Potential Energy Under Consideration, Have Their Original Values; but in General, the New State Is Not One of Equilibrium

Total Page:16

File Type:pdf, Size:1020Kb

Potential Energy Under Consideration, Have Their Original Values; but in General, the New State Is Not One of Equilibrium Fracture Mechanics Energy Methods Energy Methods Presented by Calvin M. Stewart, PhD MECH 5390-6390 Fall 2020 Outline • Motivation • Energy Balance • Energy Release Rate, G • Fixed Grip and Load Conditions • Relationship between G and KI Motivation Motivation • In this previous lectures, we focused on the stress intensity factor, K approach where the factor is used to regularize the singular stress field. • Challenges • Must Derive the Stress Field Equations specific to the geometry and load conditions. • Mixed Loading (Mode I, II, and III) are difficult to describe analytically • Limited Plasticity Motivation • Stress Intensity Factor (SIF) is a fracture mechanics parameter used to characterize the strength of the singularity at the crack tip, denoted by K. • The Critical Fracture Toughness is a cracked material’s ability to resist fracture, denoted by Kc. It is considered a material property and commonly used in design. Stress Intensity Factor (SIF) Equation Critical Fracture Toughness Property KKIc Equation. Function of Material Property Function of • Loading Conditions Environment • Body Geometry Surface Roughness • Crack Geometry Microstructural Mechanisms Motivation According to the First Law of Thermodynamics, when a system goes from a nonequilibrium state to equilibrium, there will be a net decrease in energy. • AA. Griffith (1920), The Phenomena of rupture and flow in solids, Phys Transactions Vol 221. • It may be supposed for the present purpose, that the crack is formed by a sudden annihilation of the tractions acting on its surface. At the instant following this operation, the strain, and therefore the potential energy under consideration, have their original values; but in general, the new state is not one of equilibrium. If it is not a state of equilibrium, then, by the theorem of minimum potential energy, the potential energy is reduced by the attainment of equilibrium; if it is a state of equilibrium the energy does not change. Motivation • A crack can form (or an existing crack can grow) only if such a process causes the total energy to decrease or to remain constant. Thus the critical conditions for fracture can be defined as the point where crack growth occurs under equilibrium conditions, with no net change in total energy. • The Energy Concept 1. Energy is needed to grow a crack 2. Energy is released by relaxing the body If 2>1 the crack will grow Energy is a scalar and often easier to deal with then the stress fields Energy Balance Energy Balance • In this section, the energy balance approach will be considered for an arbitrary loading condition. • In the energy balance approach a cracked elastic plate and its loading system are considered. • The combination of plate and loading system is assumed to be isolated from its surroundings, i.e. exchange of work can only take place between the two. Energy Balance • The energy content of the plate plus the loading system, denoted as the total energy U, is written as Energy Balance • In order to understand why the work F must be subtracted in equation (4.1), consider a plate placed in series with a spring between fixed grips. • The spring loads the plate in tension. This represents an arbitrary loading condition, since both load and displacement of the plate will change during the introduction of a crack. • Furthermore, it is clear that no work can be performed from outside the combination of spring and plate, since no external displacements are allowed. Energy Balance • When a crack is introduced, the stiffness of the plate is reduced and the plate becomes somewhat longer. • Consequently the spring becomes shorter by the same amount. During this process, the spring performs an amount of work F on the plate. • This happens at the expense of the elastic energy content of the spring, which thus decreases. • Since the elastic energy content of the spring is part of the total energy U, it follows that F must be subtracted in equation (4.1) Energy Balance • At this point we define the potential energy of an object. • Potential energy is either related to the position of an object in a conservative power field or due to its state. • An evident example of the first is the potential energy of a mass which is determined by its position (height) in a gravitational field. • Elastic strain energy is an example of potential energy which is due to the state of an object. • In all cases potential energy is characterized by its ability (potential) to perform work. Energy Balance • Only part of the total energy U given by equation 4.1 performs work. • This part will be designated as the potential energy, Up, of the elastic plate and its loading system and is equal to • Note: the change in surface energy does not appear. Energy Balance • In general, for a centre cracked plate under arbitrary loading conditions U will vary as a function of half crack length, a, according to the schematic plot. • Crack growth instability will occur as soon as U decreases with the crack length, i.e. after U has reached a maximum value. This condition is given by dU. The variation of the total energy of a centre cracked plate, U, as a function of half crack length a. Energy Balance • This crack instability condition is given by • where since U0 is constants. Energy Balance • Finally we arrive at the following inequality, • The left-hand side is the decrease in potential energy if the crack were to extend by da. • During this same crack extension the surface energy would increase by an amount given by the right-hand side. • In other words, equation (4.5) states that crack growth will occur when the energy available for crack extension is larger than the energy required. Energy Release Rate, G Energy Release Rate, G • Irwin defined the energy available per increment of crack extension and per unit thickness as the energy release rate, G. • When considering a central crack with length 2a, an increment of crack extension is d(2a) and therefore: Note that for a central crack, with length 2a, G is found by differentiating Up to d(2a), while for an edge crack, with length a, differentiating to da would be sufficient. In both cases G is found as the negative derivative of the potential energy with respect to the newly formed crack area dA, where this area is defined as the projection normal to the crack plane of the newly formed surfaces. Energy Release Rate, G • The energy required per increment of crack extension is defined as the crack resistance, R: • Thus our inequality can be rewritten as Energy Release Rate, G • Now let’s consider the elastic energy change in a remotely loaded centre crack plated. • In the LEFM II lectures, we derived an expression for the plane stress crack flank displacement of a central crack with length 2a in an infinite plate remotely loaded by a tensile stress. • Here we denoted the remote load as σ∞ giving the crack flank displacement, V as • where by changing x we can find it anywhere along the crack. Energy Release Rate, G • Using this, we can find the change in elastic energy of the plate, Ua, by considering an open crack with stress-free crack flanks, and calculating how much work is involved in closing the crack. • The situation of a closed crack resembles that without a crack, since in both cases a uniform stress field σ∞ is present. • Furthermore, closing the crack increases the elastic energy by an amount equal to the work involved. Energy Release Rate, G • For a flank length dx, the work involved in closing the crack is: • In this calculation linear elastic material behaviour is assumed, i.e. when the stress σ increases from 0 to σ∞, the displacement ξ increases linearly from 0 to V. The work involved in closing the whole crack is found by integrating along the crack from -a to +a, which is the same as integrating twice from 0 to +a. Energy Release Rate, G • The change in elastic energy, Ua, involved in creating a central crack with length 2a is the negative value of this work and is given by: • For plane strain replace E with E/(1-v^2) Fixed Grip and Constant Load Conditions Fixed Grip and Constant Load Conditions • In a centre cracked plate we have crack extension when, according to equations (4.6) -(4.8), • A finite plate under fixed grip conditions resembles an infinite plate because no work is performed by external forces, i.e. F = constant during crack growth. • A difference is, however, that crack extension reduces the plate stiffness and so causes the load to drop. Fixed Grip Condition Under fixed grip conditions with a displacement V, the load on the plate will drop from P to P + ΔP (i.e. ΔP < 0) when the crack extends by Δa at both tips. Fixed Grip and Constant Load Conditions • Knowing this, it is to be expected that for a finite plate under fixed grip conditions dUa/d(2a) is not the same as for an infinite plate. • It can be argued that in a finite plate loaded under fixed grip conditions the change in Ua owing to crack extension approaches that of an infinite plate if the crack size 2a is small compared to the plate’s dimensions. • For such a plate we can write Fixed Grip and Constant Load Conditions • The surface energy, Uγ, is equal to the product of the surface tension of the material, γe, and the surface area of the crack (two surfaces with length 2a): • Therefore, the crack resistance reduces to • The Crack extension inequality becomes Fixed Grip and Constant Load Conditions • In the case of constant load, then crack extension results in increased displacement owing to decreased stiffness of the plate.
Recommended publications
  • 6. Fracture Mechanics
    6. Fracture mechanics lead author: J, R. Rice Division of Applied Sciences, Harvard University, Cambridge MA 02138 Reader's comments on an earlier draft, prepared in consultation with J. W. Hutchinson, C. F. Shih, and the ASME/AMD Technical Committee on Fracture Mechanics, pro­ vided by A. S. Argon, S. N. Atluri, J. L. Bassani, Z. P. Bazant, S. Das, G. J. Dvorak, L. B. Freund, D. A. Glasgow, M. F. Kanninen, W. G. Knauss, D. Krajcinovic, J D. Landes, H. Liebowitz, H. I. McHenry, R. O. Ritchie, R. A. Schapery, W. D. Stuart, and R. Thomson. 6.0 ABSTRACT Fracture mechanics is an active research field that is currently advancing on many fronts. This appraisal of research trends and opportunities notes the promising de­ velopments of nonlinear fracture mechanics in recent years and cites some of the challenges in dealing with topics such as ductile-brittle transitions, failure under sub­ stantial plasticity or creep, crack tip processes under fatigue loading, and the need for new methodologies for effective fracture analysis of composite materials. Continued focus on microscale fracture processes by work at the interface of solid mechanics and materials science holds promise for understanding the atomistics of brittle vs duc­ tile response and the mechanisms of microvoid nucleation and growth in various ma­ terials. Critical experiments to characterize crack tip processes and separation mecha­ nisms are a pervasive need. Fracture phenomena in the contexts of geotechnology and earthquake fault dynamics also provide important research challenges. 6.1 INTRODUCTION cracking in the more brittle structural materials such as high strength metal alloys.
    [Show full text]
  • AC Fischer-Cripps
    A.C. Fischer-Cripps Introduction to Contact Mechanics Series: Mechanical Engineering Series ▶ Includes a detailed description of indentation stress fields for both elastic and elastic-plastic contact ▶ Discusses practical methods of indentation testing ▶ Supported by the results of indentation experiments under controlled conditions Introduction to Contact Mechanics, Second Edition is a gentle introduction to the mechanics of solid bodies in contact for graduate students, post doctoral individuals, and the beginning researcher. This second edition maintains the introductory character of the first with a focus on materials science as distinct from straight solid mechanics theory. Every chapter has been 2nd ed. 2007, XXII, 226 p. updated to make the book easier to read and more informative. A new chapter on depth sensing indentation has been added, and the contents of the other chapters have been completely overhauled with added figures, formulae and explanations. Printed book Hardcover ▶ 159,99 € | £139.99 | $199.99 The author begins with an introduction to the mechanical properties of materials, ▶ *171,19 € (D) | 175,99 € (A) | CHF 189.00 general fracture mechanics and the fracture of brittle solids. This is followed by a detailed description of indentation stress fields for both elastic and elastic-plastic contact. The discussion then turns to the formation of Hertzian cone cracks in brittle materials, eBook subsurface damage in ductile materials, and the meaning of hardness. The author Available from your bookstore or concludes with an overview of practical methods of indentation. ▶ springer.com/shop MyCopy Printed eBook for just ▶ € | $ 24.99 ▶ springer.com/mycopy Order online at springer.com ▶ or for the Americas call (toll free) 1-800-SPRINGER ▶ or email us at: [email protected].
    [Show full text]
  • Fracture and Deformation of Soft Materials and Structures
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2018 Fracture and deformation of soft am terials and structures Zhuo Ma Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Aerospace Engineering Commons, Engineering Mechanics Commons, Materials Science and Engineering Commons, and the Mechanics of Materials Commons Recommended Citation Ma, Zhuo, "Fracture and deformation of soft am terials and structures" (2018). Graduate Theses and Dissertations. 16852. https://lib.dr.iastate.edu/etd/16852 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Fracture and deformation of soft materials and structures by Zhuo Ma A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Engineering Mechanics Program of Study Committee: Wei Hong, Co-major Professor Ashraf Bastawros, Co-major Professor Pranav Shrotriya Liang Dong Liming Xiong The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2018 Copyright © Zhuo Ma, 2018. All rights reserved. ii TABLE OF CONTENTS Page LIST OF FIGURES ..........................................................................................................
    [Show full text]
  • Elastic Plastic Fracture Mechanics Elastic Plastic Fracture Mechanics Presented by Calvin M
    Fracture Mechanics Elastic Plastic Fracture Mechanics Elastic Plastic Fracture Mechanics Presented by Calvin M. Stewart, PhD MECH 5390-6390 Fall 2020 Outline • Introduction to Non-Linear Materials • J-Integral • Energy Approach • As a Contour Integral • HRR-Fields • COD • J Dominance Introduction to Non-Linear Materials Introduction to Non-Linear Materials • Thus far we have restricted our fractured solids to nominally elastic behavior. • However, structural materials often cannot be characterized via LEFM. Non-Linear Behavior of Materials • Two other material responses are that the engineer may encounter are Non-Linear Elastic and Elastic-Plastic Introduction to Non-Linear Materials • Loading Behavior of the two materials is identical but the unloading path for the elastic plastic material allows for non-unique stress- strain solutions. For Elastic-Plastic materials, a generic “Constitutive Model” specifies the relationship between stress and strain as follows n tot =+ Ramberg-Osgood 0 0 0 0 Reference (or Flow/Yield) Stress (MPa) Dimensionaless Constant (unitless) 0 Reference (or Flow/Yield) Strain (unitless) n Strain Hardening Exponent (unitless) Introduction to Non-Linear Materials • Ramberg-Osgood Constitutive Model n increasing Ramberg-Osgood −n K = 00 Strain Hardening Coefficient, K = 0 0 E n tot K,,,,0 n=+ E Usually available for a variety of materials 0 0 0 Introduction to Non-Linear Materials • Within the context of EPFM two general ways of trying to solve fracture problems can be identified: 1. A search for characterizing parameters (cf. K, G, R in LEFM). 2. Attempts to describe the elastic-plastic deformation field in detail, in order to find a criterion for local failure.
    [Show full text]
  • Fracture Mechanics You Can Understand
    Fracture Mechanics You Can Understand. John Goldak and Hossein Nimrouzi October 14, 2018 This document is intended to present much of the theory of linear elastic fracture mechanics (LEFM) in a way that is readily understandable to a second year engineering student. For a given crack geometry in a given structure, material type and boundary conditions, LEFM provides the formula below for the normal stress σyy(x; 0) on the crack plane with the crack. See Fig. 1. KI σyy(x; 0) = p f(θ) (1) 2πr p p where KI is the amplitude of the function f(θ)=( 2πr). The function f(θ)=( 2πr) is only a function of polar coordinates (r; θ). For a centre crack in an infinite plate with uniaxial ∗ tensile stress σyy before (without) the crack and crack length a, the value of the coefficient KI , which is called the stress intensity factor, is computed from the equation below. ∗ p KI = σyy πa (2) ∗ where σyy is is the traction normal to the crack plane evaluated in the UNCRACKED ∗ specimen or structure. Note that σyy and σyy(x; 0) are very different things. LEFM succeeded because experiments showed that if for a given material, crack geom- etry and load case, KI was less than a critical value called the fracture toughness that is denoted KIC , the crack was unlikely to grow rapidly and the risk the structure would fail was low. However, if KI was greater than the fracture toughness, the risk that the crack would grow rapidly and the structure would fail was high.
    [Show full text]
  • SCK« CEN Stuimkchntrum VOOR Kl-.Rnfcnlrglt CTNTRF D'ftudl 1)1 I'fcnl-Rgil- MICI.FAIRF Precracking of Round Notched Bars
    BE9800004 SCK« CEN STUIMKChNTRUM VOOR Kl-.RNfcNLRGlt CTNTRF D'FTUDl 1)1 I'fcNl-RGIl- MICI.FAIRF Precracking of round notched bars Progress Report M. Scibetta SCK-CEN Mol* Belgium Precracking of round notched bars Progress Report M. Scibetta SCK»CEN Mol, Belgium February, 1996 BLG-708 Precracking of round notched bars 1 Abstract 3 2 Introduction 3 3 Overview of precracking techniques 4 3.1 Introduction 4 3.2 Equipment 4 3.3 Eccentricity 5 3.4 Time required to precrack 5 3.5 Crack depth determination 5 3.5.1 The compliance method 6 3.5.1.1 Measuring force 6 3.5.1.2 Measuring displacement 6 3.5.1.3 Measuring an angle with a laser 6 3.5.1.4 Measuring force and displacement 7 3.5.2 Optical methods 7 3.5.3 The potential drop method 7 3.5.4 The resonance frequency method 8 3.6 Summary 8 4 Stress intensity factor and compliance of a bar under bending 9 4.1 Analytical expression 9 4.2 Stress intensity factor along the crack front 10 4.4 Combined effect of contact and eccentricity 12 4.5 Effect of mode II 12 4.6 Compliance 13 5 Stress intensity factor and compliance of a bar under bending using the finite element method (FEM) 15 5.1 Stress intensity factors 15 5.2 Compliance 17 6 Precracking system 18 6.2 Schematic representation of the experimental system 19 6.3 Initial stress intensity factor 19 6.4 Initial force 20 6.5 Initial contact pressure 20 6.6 Final force 22 6.7 Final stress intensity factor 22 7 Stress intensity factor of a precracked bar under tension 23 7.1 Analytical formulations 23 7.2 Finite element method 24 8 Compliance of a precracked bar under tension 26 8.1 Analytical formulations 26 8.2 Finite element method 27 9 Conclusions 28 10 Future investigations 29 11 References 30 Annex 1 Stress intensity factor and compliance function of a precracked bar under bending 33 Annex 2 Neutral axis position and stress intensity factor correction due to contact .34 Annex 3 Stress intensity factor and compliance function of a precracked bar under tension 35 1 Abstract Precracking round notched bars is the first step before fracture mechanics tests.
    [Show full text]
  • A Vanishing Viscosity Approach in Fracture Mechanics
    Weierstrass Institute for Applied Analysis and Stochastics A vanishing viscosity approach in fracture mechanics Dorothee Knees jointly with A. Mielke, A. Schröder, C. Zanini Nonlocal Models and Peridynamics, Nov. 5–7, 2012, TU Berlin Mohrenstrasse 39 · 10117 Berlin · Germany · Tel. +49 30 20372 0 · www.wias-berlin.de Introduction Goal: Derive a rate independent model for crack propagation based on the Griffith criterion. Du E(u(t); s(t)) = `(t), 0 2 @R(s_(t)) + DsE(u(t); s(t)). Questions: The energy E is not convex in s ) The evolution might be dicontinuous. Suitable jump criteria? Hyperelstic material with polyconvex energy density: DsE well defined? Convergence of fully discretized models? Vanishing viscosity approach in fracture mechanics D. Knees ·· Page 2 (29) Contents 1 Fracture model and vanishing viscosity solutions (finite strains) 2 FE-approximation of vanishing viscosity solutions (small strains) 3 Numerical example 4 Summary Vanishing viscosity approach in fracture mechanics D. Knees ·· Page 3 (29) Energies and notation (2D) 2 ' :Ωs ! deformation field R '(Ω ) 2×2 ' s W : R ! [0; 1] elastic energy density Ωs 2×2 Assumptions: F = r' 2 R I W (F) = 1 if det F ≤ 0 + coercivity. I polyconvexity: W (F) = g(F; det F), g convex and lower semicontinuous. 2×2 > I multiplicative stress control: 8F 2 R+ : F DW (F) ≤ c1(W (F) + 1) 2 2 Example: W (F) = c1 jFj + c2(det F) − c3 log(det F): 1;p Admissible deformations V (Ωs) = f ' 2 W (Ωs); ' = 'D g ΓD Elastic energy E(t; '; s) = R W (r') dx − R h(t) · ' da Ωs ΓN Reduced energy I(t; s) = inf'2V (Ωs ) E(t; s;') Ball’77: Minimizers exist (not necessarily unique!) Vanishing viscosity approach in fracture mechanics D.
    [Show full text]
  • Elements of Fracture Mechanics by Prasant Kumar
    Elements of Fracture Mechanics Prashant Kumar Former Professor Department of Mechanical Engineering IITKanpur LNVM (NEEMRANA) 7084 11111111111111111 IIIII IIII IIII Library McGraw Hill Education (India) Private Limited NEW• DELHI McGraw Hi/11:ducation Offices New Delhi New York St Louis San Francisco Auci<land Bogota Caracas Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal San Juan Santiago Singapore Sydney Tokyo Toronto McGraw Hill Education (India) Private Limited Published by McGraw Hill Education (India) Private Limited, P-24, Green Park Extension, New Delhi 110 016. Copyright © 2009, by McGraw Hill Education (India) Private Limited Seventh reprint 2014 RLZXCRCURQZAR No part of this publication may be reproduced or distributed in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise or stored in a database or retrieval system without the prior written permission of the publishers. The program listings (if any) may be entered, stored and executed in a computer system, but they may not be reproduced for publication. This edition can be exported from India only by the publishers, McGraw-Hill Education (India) Private Limited. ISBN (13): 978-0-07-065696-3 ISBN (10): 0-07-065696-7 Managing Director: Kaushik Be!lani Asst. Manager-Production: Sohan Gaur Manager-Sales & Marketing: S Girish Product Manager-Science, Technology and Computing: Rekha Dhyani General Manager-Production: Rajender P Ghansela Information contained in this work has been obtained by McGraw-Hill, from sources believed to be reliable. However, neither McGraw-Hill nor its authors guarantee the accuracy or completeness of any information published herein, and neither McGraw Hill nor its authors shall be responsible for any errors, omissions, or damages arising out of use of this information.
    [Show full text]
  • Background on Fracture Mechanics Huy Duong Bui, J.B
    Background on Fracture Mechanics Huy Duong Bui, J.B. Leblond, N. Stalin-Muller To cite this version: Huy Duong Bui, J.B. Leblond, N. Stalin-Muller. Background on Fracture Mechanics. Handbook of Materials Behavior Models 2, Academic Press, pp.549-565, 2001, 10.1016/B978-012443341-0/50061- 2. hal-00112289 HAL Id: hal-00112289 https://hal.archives-ouvertes.fr/hal-00112289 Submitted on 18 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Background on Fracture Mechanics HUY DuoNG Bm1'2, J-B. LEBLOND3, N. STALIN-MULLER1 1 Laboratoire de Mecanique des Solides, Ecole Polytechnique, 91128 Palaiseau, France 2 Electricite de France, R&D, Clamart, France 3 Laboratoire de Modelisation en Mecanique, Universite de Pierre et Marie Curie, 8 rue du Capitaine Scott, 75015 Paris, France 7.3.1 VA LIDITY Linear elastic fracture mechanics (LEFM) is based on the analysis of cracks in linear elastic materials. It provides a tool for solving most practical problems in engineering mechanics, such as safety and life expectancy estimation of cracked structures and components. The main success of the theory is based precisely upon linearity, which makes it possible to combine very simply 1 the theoretical, numerical, and experimental analyses of fracture.
    [Show full text]
  • Fracture Mechanics of Thin Plates and Shells Under Combined Membrane, Bending and Twisting Loads1
    Fracture Mechanics of Thin Plates and Shells Under Combined Membrane, Bending and Twisting Loads1 Alan T. Zehnder Department of Theoretical and Applied Mechanics, Cornell University, Ithaca, NY, 14853-1503 USA [email protected] Mark J. Viz Exponent Failure Analysis Associates, Chicago, Illinois 60606 Abstract The fracture mechanics of plates and shells under membrane, bending, twisting and shearing loads are reviewed, starting with the crack tip ¯elds for plane-stress, Kirchho® and Reissner theories. The energy release rate for each of these theories is calculated and is used to determine the relation between the Kirchho® and Reissner theories for thin plates. For thicker plates this relationship is explored using three-dimensional ¯nite element analysis. The validity of the application of two- dimensional (plate theory) solutions to actual three-dimensional objects is analyzed and discussed. Crack tip ¯elds in plates undergoing large deflection are analyzed using von K¶arm¶antheory. Solu- tions for cracked shells are discussed as well. A number of computational methods for determining stress intensity factors in plates and shells are discussed. Applications of these computational ap- proaches to aircraft structures are reviewed. The relatively few experimental studies of fracture in plates under bending and twisting loads are reviewed. 1 Introduction Fracture of plates and shells is of great practical as well as theoretical interest. For example, a large number of engineering structures, such as pressurized aircraft fuselages, ship hulls, storage tanks and pipelines are constructed of shells and plates. Concern over the safety of such structures has led to tremendous amounts of productive research in fracture and fatigue of structural materials.
    [Show full text]
  • Introduction to Contact Mechanics
    4 Anthony C. Fischer-Cripps Introduction to Contact Mechanics With 93 Figures Springer Contents Series Preface vii Preface ix List of Symbols xvii History xix Chapter 1. Mechanical Properties of Materials 1 1.1 Introduction 1 1.2 Elasticity 1 1.2.1 Forces between atoms 1 7.2.2 Hooke's law 2 1.2.3 Strain energy 4 1.2.4 Surface energy 4 1.2.5 Stress 5 1.2.6 Strain 10 1.2.7 Poisson's ratio 14 1.2.8 Linear elasticity (generalized Hooke's law) 14 1.2.9 2-D Plane stress, plane strain 16 1.2.10 Principal stresses 18 1.2.11 Equations of equilibrium and compatibility 23 1.2.12 Saint-Venant's principle 25 1.2.13 Hydrostatic stress and stress deviation 25 1.2.14 Visualizing stresses 26 1.3 Plasticity 27 1.3.1 Equations of plastic flow 27 1.4 Stress Failure Criteria 28 1.4.1 Tresca failure criterion 28 1.4.2 Von Mises failure criterion 29 References 30 Chapter 2. Linear Elastic Fracture Mechanics 31 2.1 Introduction 31 2.2 Stress Concentrations 31 ^cii Contents 2.3 Energy Balance Criterion 32 2.4 Linear Elastic Fracture Mechanics 37 2.4.1 Stress intensity factor 37 2.4.2 Crack tip plastic zone 40 2.4.3 Crack resistance 41 2.4.4 KIC, the critical value ofK, 41 2.4.5 Equivalence ofG and K. 42 2.5 Determining Stress Intensity Factors 43 2.5.7 Measuring stress intensity factors experimentally 43 2.5.2 Calculating stress intensity factors from prior stresses 44 2.5.3 Determining stress intensity factors using the finite-element method 46 References 48 Chapter 3.
    [Show full text]
  • Introduction to Fracture Mechanics
    Introduction to fracture mechanics Prof. Dr. Eleni Chatzi Dr. Giuseppe Abbiati, Dr. Konstantinos Agathos Lecture 6 - 9 November, 2017 Institute of Structural Engineering, ETH Zurich¨ November 9, 2017 Institute of Structural Engineering Method of Finite Elements II 1 Outline 1 Introduction 2 Linear elastic fracture mechanics Historical background General elasticity problem Airy stress function Some relevant solutions Westergaard solution Stress Intensity Factors Energy release rate Mixed mode fracture J and interaction integrals 3 Cohesive zone models Institute of Structural Engineering Method of Finite Elements II 2 Learning goals Reviewing basic elasticity equations and solution methods Understanding some basic concepts of Linear Elastic Fracture Mechanics Introducing brittle and cohesive fracture Reviewing some basic methods for fracture mechanics Institute of Structural Engineering Method of Finite Elements II 3 Applications Fracture in brittle materials Fatigue fracture Fracture in concrete Development of numerical methods for fracture Institute of Structural Engineering Method of Finite Elements II 4 Resources Some useful resources: fracturemechanics.org Extended Finite Element Method for Fracture Analysis of Structures by Soheil Mohammadi, Blackwell Publishing, 2008 Institute of Structural Engineering Method of Finite Elements II 5 History Some research relevant to the field was conducted starting from the end of the 19th century Motivation was provided from experiments in brittle materials were the measured strength was much lower
    [Show full text]