleogene (K‐Pg) boundary. Unfortunately, the associated measurements of stomatal index are off‐calibration, leading to a qualitative interpretation of >2,300‐ppm CO2. Here we reevaluate this record Supporting Information: ‐ • Supporting Information S1 with a paleo CO2 proxy based on leaf gas exchange principles. We also test the proxy with three living species • Data Set S1 grown at 500‐ and 1,000‐ppm CO2, including the nearest living relative of the K‐Pg fern, and find a mean error rate of ~22%, which is comparable to other leading paleo‐CO2 proxies. -
Vascular Flora of the Possum Walk Trail at the Infinity Science Center, Hancock County, Mississippi
The University of Southern Mississippi The Aquila Digital Community Honors Theses Honors College Spring 5-2016 Vascular Flora of the Possum Walk Trail at the Infinity Science Center, Hancock County, Mississippi Hanna M. Miller University of Southern Mississippi Follow this and additional works at: https://aquila.usm.edu/honors_theses Part of the Biodiversity Commons, and the Botany Commons Recommended Citation Miller, Hanna M., "Vascular Flora of the Possum Walk Trail at the Infinity Science Center, Hancock County, Mississippi" (2016). Honors Theses. 389. https://aquila.usm.edu/honors_theses/389 This Honors College Thesis is brought to you for free and open access by the Honors College at The Aquila Digital Community. It has been accepted for inclusion in Honors Theses by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. The University of Southern Mississippi Vascular Flora of the Possum Walk Trail at the Infinity Science Center, Hancock County, Mississippi by Hanna Miller A Thesis Submitted to the Honors College of The University of Southern Mississippi in Partial Fulfillment of the Requirement for the Degree of Bachelor of Science in the Department of Biological Sciences May 2016 ii Approved by _________________________________ Mac H. Alford, Ph.D., Thesis Adviser Professor of Biological Sciences _________________________________ Shiao Y. Wang, Ph.D., Chair Department of Biological Sciences _________________________________ Ellen Weinauer, Ph.D., Dean Honors College iii Abstract The North American Coastal Plain contains some of the highest plant diversity in the temperate world. However, most of the region has remained unstudied, resulting in a lack of knowledge about the unique plant communities present there. -
Growth of Fern Gametophytes After 20 Years of Storage in Liquid Nitrogen
FERN GAZ. 20(8): 337-346. 2018 337 GROWTH OF FERN GAMETOPHYTES AFTER 20 YEARS OF STORAGE IN LIQUID NITROGEN V. C. Pence Center for Conservation and Research of Endangered Wildlife (CREW) Cincinnati Zoo & Botanical Garden, 3400 Vine Street, Cincinnati, OH 45220, USA email: [email protected] Key words: cryopreservation, ex situ conservation, gametophyte; in vitro; long-term storage ABSTRACT In vitro grown gametophytes of six species of ferns, which had been cryopreserved using the encapsulation dehydration procedure, were evaluated for survival after 20 yrs of storage in liquid nitrogen. Tissues were rewarmed and transferred to a recovery medium with the same methods originally used to test pre-storage viability. All six species resumed growth. Post-storage viability was not consistently higher or lower than pre-storage viability of LN exposed tissues, likely reflecting the small sample sizes. However, these results demonstrate that long-term storage in liquid nitrogen is a viable option for preserving gametophytes of at least some fern species and could be utilized as an additional tool for preserving valuable gametophyte collections and for the ex situ conservation of fern biodiversity. INTRODUCTION For many species of ferns, gametophyte tissues have proven to be highly adaptable to growth in vitro (Table 1) . Most of these have been initiated through the aseptic germination of spores, although the aseptic germination of gemmae has also been demonstrated (Raine & Sheffield, 1997). As in vitro cultures, gametophytes can provide tissues for research and for propagation, both for ornamental ferns as well as for ferns of conservation concern. The ex situ conservation of ferns has traditionally relied on living collections and spore banks (Ballesteros, 2011). -
Millerocaulis Tekelili Sp. Nov., a New Species of Osmundalean Fern from the Aptian Cerro Negro Formation (Antarctica) Ezequiel I
This article was downloaded by: [INASP - Pakistan ] On: 28 July 2011, At: 10:58 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Alcheringa: An Australasian Journal of Palaeontology Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/talc20 Millerocaulis tekelili sp. nov., a new species of osmundalean fern from the Aptian Cerro Negro Formation (Antarctica) Ezequiel I. Vera Available online: 27 Jul 2011 To cite this article: Ezequiel I. Vera (2011): Millerocaulis tekelili sp. nov., a new species of osmundalean fern from the Aptian Cerro Negro Formation (Antarctica), Alcheringa: An Australasian Journal of Palaeontology, DOI:10.1080/03115518.2011.576541 To link to this article: http://dx.doi.org/10.1080/03115518.2011.576541 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan, sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. -
Palaeogeograph Y, Palaeoclimatology, Palaeoecology , 17(1975): 157--172 © Elsevier Scientific Publishing Company, Amsterdam -- Printed in the Netherlands
Palaeogeograph y, Palaeoclimatology, Palaeoecology , 17(1975): 157--172 © Elsevier Scientific Publishing Company, Amsterdam -- Printed in The Netherlands CLIMATIC CHANGES IN EASTERN ASIA AS INDICATED BY FOSSIL FLORAS. II. LATE CRETACEOUS AND DANIAN V. A. KRASSILOV Institute of Biology and Pedology, Far-Eastern Scientific Centre, U.S.S.R. Academy of Sciences, Vladivostok (U.S.S.R.) (Received June 17, 1974; accepted for publication November 11, 1974) ABSTRACT Krassilov, V. A., 1975. Climatic changes in Eastern Asia as indicated by fossil floras. II. Late Cretaceous and Danian. Palaeogeogr., Palaeoclimatol., Palaeoecol., 17:157--172. Four Late Cretaceous phytoclimatic zones -- subtropical, warm--temperate, temperate and boreal -- are recognized in the Northern Hemisphere. Warm--temperate vegetation terminates at North Sakhalin and Vancouver Island. Floras of various phytoclimatic zones display parallel evolution in response to climatic changes, i.e., a temperature rise up to the Campanian interrupted by minor Coniacian cooling, and subsequent deterioration of cli- mate culminating in the Late Danian. Cooling episodes were accompanied by expansions of dicotyledons with platanoid leaves, whereas the entire-margined leaf proportion increased during climatic optima. The floristic succession was also influenced by tectonic events, such as orogenic and volcanic activity which commenced in Late Cenomanian--Turonian times. Major replacements of ecological dominants occurred at the Maastrichtian/Danian and Early/Late Danian boundaries. INTRODUCTION The principal approaches to the climatic interpretation of fossil floras have been outlined in my preceding paper (Krassilov, 1973a). So far as Late Creta- ceous floras are concerned, extrapolation (i.e. inferences from tolerance ranges of allied modern taxa) is gaining in importance and the entire/non-entire leaf type ratio is no less expressive than it is in Tertiary floras. -
Hybrids in the Fern Genus Osmunda (Osmundaceae)
Bull. Natl. Mus. Nat. Sci., Ser. B, 35(2), pp. 63–69, June 22, 2009 Hybrids in the Fern Genus Osmunda (Osmundaceae) Masahiro Kato Department of Botany, National Museum of Nature and Science, Amakubo 4–1–1, Tsukuba, 305–0005 Japan E-mail address: [email protected] Abstract Four described putative hybrids in genus Osmunda, O. intermedia from Japan, O. rug- gii from eastern U.S.A., O. nipponica from central Japan, and O. mildei from southern China, are enumerated with notes on their hybridity. It is suggested that Osmunda intermedia is an intrasub- generic hybrid (O. japonica of subgenus Osmunda ϫ O. lancea of subgenus Osmunda), O. ruggii is an intersubgeneric hybrid (O. regalis of subgenus Osmunda ϫ O. claytoniana of subgenus Clay- tosmunda), O. nipponica is an intersubgeneric hybrid (O. japonica ϫ O. claytoniana of subgenus Claytosmunda), and O. midlei is an intersubgeneric hybrid (O. japonica ϫ O. angustifolia or O. vachellii of subgenus Plenasium). Among the four, O. intermedia is the most widely distributed and can reproduce in culture, suggesting that it can reproduce to some extent in nature. Key words : Hybrid, Osmunda intermedia, Osmunda mildei, Osmunda nipponica, Osmunda rug- gii. three subgenera Claytosmunda, Osmunda, and Introduction Plenasium, genus Leptopteris, genus Todea, and The genus Osmunda has been classified in ei- genus Osmundastrum (see also Metzgar et al., ther the broad or narrow sense. In the previously 2008). most accepted and the most lumping classifica- Four putative hybrids are known in the genus tion, it was divided into three subgenera, Osmun- Osmunda s.l. in eastern U.S.A. -
Plant Anatomy Lab 5
Plant Anatomy Lab 7 - Stems II This exercise continues the previous lab in studying primary growth in the stem. We will be looking at stems from a number of different plant species, and emphasize (1) the variety of stem tissue patterns, (2) stele types and the location of vascular tissues, (3) the development of the stem from meristem activity, and (4) the production of xylem and phloem by the procambium. All of the species studied are pictured either in your text or the atlases at the front of the lab. 1) Early vascular plants (cryptogams) A) Obtain a piece of the rachis of the fern (collected in the White Hall atrium). This structure is superficially analogous to a stem, although it has a different origin. Prepare a transverse section of the rachis and stain it in toluidine blue. Note the large amount of cortical tissue and the presence of sclerenchyma cells near the outer cortex. Also note that the stele vascular tissue appears to be amphiphloic. Lastly, you should be able to see readily the endodermal-style thickenings on the cells just outside each vascular bundle. B) Find prepared slides of the Osmunda and Polypodium (fern) rhizomes. Note the amphiphloic bundles (a protostele?), the presence of sclerenchyma in the cortex, and the thickened walls of the endodermis that you will find is not uncommon among many non-seed plants. Remember that rhizomes are modified stems that often occur underground. Osmunda fern vascular bundle. C) Obtain a prepared slide of Psilotum. This stele does not have a pith, so it is a protostele (or an actinostele because it has a star-like shape). -
Osmundaceae Royal Fern Family
Osmundaceae Royal Fern Family A family of large coarse plants, these are our largest pteridophyte species. Stipes arise from rhizomes Page | 70 covered in persistent frond bases. Stipes are pubescent but without scales, bearing stipules at their bases. Fertile fronds may be separate from vegetative fronds, or fronds divided between sterile and fertile portions. Sporangia are not arranged in sori, but in short stalked clusters. Osmunda L. royal ferns A single genus finds its way to eastern North America; three species grow in Nova Scotia. All have pinnate or bipinnate fronds. Key to species A. Fronds twice-pinnate; fertile pinnae carried at the top. Osmunda regalis aa. Fronds pinnate; sterile fronds deeply divided, lobes nearly entire. B B. Fertile pinnae near the middle of sterile fronds; no woolly O. claytoniana pubescence at the base of pinnae. bb. Fertile fronds on separate stipes; pinnae with a tuft of pubescence O. cinnamomea in the axils. Osmunda cinnamomea L. Cinnamon Fern; osmonde cannelle A common species, its fertile fronds are cinnamon– coloured, comprising minute sporangia appressed to the axis. Sterile fronds have pinnae subtended by clusters of pale pubescence. Fiddleheads emerge covered in pale or white coloured tomentum. Spores in spring. Grows in poorly-drained soils as found in bogs, swamps, coastal barrens and even low-lying pastures and wet conifer woods. 1-9 Osmundaceae Photo by Sean Blaney Very common throughout the province. Elsewhere from NF to ON, south to TX and FL; South America; Eurasia. Page | 71 Photo by David Mazerolle Osmunda claytoniana L. Interrupted Fern; osmonde de Clayton Fronds resemble the species above, but with both fertile and sterile pinnae on the same stipe in this species. -
Bomfleur Et Al. (2017): the Fossil Osmundales
Bomfleur et al. (2017): The fossil Osmundales (Royal Ferns)—a phylogenetic network analysis, revised taxonomy, and evolutionary classification of anatomically preserved trunks and rhizomes. this study l) a rm fo n /i s ) u e ly n b i e s ri ) m y g u t e fa il b n b ib b u e u r u am (S G (S (T S F Wang et al. (2014)* Osmunda s) s) u l) l) u n a a n e s m y m s e g u r il r u g b n fo fo n b u e n am n e u (S G (i F (i G (S Tidwell & Ash (1994) s) s) Plenasium Plenasium u ly y u n i il n e s m y m s e g a l a g a Claytosmunda b u f i f u b a b b n d u n m e u d S e u a u S n ( G S F S G ( n u u m m s s O O nae p p Osmunda u u Osmunda o o ndi r r g g n n Osmunda Osmunda smu w w O o o r r c c a a Osmundastrum ndeae d d Osmundastrum Osmundastrum n n u u O. (Claytosmunda) O. (Claytosmunda) smu O m m s Osmundastrum s Osmundastrum O O Todea Todea Plenasium ) m l Leptopteris Leptopteris u a Plenasium Plenasium i s Miller (1971) rm a fo n e in l s/ P y u il n y m s e Todea Todea il fa u g b n b m u e u Fa S (S Millerocaulis Millerocaulis Aurealcaulis G Leptopteris Leptopteris Osmunda Millerocaulis Millerocaulis e e Todea a a e e c c nae a a a d d d n n n odei u T u u Leptopteris m m m s Osmundastrum s s O O O Plenasium Osmundoideae Millerocaulis group e a e d i o p p d e e Todea u u n e e a a o o u a a r r Ashicaulis e e Ashicaulis e e e Ashicaulis g g Ashicaulis m c c a d d s i i a a e m m O o o Leptopteris e e d d c d d t t n n n n a s s u u u u d m m n m m s s u s s O O m O O s O s s i i l herbstii group l u u a a c c a o r d e l n l Ashicaulis -
Kew Science Publications for the Academic Year 2017–18
KEW SCIENCE PUBLICATIONS FOR THE ACADEMIC YEAR 2017–18 FOR THE ACADEMIC Kew Science Publications kew.org For the academic year 2017–18 ¥ Z i 9E ' ' . -,i,c-"'.'f'l] Foreword Kew’s mission is to be a global resource in We present these publications under the four plant and fungal knowledge. Kew currently has key questions set out in Kew’s Science Strategy over 300 scientists undertaking collection- 2015–2020: based research and collaborating with more than 400 organisations in over 100 countries What plants and fungi occur to deliver this mission. The knowledge obtained 1 on Earth and how is this from this research is disseminated in a number diversity distributed? p2 of different ways from annual reports (e.g. stateoftheworldsplants.org) and web-based What drivers and processes portals (e.g. plantsoftheworldonline.org) to 2 underpin global plant and academic papers. fungal diversity? p32 In the academic year 2017-2018, Kew scientists, in collaboration with numerous What plant and fungal diversity is national and international research partners, 3 under threat and what needs to be published 358 papers in international peer conserved to provide resilience reviewed journals and books. Here we bring to global change? p54 together the abstracts of some of these papers. Due to space constraints we have Which plants and fungi contribute to included only those which are led by a Kew 4 important ecosystem services, scientist; a full list of publications, however, can sustainable livelihoods and natural be found at kew.org/publications capital and how do we manage them? p72 * Indicates Kew staff or research associate authors. -
VH Flora Complete Rev 18-19
Flora of Vinalhaven Island, Maine Macrolichens, Liverworts, Mosses and Vascular Plants Javier Peñalosa Version 1.4 Spring 2019 1. General introduction ------------------------------------------------------------------------1.1 2. The Setting: Landscape, Geology, Soils and Climate ----------------------------------2.1 3. Vegetation of Vinalhaven Vegetation: classification or description? --------------------------------------------------3.1 The trees and shrubs --------------------------------------------------------------------------3.1 The Forest --------------------------------------------------------------------------------------3.3 Upland spruce-fir forest -----------------------------------------------------------------3.3 Deciduous woodlands -------------------------------------------------------------------3.6 Pitch pine woodland ---------------------------------------------------------------------3.6 The shore ---------------------------------------------------------------------------------------3.7 Rocky headlands and beaches ----------------------------------------------------------3.7 Salt marshes -------------------------------------------------------------------------------3.8 Shrub-dominated shoreline communities --------------------------------------------3.10 Freshwater wetlands -------------------------------------------------------------------------3.11 Streams -----------------------------------------------------------------------------------3.11 Ponds -------------------------------------------------------------------------------------3.11