Fracture Mechanics of Thin Plates and Shells Under Combined Membrane, Bending and Twisting Loads1 Alan T. Zehnder Department of Theoretical and Applied Mechanics, Cornell University, Ithaca, NY, 14853-1503 USA
[email protected] Mark J. Viz Exponent Failure Analysis Associates, Chicago, Illinois 60606 Abstract The fracture mechanics of plates and shells under membrane, bending, twisting and shearing loads are reviewed, starting with the crack tip ¯elds for plane-stress, Kirchho® and Reissner theories. The energy release rate for each of these theories is calculated and is used to determine the relation between the Kirchho® and Reissner theories for thin plates. For thicker plates this relationship is explored using three-dimensional ¯nite element analysis. The validity of the application of two- dimensional (plate theory) solutions to actual three-dimensional objects is analyzed and discussed. Crack tip ¯elds in plates undergoing large deflection are analyzed using von K¶arm¶antheory. Solu- tions for cracked shells are discussed as well. A number of computational methods for determining stress intensity factors in plates and shells are discussed. Applications of these computational ap- proaches to aircraft structures are reviewed. The relatively few experimental studies of fracture in plates under bending and twisting loads are reviewed. 1 Introduction Fracture of plates and shells is of great practical as well as theoretical interest. For example, a large number of engineering structures, such as pressurized aircraft fuselages, ship hulls, storage tanks and pipelines are constructed of shells and plates. Concern over the safety of such structures has led to tremendous amounts of productive research in fracture and fatigue of structural materials.