United States Patent Office Patented Apr

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent Office Patented Apr 3,179,676 United States Patent Office Patented Apr. 20, 1965 2 drocarbon radicals including alkyl, aryl, aralkyl, alkaryl, 3,179,676 and cycloaliphatic hydrocarbon radicals. The hydro ORGANOTNORGANOPHOSPHORUS COM carbyl substituent represented by each of the symbols R' POUNDS AND A METHOD FOR PREPAIR and R' in the above recited formulae will normally con ING THE SAME Charles J. Stern, Jr., Westfield, N.J., assignor to Nease tain from 1 to 20 carbon atoms. This is, of course, par Chemical Company, Inc., State College, Pa., a corpo ticularly true where R is an alkyl radical, for example. ration of Pennsylvania Where R is an aryl, aralkyl or alkaryl radical, the num No Drawing. Fied Mar. 28, 1961, Ser. No. 98,789 ber of carbon atoms may be in the range of 6 to 20 car 10 Clains. (C. 260-429.7) bon atoms; and where R' is a cycloaliphatic radical, 3 to O 20 carbon atoms circumscribes the proper range. Where This invention relates to novel biocidal compounds and R’ is a heterocyclic radical, the number of carbon atoms to methods for the preparation thereof. More particular may be in the range of 12 to 20 carbonatoms, as well. ly, the present invention relates to novel highly effective Each of the radicals represented by R contains from 1 fungicidal and bactericidal organotin-organophosphorus to 12 carbon atoms with the sum of the carbon atoms compounds which are advantageously combined with 5 of the R substituents attached to each stannic moiety paints and plastic formulations and which are, in addi being within the range of 8 to 14. tion, useful in the treatment of paper, cloth, leather, wood, The preferred biocidal compounds of the invention are and other fibrous and insulating materials, to render these embraced by the formula: materials resistant to deterioration caused by bacteria and fungi; and to methods for the preparation thereof. 20 Fungicidal and bactericidal compositions employed heretofore have been known to present one or a plurality wherein R is butyl and R' is a member selected from of difficulties. Thus, for example, fungicidal and fungi the group consisting of alkyl and hydroxyalkyl radicals static chlorinated phenols are normally highly toxic, neces containing from 1 to 7 carbon atoms, a phenyl radical and sitating special handling. In addition, they cause dis a trihaloalkyl radical, and preferably a trichloroalkyl coloration of plastics and paint films; are corrosive to moiety, such astrichloromethyl. metals; and are usually ineffective at low treatment levels. IIIustrative of the biocidal compounds embraced by the Similarly, fungicidal mercapto-dicarboximide compounds above general formulae are tributyltin-di(hydroxy when used in clear formulations of coatings and plastics, methyl)phosphinate, di(tributyltin) hydroxymethyl phos reduce the heat and light-stability thereof and are, in addi 30 phonate, di(tributyltin)trichloromethyl phosphonate, tri tion, malodorous. In like manner, many copper-contain butyltin-di(hydroxyheptyl)phosphinate, tributyltin-dihexyl ing fungicides result in high treatment costs; discoloration phosphinate, diethylmonobutyltin - di(hydroxymethyl) of the paints and plastics in which they are incorporated; phosphinate, di-(dimethylmonoheptyltin) hydroxymethyl are effective over an abbreviated period of time; and in phosphonate, di - (diethylmonononyltin)trichloromethyl volve difficulty in formulation because of poor solubility 35 phosphonate, dimethylmonododecyltin - di(hydroxyhep characteristics. Phenyl mercurials are also employed as tyl)phosphinate, tripropyltin-dihexyl phosphinate, tribu biocidal agents and yet are uneconomic, highly toxic, tyltin-diphenyl phosphinate, and di(tributyltin) phenyl corrosive to metals, and prohibited in certain military phosphonate. specifications for plastic materials. The term “biocidal' as employed throughout this specific Accordingly, it is an object of the present invention to 40 cation is intended to designate, as indicated hereinabove, provide novel thermally stable biocidal organotin-organo an agent characterized by a fungicidal, fungistatic, bac phosphorus compounds which are particularly effective in tericidal, and/or bacteriostatic activity. the inhibition and destruction of fungi and bacteria; and In their pure state, the compounds of the invention are which are readily incorporated in a wide range of resins, normally colorless or slightly colored, viscous liquids or paints and plasticizers, as well as cloth, leather, Wood and white crystalline or amorphous solids. To facilitate han the like and which are stable against oxidation by air and diling of these compounds for use as biocidal agents, they are resistant to hydrolysis under all conditions of manu may be furnished as solutions in the usual organic sol facture, storage, and use. The organotin-organophos vents and plasticizers. Stable water dispersions of these phorus compounds provided by the practice and within compounds may also be utilized. m the purview of the present invention are characterized, 50 The aforesaid compounds are prepared by reaction of in addition, by low vapor pressure, non-corrosivity to a trialkyltin oxide with an organic phosphinic acid oran metals and solubility in polar and non-polar solvents de E. phosphonic acid, which is included in the for pending upon the nature of the organic Substituents. a The novel biocidal compounds of the invention are represented by the general formulae: 55 O and (RSnO) --Ra O and 60 O R--orOH (RSnO)-P-R’ OR wherein each of R, R', and n has the value attributed to it hereinabove. wherein R is a substituted or unsubstituted alkyl radical; 65 Illustrative of the alkyl stannic oxide components emi R’ is a heterocyclic radical or a substituted or unsub ployed as reactants herein are bis-tributyltin oxide, bis stituted hydrocarbyl radical; R' is a heterocyclic radical, diethylmonobutyltin oxide, bis-dimethylmonoheptyltin a substituted or unsubstituted hydrocarbyl radical, a hy oxide, bis-diethylmononyltin oxide, bis-dimethylmonodo drogen atom or the radical of any compound capable of decyltin oxide, and bis-tripropyltin oxide. reacting with an acidic hydrogen; and n is an integer from 70 Representative phosphinic and phosphonic acid react 1 to 2 inclusive. The term "hydrocarbyl radical' as em ants are di(hydroxymethyl)phosphinic acid, hydroxy ployed herein is intended to encompass monovalent hy methylphosphonic acid, trichloromethyl phosphonic acid, 3,179,6?6 3. 4. di(hydroxyheptyl) phospinic acid, dihexyl phosphinic acid, pounds of the invention together with those known hith phenyl phosphinic acid, and phenyl phosphonic acid. erto employed in this test procedure are listed in Table II. The proportions of organotin and organophosphorus reactants are normally determined by the number of hy TABLE II droxy substituents attached to the phosphorus nucleus of the organophosphorus reactant. Thus the molar propor Fungistatic Compounds tions of reactants where the alkyl stannic oxide is being Tributyltin-di(hydroxymethyl)phosphinate. reacted with a phosphonic acid is at least 1:2 and may be Bis-Tributylti-hydroxymethylphosphonate. in the ratio of 1:1 respectively; whereas when the organo Tributyltin-di(hydroxyheptyl)phosphigiate.Bis-Tributyltin-trichloromethylphosphonate. phosphorus compound is a phosphinic acid the ratio of Tributyltin-di(hexyl)phosphinate. trialkyltin oxide to phosphinic acid is normally 1:2 respec 2,2'-Dihydroxy-5,5-dichlorodiphenyl methane. tively. While ambient temperatures, i.e. 25 C., may be N-Trichloromethyl2,2'-Methylene-3,4,6-trichlorophenol. mercapto-4-cyclohexene-1,2-dicar .. boxinide. employed to effect the reaction herein described, the re Dodecyl dimethyl benzyl ammonium cyclopentane action proceeds more efficaciously at elevated tempera carboxylate salt. Phenyl mercuric composition (Corobex CpV, a trade. tures of 100° C. and higher but at a point below the de name). composition point of the reactants and reaction product. 2,4-Dichloro-6-(o-chloroanilino)-s-triazene. A reaction temperature within the range of 125° C. to Trichlorophenyl acetate. 160° C. is preferred. Petlopmeta-xylenolhall0). derivative (Ottacide P, a trade The compounds of the invention formed in the manner Control sample (containing no fungist3t). described hereinabove are capable of inhibiting the growth of a wide spectrum of microorganisms at comparatively 20 The ingredients were thoroughly dry blended and placed low concentrations. The activity of these compounds in on a laboratory roll mill and milled for three minutes at controlling fungal and bacterial growth has been deter 320 F. The mill gauge was set at 0.040 inch and the mined by the following test procedure. Malt agar solu material removed from the mill and cooled. Discs, 15 tions containing known concentrations (0.1, 0.2, 0.5, 1, mm. in diameter of polyvinyl chloride film composition, 2, and 5 parts per million based on tin content only of each containing a fungistat of Table in the concentra each of the compounds, tributyltin-di(hydroxymethyl) tion recited therein, and a control disc of the aforesaid phosphinate, bis-tributyltin-hydroxymethyl phosphonate, film and dimensions were placed in an agar medium, bis-tributyltin-trichloromethyl phosphonate, tributyltin seeded with a suspension of spores and fragments of three di(hydroxyheptyl) phosphinate, and tributyltin-dihexyl 30 fungi, Aspergillus niger, Aspergillus flavus and Tricho phosphinate were inoculated with the fungus spores and derma sp. and incubated at 25° C. for a period of fifteen bacteria recited in Table I. The inoculated
Recommended publications
  • Asymmetric Synthesis of Organophosphates and Their
    ASYMMETRIC SYNTHESIS OF ORGANOPHOSPHATES AND THEIR DERIVATIVES Thesis Submitted to The College of Arts and Sciences of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Master of Science in Chemistry By Batool J. Murtadha Dayton, Ohio May 2020 ASYMMETRIC SYNTHESIS OF ORGANOPHOSPHATES AND THEIR DERIVATIVES Name: Murtadha, Batool J. APPROVED BY: __________________________________ Jeremy Erb, Ph.D. Research Advisor Assistant Professor Department of Chemistry University of Dayton ___________________________________ Vladimir Benin, Ph.D. Professor of Chemistry Department of Chemistry University of Dayton ___________________________________ Justin C. Biffinger, Ph.D. Committee Member Assistant Professor Department of Chemistry University of Dayton ii © Copyright by Batool J. Murtadha All rights reserved 2020 iii ABSTRACT ASYMMETRIC SYNTHESIS OF ORGANOPHOSPHATES AND THEIR DERIVATIVES Name: Murtadha, Batool J. University of Dayton Advisor: Dr. Jeremy Erb Organophosphorus compounds (OPs) are widely used in the agricultural industry especially in the pesticide market. Phosphates play a huge role as biological compounds in the form of energy carrier compounds like ATP, and medicine as antivirals. OPs have become increasingly important as evidenced by the publication of new methods devoted to their uses and synthesis. These well-established studies lay the basis for industrial organic derivatives of phosphorus preparations. The current work explored methods of synthesizing chiral organophosphate triesters. We experimented with different processes roughly divided into either an electrophilic or nucleophilic strategy using chiral Lewis acids, organocatalysts (HyperBTM), activating agents, and chiral auxiliaries with the goal of control stereoselectivity. These methods were explored through the use of different starting materials like POCl3, triethyl phosphate, methyl phosphordichloradate, and PSCl3.
    [Show full text]
  • Qsar Analysis of the Chemical Hydrolysis of Organophosphorus Pesticides in Natural Waters
    QSAR ANALYSIS OF THE CHEMICAL HYDROLYSIS OF ORGANOPHOSPHORUS PESTICIDES IN NATURAL WATERS. by Kenneth K. Tanji Principal Investigator and Jonathan 1. Sullivan Graduate Research Assistant Department of Land, Air and Water Resources University of California, Davis Technical Completion Report Project Number W-843 August, 1995 University of California Water Resource Center The research leading to this report was supported by the University of California Water Resource Center as part of Water Resource Center Project W-843. Table of Contents Page Abstract 2 Problem and Research Objectives 3 Introduction 5 Theoretical Background 6 QSAR Methodology 7 Molecular Connectivity Theory 8 Organophosphorus Pesticides 12 Experimental Determination of Rates 15 Results and Discussion 17 Principal Findings and Significance 19 References 34 List of Tables Page Table 1. Statistical relationship between OP pesticides and first-order MC/'s. 30 Table 2. Inherent conditions of waters used in experimental work. 16 Table 3. Estimated half-lives for organophosphorus esters derived from model. 31 Table 4. Half-lives and first-order MCI' sfor model calibration data set. 31 Table 5. Experimental kinetic data for validation set compounds, Sacramento. 33 List of Figures Page Figure 1. Essential Features OfQSAR Modeling Methodology. 21 Figure 2. Regression plot for In hydrolysis rate vs. 1st order MCl' s. 22 Figure 3. a 3-D molecular model, a line-segment model and a graphical model. 23 Figure 4. Molecular connectivity index suborders. 24 Figure 5. Chlorpyrifos and its fourteen fourth order path/cluster fragments. 25 Figure 6. Abridged MClndex output. 26 Figure 7. Parent acids of most common organophosphorus pesticides. 12 Figure 8.
    [Show full text]
  • The Hydrolysis of Phosphinates and Phosphonates: a Review
    molecules Review The Hydrolysis of Phosphinates and Phosphonates: A Review Nikoletta Harsági and György Keglevich * Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary; [email protected] * Correspondence: [email protected]; Tel.: +36-1-463-1111 (ext. 5883) Abstract: Phosphinic and phosphonic acids are useful intermediates and biologically active com- pounds which may be prepared from their esters, phosphinates and phosphonates, respectively, by hydrolysis or dealkylation. The hydrolysis may take place both under acidic and basic conditions, but the C-O bond may also be cleaved by trimethylsilyl halides. The hydrolysis of P-esters is a challenging task because, in most cases, the optimized reaction conditions have not yet been explored. Despite the importance of the hydrolysis of P-esters, this field has not yet been fully surveyed. In order to fill this gap, examples of acidic and alkaline hydrolysis, as well as the dealkylation of phosphinates and phosphonates, are summarized in this review. Keywords: hydrolysis; dealkylation; phosphinates; phosphonates; P-acids 1. Introduction Phosphinic and phosphonic acids are of great importance due to their biological activity (Figure1)[ 1]. Most of them are known as antibacterial agents [2,3]. Multidrug- resistant (MDR) and extensively drug-resistant (XDR) pathogens may cause major problems Citation: Harsági, N.; Keglevich, G. in the treatment of bacterial infections. However, Fosfomycin has remained active against The Hydrolysis of Phosphinates and both Gram-positive and Gram-negative MDR and XDR bacteria [2]. Acyclic nucleoside Phosphonates: A Review. Molecules phosphonic derivatives like Cidofovir, Adefovir and Tenofovir play an important role 2021, 26, 2840.
    [Show full text]
  • Recent Developments in Organophosphorus Flame Retardants Containing P-C Bond and Their Applications
    materials Review Recent Developments in Organophosphorus Flame Retardants Containing P-C Bond and Their Applications Sophie Wendels †, Thiebault Chavez †, Martin Bonnet, Khalifah A. Salmeia * and Sabyasachi Gaan * Additives and Chemistry Group, Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; [email protected] (S.W.); [email protected] (T.C.); [email protected] (M.B.) * Correspondence: [email protected] (K.A.S.); [email protected] (S.G.); Tel.: +41-587-657-038 (K.A.S.); +41-587-657-611 (S.G.) † These two authors contributed equally to this work. Received: 13 May 2017; Accepted: 4 July 2017; Published: 11 July 2017 Abstract: Organophosphorus compounds containing P-C bonds are increasingly developed as flame retardant additives due to their excellent thermal and hydrolytic stability and ease of synthesis. The latest development (since 2010) in organophosphorus flame retardants containing P-C bonds summarized in this review. In this review, we have broadly classified such phosphorus compounds based on the carbon unit linked to the phosphorus atom i.e., could be a part of either an aliphatic or an aromatic unit. We have only considered those published literature where a P-C bond was created as a part of synthetic strategy to make either an intermediate or a final organophosphorus compound with an aim to use it as a flame retardant. General synthetic strategies to create P-C bonds are briefly discussed. Most popular synthetic strategies used for developing P-C containing phosphorus based flame retardants include Michael addition, Michaelis–Arbuzov, Friedels–Crafts and Grignard reactions.
    [Show full text]
  • Advanced Studies on the Synthesis of Organophosphorus Compounds
    ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA DOTTORATO DI RICERCA IN SCIENZE CHIMICHE (XIX° ciclo) Area 03 Scienze Chimiche-CHIM/06 Chimica Organica Dipartimento di Chimica Organica “A. Mangini” Coordinatore: Chiar.mo Prof. Vincenzo Balzani Advanced Studies on the Synthesis of Organophosphorus Compounds Dissertazione Finale Presentata da: Relatore: Dott. ssa Marzia Mazzacurati Prof. Graziano Baccolini Co-relatore: Dott.ssa Carla Boga INDEX Index: Keywords…………………………………………………………….………….VII Chapter 1…………………………………………………………………………..3 GENERAL INTRODUCTION ON PHOSPHORUS CHEMISTRY 1.1 Organophosphorus Chemistry………………………………………………….4 1.1.1 Phosphines………………………………………………………………..5 1.1.2 Phosphonates……………………………………………………………..6 1.1.3 Phosphites………………………………………………………………...7 1.2 Uses of Organophosphorus Compounds………………………………………..7 1.2.1 Agricultural Application………………………………………………….8 1.2.2 Catalysis……………………………………………………………..…....9 1.2.3 Organophosphorus Conpounds in Medicine…………………………….11 1.2.4 Phosphorus in Biological Compounds…………………………………..12 1.3 References……………………………………………………………………..15 Chapter 2…………………………………………………………………………17 THE HYPERCOORDINATE STATES OF PHOSPHORUS 2.1 The 5-Coordinate State of Phosphorus……………………………………….17 2.2 Pentacoordinated structures and their non rigid character…………………….18 2.3 Permutational isomerization…………………………………………………..19 2.3.1 Berry pseudorotation……………………………………………………20 2.3.2 Turnstile rotation………………………………………………………..21 2.4 The 6-Coordinate State of Phosphorus……………………………………….22 2.5 References…………………………………………………………………......24 I Chapter
    [Show full text]
  • Natural Products Containing 'Rare'
    Natural Products Containing ‘Rare’ Organophosphorus Functional Groups The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Petkowski, Janusz, et al. “Natural Products Containing ‘Rare’ Organophosphorus Functional Groups.” Molecules, vol. 24, no. 5, Feb. 2019, p. 866. As Published http://dx.doi.org/10.3390/molecules24050866 Publisher Multidisciplinary Digital Publishing Institute Version Final published version Citable link http://hdl.handle.net/1721.1/120918 Terms of Use Creative Commons Attribution Detailed Terms https://creativecommons.org/licenses/by/4.0/ molecules Review Natural Products Containing ‘Rare’ Organophosphorus Functional Groups Janusz J. Petkowski 1,* , William Bains 2 and Sara Seager 1,3,4 1 Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA; [email protected] 2 Rufus Scientific, 37 The Moor, Melbourn, Royston, Herts SG8 6ED, UK; [email protected] 3 Department of Physics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA 4 Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA * Correspondence: [email protected] Received: 21 January 2019; Accepted: 22 February 2019; Published: 28 February 2019 Abstract: Phosphorous-containing molecules are essential constituents of all living cells. While the phosphate functional group is very common in small molecule natural products, nucleic acids, and as chemical modification in protein and peptides, phosphorous can form P–N (phosphoramidate), P–S (phosphorothioate), and P–C (e.g., phosphonate and phosphinate) linkages. While rare, these moieties play critical roles in many processes and in all forms of life.
    [Show full text]
  • Organophosphorus Chemistry (Kanda, 2019)
    Baran lab Group Meeting Yuzuru Kanda Organophosphorus Chemistry 09/20/19 bonding and non-bonding MOs of PH3 bonding and non-bonding MOs of PH5 # of R P(III) ← → P(V) O P P R R R R R R phosphine phosphine oxide D3h C3v C2v O O JACS. 1972, 3047. P P P P R NH R OH R OH R NH Chem. Rev. 1994, 1339. R 2 R R R 2 D C phosphineamine phosphinite phosphinate phosphinamide 3h 4v O O O R P R P R P R P R P R P NH2 NH2 OH OH NH2 NH2 H2N HO HO HO HO H2N phosphinediamine phosphonamidite phosphonite phosphonate phosphonamidate phosphonamide O O O O H N P P P P P P P P 2 NH HO HO HO HO HO HO H2N H N 2 NH2 NH2 OH OH NH2 NH2 NH2 2 H2N HO HO HO HO H2N H2N phosphinetriamine phosphorodiamidite phosphoramidite phosphite phosphate phosphoramidate phosphorodiamidate phosphoramide more N O more O Useful Resources more N P P P Corbridge, D. E. C. Phosphorus: Chemistry, Biochemistry and H OH H H H H H H H Technology, 6th ed.; CRC Press Majoral, J. P. New Aspects In Phosphorus Chemistry III.; Springer phosphinous phosphane phosphane Murphy, P. J. Organophosphorus Reagents.; Oxford acid oxide Hartley, F. R. The chemistry of organophosphorus compounds, O O volume 1-3.; Wiley P P P Cadogan. J. I. G. Organophosphorus Reagents in Organic H OH H OH H OH HO HO H Synthesis.; Academic Pr phosphonate phosphonus acid phosphinate Not Going to Cover ↔ (phosphite) Related GMs Metal complexes, FLP, OPV Highlights in Peptide and Protein NH S R • oxidation state +5, +4, +3, +2, +1, 0, -1, -2, -3 Synthesis (Malins, 2016) R P-Stereogenic Compounds P P R P • traditionally both +3 and -3 are written as (III) R • 13/25th most abundant element on the earth (Rosen, 2014) R • but extremely rare outside of our solar system Ligands in Transition Metal phosphine imide phosphine sulfide phosphorane Catalysis (Farmer, 2016) Baran lab Group Meeting Yuzuru Kanda Organophosphorus Chemistry 09/20/19 Me P Me Me Low-Coordinate Low Oxidation State P tBu tBu P P phosphaalkyne R N P PivCl 2 P Me Cl TMS OTMS NaOH R = tBu Nb N tBu PTMS3 P O H O P NR2 then Na/Hg tBu N -2 Nb tBu R2N Me Nb N tBu 5x10 mbar, 160 ºC NR2 95% R2N Me N O 1.
    [Show full text]
  • Acscatal.0C01923.Pdf
    This is a repository copy of Phosphoranyl Radical Fragmentation Reactions Driven by Photoredox Catalysis. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/163811/ Version: Published Version Article: Rossi-Ashton, James A., Clarke, Aimee K., Unsworth, William P. orcid.org/0000-0002- 9169-5156 et al. (1 more author) (2020) Phosphoranyl Radical Fragmentation Reactions Driven by Photoredox Catalysis. ACS Catalysis. pp. 7250-7261. ISSN 2155-5435 https://doi.org/10.1021/acscatal.0c01923 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. pubs.acs.org/acscatalysis Perspective Phosphoranyl Radical Fragmentation Reactions Driven by Photoredox Catalysis James A. Rossi-Ashton,* Aimee K. Clarke, William P. Unsworth, and Richard J. K. Taylor Cite This: ACS Catal. 2020, 10, 7250−7261 Read Online ACCESS Metrics & More Article Recommendations ABSTRACT: Photocatalytic generation of phosphoranyl radicals is fast emerging as an essential method for the generation of diverse and valuable radicals, typically via deoxygenation or desulfurization processes.
    [Show full text]
  • Synthesis, Crystal Structure and Biological Evaluation of New
    Bioorganic Chemistry 86 (2019) 482–493 Contents lists available at ScienceDirect Bioorganic Chemistry journal homepage: www.elsevier.com/locate/bioorg Synthesis, crystal structure and biological evaluation of new phosphoramide T derivatives as urease inhibitors using docking, QSAR and kinetic studies ⁎ Khodayar Gholivanda, , Mahsa Pooyana, Fahimeh Mohammadpanaha, Foroogh Pirastefara, Peter C. Junkb, Jun Wangb, Ali Asghar Ebrahimi Valmoozia, Ahmad Mani-Varnosfaderania a Department of Chemistry, Faculty of Science, Tarbiat Modares University, Tehran, Iran b College of Science & Engineering, James Cook University, Townsville, Queensland 4811, Australia ARTICLE INFO ABSTRACT Keywords: In an attempt to achieve a new class of phosphoramide inhibitors with high potency and resistance to the Bisphosphoramide derivatives hydrolysis process against urease enzyme, we synthesized a series of bisphosphoramide derivatives (01–43) and Urease enzyme characterized them by various spectroscopic techniques. The crystal structures of compounds 22 and 26 were Inhibitory activity investigated using X-ray crystallography. The inhibitory activities of the compounds were evaluated against the Docking jack bean urease and were compared to monophosphoramide derivatives and other known standard inhibitors. Kinetics The compounds containing aromatic amines and their substituted derivatives exhibited very high inhibitory QSAR −10 activity in the range of IC50 = 3.4–1.91 × 10 nM compared with monophosphoramides, thiourea, and acetohydroxamic acid. It was also found that derivatives with P]O functional groups have higher anti-urease activity than those with P]S functional groups. Kinetics and docking studies were carried out to explore the binding mechanism that showed these compounds follow a mixed-type mechanism and, due to their extended structures, can cover the entire binding pocket of the enzyme, reducing the formation of the enzyme-substrate complex.
    [Show full text]
  • 5898031 52 US Cl...435/1723
    USOO5898.031A United States Patent (19) 11 Patent Number: 5,898,031 Crooke (45) Date of Patent: Apr. 27, 1999 54) OLIGORIBONUCLEOTIDES FOR CLEAVING 5,457,191 10/1995 Cook et al. .......................... 536/27.13 RNA 5,459,255 10/1995 Cook et al. .......................... 536/27.13 5,466,786 11/1995 Buhr et al. ...... ... 536/26.26 75 Inventor: Stanley T. Crooke, Carlsbad, Calif. 5,476.925 12/1995 Letsinger et al. ...................... 536/23.1 5,484,908 1/1996 Froehler et al. ..................... 536/24.31 5,489,677 2/1996 Sanghvi et al. ..... ... 53.6/2.2.1 73 ASSignee: sis Pharmaceuticals, Inc., Carlsbad, 5,506,337 4/1996 Summerton et al. ................... 528/391 a. 5,506,351 4/1996 McGee ................ 536/55.3 5,508,270 4/1996 Baxter et al. ... 514/47 21 Appl. No.: 08/659,440 5,514,786 5/1996 Cook et al.. 5,539,083 7/1996 Cook et al. ............................. 530/333 22 Filed: Jun. 6, 1996 FOREIGN PATENT DOCUMENTS 51) Int. Cl. ............................. C12N 15700; C12O 1/68; CO7H 21/04 339842 11/1989 European Pat. Off.. 52 U.S. Cl. ........................... 435/1723; 435/6, 435/375, WC. E. W.E. 536/23.1536/24.5• us WO 92/22651 12/1992 WIPO. 58 Field of Search .............................. 514/44; 536/23.1, WO 94/O2499 2/1994 WIPO. 536/24.5, 25.1; 435/6, 375, 172.3 WO 94/O2501 2/1994 WIPO. WO 94/17093 8/1994 WIPO. 56) References Cited Primary Examiner John L. LeGuyader U.S. PATENT DOCUMENTS Attorney, Agent, or Firm Woodcock Washburn Kurtz Mackiewicz & Norris LLP 3,687,808 8/1972 Merigan et al.
    [Show full text]
  • Chemistry of Phosphorylated Formaldehyde Derivatives. Part I
    Molecules 2014, 19, 12949-13009; doi:10.3390/molecules190912949 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Chemistry of Phosphorylated Formaldehyde Derivatives. Part I Vasily P. Morgalyuk Laboratory of Organophosphorus Compounds, Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova str., 28, Moscow 119991, Russia; E-Mail: [email protected]; Tel.: +7-499-135-92-50; Fax: +7-495-135-65-49 Received: 8 July 2014; in revised form: 8 August 2014 / Accepted: 15 August 2014 / Published: 25 August 2014 Abstract: The underinvestigated derivatives of unstable phosphorylated formaldehyde acetals and some of the structurally related compounds, such as thioacetals, aminonitriles, aminomethylphosphinoyl compounds, are considered. Separately considered are halogen aminals of phosphorylated formaldehyde, acetals of phosphorylated formaldehyde of H-phosphinate-type and a phosphorylated gem-diol of formaldehyde. Synthetic methods, chemical properties and examples of practical applications are given. Keywords: phosphorylated acetals; -thioacetals; -aminonitriles; -aminomethylphosphinoyl compounds; -chloro(or bromo)aminals; -gem-dioles; -ketene acetale; H-phosphinate 1. Introduction Among organophosphorus compounds, α-phosphorylated carbonyl compounds stand out by the capacity of cleavage of phosphorus–carbon bond under mild conditions when reacted with nucleophiles [1–5]. The cleavage of phosphorus–carbon bond may proceed spontaneously as well. At the same time, α-oxoalkylphosphinoyl compounds also retain properties inherent in carbonyl compounds, for example, they undergo cross aldol condensation. The least stable compounds among them are phosphorylated formaldehyde derivatives, dialkyl formylphosphonates (1) [6–11] and N,N,N',N'-tetraalkyl formylphosphondiamides (2) [12] (Figure 1), whose existence was even disputed in the first half of the 1970s [13,14].
    [Show full text]
  • 20. Phosphorus Chemistry
    Professor David L. Van Vranken Chemistry 201: Organic Reaction Mechanisms I Topic 20: Phosphorus Chemistry References: Literature cited Phosphorus Functional Groups ■ Here’s how to name phosphorus functional groups: R R R OR R OR O O R P P P R P P(III) R R OR O R phosphine phosphinite phosphonite phosphite (ester) O O O O R R R OR R OR O O P P P R P R P(V) R R OR O R phosphine oxide phosphinate phosphonate phosphate (ester) ■ Few of these functional groups are common. O O O H P N P HO OH O CH HO F 3 glyphosate sarin Phosphorus Functional Groups ■ pKas reveal the difference in basicity between trialkylphosphines and triarylphosphines Et Ph .. + + N N Ph2N Et Et Ph Ph resonance H H reduces l.p. basicity pKa 11 ~ -5 .. Bu Ph Ph P + + 2 P P not so much Bu Bu Ph Ph H H resonance pKa 9 3 ■ Trialkylphosphines are way more nucleophilic than triarylphosphines Bu Ph Bu P: Ph P: Bu Ph way more nucleophilic Howard ST, et al. Can. J. Chem. 1997, 75, 60. Allman, T.; Goel, R. G. Can. J. Chem. 1982, 60, 716.. POCl3 is a Very Reactive Electrophile ■ Old conditions for elimination of OH groups. Contrast the outcomes. SOCl Cl 2 pyridine OH POCl3 pyridine (solvent) ■ Phosphates don’t substitute very quickly, but Cl3P=O is special ■ Vilsmeier-Haack Reaction - amides attack Cl3P=O + NMe O Cl NMe 2 2 E.A.S. MeO + MeO H2O MeO H OMe OMe workup OMe POCl3 + DMF Mechanism for formation of the Vilsmeier reagent: : .
    [Show full text]