5898031 52 US Cl...435/1723

Total Page:16

File Type:pdf, Size:1020Kb

5898031 52 US Cl...435/1723 USOO5898.031A United States Patent (19) 11 Patent Number: 5,898,031 Crooke (45) Date of Patent: Apr. 27, 1999 54) OLIGORIBONUCLEOTIDES FOR CLEAVING 5,457,191 10/1995 Cook et al. .......................... 536/27.13 RNA 5,459,255 10/1995 Cook et al. .......................... 536/27.13 5,466,786 11/1995 Buhr et al. ...... ... 536/26.26 75 Inventor: Stanley T. Crooke, Carlsbad, Calif. 5,476.925 12/1995 Letsinger et al. ...................... 536/23.1 5,484,908 1/1996 Froehler et al. ..................... 536/24.31 5,489,677 2/1996 Sanghvi et al. ..... ... 53.6/2.2.1 73 ASSignee: sis Pharmaceuticals, Inc., Carlsbad, 5,506,337 4/1996 Summerton et al. ................... 528/391 a. 5,506,351 4/1996 McGee ................ 536/55.3 5,508,270 4/1996 Baxter et al. ... 514/47 21 Appl. No.: 08/659,440 5,514,786 5/1996 Cook et al.. 5,539,083 7/1996 Cook et al. ............................. 530/333 22 Filed: Jun. 6, 1996 FOREIGN PATENT DOCUMENTS 51) Int. Cl. ............................. C12N 15700; C12O 1/68; CO7H 21/04 339842 11/1989 European Pat. Off.. 52 U.S. Cl. ........................... 435/1723; 435/6, 435/375, WC. E. W.E. 536/23.1536/24.5• us WO 92/22651 12/1992 WIPO. 58 Field of Search .............................. 514/44; 536/23.1, WO 94/O2499 2/1994 WIPO. 536/24.5, 25.1; 435/6, 375, 172.3 WO 94/O2501 2/1994 WIPO. WO 94/17093 8/1994 WIPO. 56) References Cited Primary Examiner John L. LeGuyader U.S. PATENT DOCUMENTS Attorney, Agent, or Firm Woodcock Washburn Kurtz Mackiewicz & Norris LLP 3,687,808 8/1972 Merigan et al. .......................... 195/28 5,013,830 5/1991. Ohtsuka et al. .......................... 536/27 57 ABSTRACT 5,023,243 6/1991 Tullis ........................................ 514/44 - 5,130,302 7/1992 Spielvogel et al. ....................... 514/45 Oligomeric compounds including oligoribonucleotides and 5,142,047 8/1992 Tullis ........................................ 514/44 oligoribonucleosides are provided that have Subsequences of 5,149,797 9/1992 Pederson et al. ......................... 536/27 2-pentoribofuranosyl nucleosides that activate dsRNase. 5,177,198 1/1993 Spielvogel et al. ....................... 514/45 The oligoribonucleotides and oligoribonucleosides can 5,223,618 6/1993 Cook et al. ........... ... 544/276 include Substituent groups for increasing binding affinity to 5,235,033 8/1993 Summerton et al ... 528/391 complementary nucleic acid Strand as well as Substituent 1. R r 2. groups for increasing nuclease resistance. The oligomeric 5264564 HE NE r : compounds are useful for diagnostics and other research 5,359,044 10/1994 Cook et al. ... ... 536/23.1 purposes, for modulating the expression of a protein in 5,366,878 11/1994 Pederson et al. ... 435/91.3 organisms, and for the diagnosis, detection and treatment of 5,378.825 1/1995 Cook et al. ....... ... 536/25.34 other conditions Susceptible to oligonucleotide therapeutics. 5,386,023 1/1995 Sanghvi et al. ... ... 536/25.3 5,403,711 4/1995 Walder et al. .............................. 435/6 66 Claims, 5 Drawing Sheets U.S. Patent Apr. 27, 1999 Sheet 1 of 5 5,898,031 FIGURE 1 H-RAS TARGETED ANTISENSE OLIGOS: FULL 2" methoxy cc ACACCGACGGCGCCC 3 BASE RNA GAP DDDDDDOOODDDD 5 BASE RNA GAP OOOOOOOOOOOOO 7 BASE RNA GAP OOOOOOOOOOOOOOOOO 9 BASE RNA GAP DOOOOOOOOOOOOOOOO FULL RNA (OOOOOOOOOOOOOOOOO U.S. Patent Apr. 27, 1999 Sheet 2 of 5 5,898,031 :88 giga 83-88 3:38 ...& : 88: 88: 8:8 3 : & 8 23: 388 800 838 :::::::38 :::::::: or 3:38: 3. 8 88: 88: 8: 88: 3. 8:88 8888. 83. 28. U.S. Patent Apr. 27, 1999 Sheet 4 of 5 5,898,031 Our Ex: SENSE9GAP RNA : 8-XE EXTRACT (wir U.S. Patent Apr. 27, 1999 Sheet 5 of 5 5,898,031 . {x : SEx8: 83.3° is: SENSEE his SENSE8 3AR RNA 5,898,031 1 2 OLIGORIBONUCLEOTDES FOR CLEAVING ing both unmodified phosphodiester internucleoside link RNA ages and modified phosphorothioate internucleoside link ages are substrates for cellular RNase H. Since they are FIELD OF THE INVENTION Substrates, they activate the cleavage of target RNA by This invention is directed to the synthesis and use of RNase H. However, these authors further noted that in oligomeric compounds, including oligoribonucleotides and Xenopus embryos, both phosphodiester linkages and phos oligoribonucleosides, useful for Strand cleavage of target phorothioate linkages are also Subject to exonuclease deg RNA strands. Included in the invention are oligoribonucle radation. Nuclease degradation is detrimental Since it rapidly otides having modified Sugars, bases or phosphate back depletes the oligonucleotide. bones and oligoribonucleosides having Standard Sugars and AS described in references (1), (2) and (4), to stabilize bases or modified Sugars and bases linked together via oligonucleotides against nuclease degradation while Still non-phosphate backbones. Further included in the invention providing for RNase H activation, 2'-deoxy oligonucleotides are chimeric oligoribonucleotides and oligoribonucleosides having a short Section of phosphodiester linked nucleosides having mixed backbones, either phosphate or non positioned between Sections of phosphoramidate, alkyl phosphate. The oligoribonucleotides and oligoribonucleo 15 phosphonate or phosphotriester linkages were constructed. Sides of the invention are complementary to target Strands of While the phosphoramidate-containing oligonucleotides ribonucleic acids and are useful for therapeutics, diagnostics were Stabilized against exonucleases, in reference (4) the and as research reagents. authors noted that each phosphoramidate linkage resulted in a loss of 1.6 C. in the measured T value of the BACKGROUND OF THE INVENTION phosphoramidate-containing oligonucleotides. Such a Oligonucleotides are known to hybridize to Single decrease in the T value is indicative of a decrease in stranded DNA or RNA molecules. Hybridization is the hybridization between the oligonucleotide and its target Sequence-specific base pair hydrogen bonding of nucleo Strand. bases of the oligonucleotides to nucleobases of target DNA Other authors have commented on the effect Such a loss or RNA. Such nucleobase pairs are Said to be complemen 25 of hybridization between an oligonucleotide and its target tary to one another. strand can have. Saison-Behmoaras et al. (EMBO Journal, The complementarity of oligonucleotides has been used 1991, 10, 1111) observed that even though an oligonucle for inhibition of a number of cellular targets. Such comple otide could be a Substrate for Rnase H, cleavage efficiency mentary oligonucleotides are commonly described as being by Rnase H was low because of weak hybridization to the antisense oligonucleotides. Various reviews describing the MRNA. The authors also noted that the inclusion of an results of these Studies have been published including acridine substitution at the 3' end of the oligonucleotide Progress. In AntiSense Oligonucleotide Therapeutics, protected the oligonucleotide from exonucleases. Crooke, S. T. and Bennett, C. F., Annu. Rev. Pharmacol. U.S. Pat. No. 5,013,830, issued May 7, 1991, discloses Toxicol., 1996, 36, 107-129. These oligonucleotides have mixed oligomers comprising an RNA oligomer, or a deriva proven to be very powerful research tools and diagnostic 35 tive thereof, conjugated to a DNA oligomer via a phosphodi agents. Further, certain oligonucleotides that have been ester linkage. The RNA oligomers also bear 2'-O-alkyl shown to be efficacious are currently in human clinical trials. Substituents. However, being phosphodiesters, the oligomers To date most oligonucleotides Studied have been oligode are Susceptible to nuclease cleavage. oxynucleotides. AntiSense oligodeoxynucleotides are 40 European Patent application 339,842, published Nov. 2, believed to cause a reduction in target RNA levels princi 1989, discloses 2'-O-substituted phosphorothioate pally through the action of RNase H, an endonuclease that oligonucleotides, including 2'-O-methylribooligonucleotide cleaves the RNA strand of DNA:RNA duplexes. This phosphorothioate derivatives. The above-mentioned appli enzyme, thought to play a role in DNA replication, has been cation also discloses 2'-O-methyl phosphodiester oligo nucleotides which lack nuclease resistance. shown to be capable of cleaving the RNA component of the 45 DNA:RNA duplexes in cell free systems as well as in U.S. Pat. No. 5,149,797, issued Sep. 22, 1992, discloses Xenopus oocytes. Rnase H is very Sensitive to structural mixed phosphate backbone oligonucleotides which include alterations in antisense oligonucleotides. This Sensitivity is an internal portion of deoxynucleotides linked by phos Such that prior attempts to increase the potency of oligo phodiester linkages, and flanked on each Side by a portion of nucleotides by increasing affinity, Stability, lipophilicity and 50 modified DNA or RNA sequences. The flanking sequences other characteristics by chemical modifications of the oli include methyl phosphonate, phosphoromorpholidate, phos gonucleotide have often resulted in oligonucleotides that are phoropiperaZidate or phosphoramidate linkages. no longer Substrates for Rnase H. In addition, Rnase H U.S. Pat. No. 5,256,775, issued Oct. 26, 1993, describes activity is quite variable. Thus a given disease State may not mixed oligonucleotides that incorporate phosphoramidate be a candidate for antisense therapy only because the target 55 linkages and phosphorothioate or phosphorodithioate link tissue has insufficient Rnase H activity. Therefore it is clear ageS. that effective terminating mechanisms in addition to Rnase U.S. Pat. No. 5,403,711, issued Apr. 4,
Recommended publications
  • Asymmetric Synthesis of Organophosphates and Their
    ASYMMETRIC SYNTHESIS OF ORGANOPHOSPHATES AND THEIR DERIVATIVES Thesis Submitted to The College of Arts and Sciences of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Master of Science in Chemistry By Batool J. Murtadha Dayton, Ohio May 2020 ASYMMETRIC SYNTHESIS OF ORGANOPHOSPHATES AND THEIR DERIVATIVES Name: Murtadha, Batool J. APPROVED BY: __________________________________ Jeremy Erb, Ph.D. Research Advisor Assistant Professor Department of Chemistry University of Dayton ___________________________________ Vladimir Benin, Ph.D. Professor of Chemistry Department of Chemistry University of Dayton ___________________________________ Justin C. Biffinger, Ph.D. Committee Member Assistant Professor Department of Chemistry University of Dayton ii © Copyright by Batool J. Murtadha All rights reserved 2020 iii ABSTRACT ASYMMETRIC SYNTHESIS OF ORGANOPHOSPHATES AND THEIR DERIVATIVES Name: Murtadha, Batool J. University of Dayton Advisor: Dr. Jeremy Erb Organophosphorus compounds (OPs) are widely used in the agricultural industry especially in the pesticide market. Phosphates play a huge role as biological compounds in the form of energy carrier compounds like ATP, and medicine as antivirals. OPs have become increasingly important as evidenced by the publication of new methods devoted to their uses and synthesis. These well-established studies lay the basis for industrial organic derivatives of phosphorus preparations. The current work explored methods of synthesizing chiral organophosphate triesters. We experimented with different processes roughly divided into either an electrophilic or nucleophilic strategy using chiral Lewis acids, organocatalysts (HyperBTM), activating agents, and chiral auxiliaries with the goal of control stereoselectivity. These methods were explored through the use of different starting materials like POCl3, triethyl phosphate, methyl phosphordichloradate, and PSCl3.
    [Show full text]
  • Qsar Analysis of the Chemical Hydrolysis of Organophosphorus Pesticides in Natural Waters
    QSAR ANALYSIS OF THE CHEMICAL HYDROLYSIS OF ORGANOPHOSPHORUS PESTICIDES IN NATURAL WATERS. by Kenneth K. Tanji Principal Investigator and Jonathan 1. Sullivan Graduate Research Assistant Department of Land, Air and Water Resources University of California, Davis Technical Completion Report Project Number W-843 August, 1995 University of California Water Resource Center The research leading to this report was supported by the University of California Water Resource Center as part of Water Resource Center Project W-843. Table of Contents Page Abstract 2 Problem and Research Objectives 3 Introduction 5 Theoretical Background 6 QSAR Methodology 7 Molecular Connectivity Theory 8 Organophosphorus Pesticides 12 Experimental Determination of Rates 15 Results and Discussion 17 Principal Findings and Significance 19 References 34 List of Tables Page Table 1. Statistical relationship between OP pesticides and first-order MC/'s. 30 Table 2. Inherent conditions of waters used in experimental work. 16 Table 3. Estimated half-lives for organophosphorus esters derived from model. 31 Table 4. Half-lives and first-order MCI' sfor model calibration data set. 31 Table 5. Experimental kinetic data for validation set compounds, Sacramento. 33 List of Figures Page Figure 1. Essential Features OfQSAR Modeling Methodology. 21 Figure 2. Regression plot for In hydrolysis rate vs. 1st order MCl' s. 22 Figure 3. a 3-D molecular model, a line-segment model and a graphical model. 23 Figure 4. Molecular connectivity index suborders. 24 Figure 5. Chlorpyrifos and its fourteen fourth order path/cluster fragments. 25 Figure 6. Abridged MClndex output. 26 Figure 7. Parent acids of most common organophosphorus pesticides. 12 Figure 8.
    [Show full text]
  • The Hydrolysis of Phosphinates and Phosphonates: a Review
    molecules Review The Hydrolysis of Phosphinates and Phosphonates: A Review Nikoletta Harsági and György Keglevich * Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary; [email protected] * Correspondence: [email protected]; Tel.: +36-1-463-1111 (ext. 5883) Abstract: Phosphinic and phosphonic acids are useful intermediates and biologically active com- pounds which may be prepared from their esters, phosphinates and phosphonates, respectively, by hydrolysis or dealkylation. The hydrolysis may take place both under acidic and basic conditions, but the C-O bond may also be cleaved by trimethylsilyl halides. The hydrolysis of P-esters is a challenging task because, in most cases, the optimized reaction conditions have not yet been explored. Despite the importance of the hydrolysis of P-esters, this field has not yet been fully surveyed. In order to fill this gap, examples of acidic and alkaline hydrolysis, as well as the dealkylation of phosphinates and phosphonates, are summarized in this review. Keywords: hydrolysis; dealkylation; phosphinates; phosphonates; P-acids 1. Introduction Phosphinic and phosphonic acids are of great importance due to their biological activity (Figure1)[ 1]. Most of them are known as antibacterial agents [2,3]. Multidrug- resistant (MDR) and extensively drug-resistant (XDR) pathogens may cause major problems Citation: Harsági, N.; Keglevich, G. in the treatment of bacterial infections. However, Fosfomycin has remained active against The Hydrolysis of Phosphinates and both Gram-positive and Gram-negative MDR and XDR bacteria [2]. Acyclic nucleoside Phosphonates: A Review. Molecules phosphonic derivatives like Cidofovir, Adefovir and Tenofovir play an important role 2021, 26, 2840.
    [Show full text]
  • Recent Developments in Organophosphorus Flame Retardants Containing P-C Bond and Their Applications
    materials Review Recent Developments in Organophosphorus Flame Retardants Containing P-C Bond and Their Applications Sophie Wendels †, Thiebault Chavez †, Martin Bonnet, Khalifah A. Salmeia * and Sabyasachi Gaan * Additives and Chemistry Group, Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; [email protected] (S.W.); [email protected] (T.C.); [email protected] (M.B.) * Correspondence: [email protected] (K.A.S.); [email protected] (S.G.); Tel.: +41-587-657-038 (K.A.S.); +41-587-657-611 (S.G.) † These two authors contributed equally to this work. Received: 13 May 2017; Accepted: 4 July 2017; Published: 11 July 2017 Abstract: Organophosphorus compounds containing P-C bonds are increasingly developed as flame retardant additives due to their excellent thermal and hydrolytic stability and ease of synthesis. The latest development (since 2010) in organophosphorus flame retardants containing P-C bonds summarized in this review. In this review, we have broadly classified such phosphorus compounds based on the carbon unit linked to the phosphorus atom i.e., could be a part of either an aliphatic or an aromatic unit. We have only considered those published literature where a P-C bond was created as a part of synthetic strategy to make either an intermediate or a final organophosphorus compound with an aim to use it as a flame retardant. General synthetic strategies to create P-C bonds are briefly discussed. Most popular synthetic strategies used for developing P-C containing phosphorus based flame retardants include Michael addition, Michaelis–Arbuzov, Friedels–Crafts and Grignard reactions.
    [Show full text]
  • Advanced Studies on the Synthesis of Organophosphorus Compounds
    ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA DOTTORATO DI RICERCA IN SCIENZE CHIMICHE (XIX° ciclo) Area 03 Scienze Chimiche-CHIM/06 Chimica Organica Dipartimento di Chimica Organica “A. Mangini” Coordinatore: Chiar.mo Prof. Vincenzo Balzani Advanced Studies on the Synthesis of Organophosphorus Compounds Dissertazione Finale Presentata da: Relatore: Dott. ssa Marzia Mazzacurati Prof. Graziano Baccolini Co-relatore: Dott.ssa Carla Boga INDEX Index: Keywords…………………………………………………………….………….VII Chapter 1…………………………………………………………………………..3 GENERAL INTRODUCTION ON PHOSPHORUS CHEMISTRY 1.1 Organophosphorus Chemistry………………………………………………….4 1.1.1 Phosphines………………………………………………………………..5 1.1.2 Phosphonates……………………………………………………………..6 1.1.3 Phosphites………………………………………………………………...7 1.2 Uses of Organophosphorus Compounds………………………………………..7 1.2.1 Agricultural Application………………………………………………….8 1.2.2 Catalysis……………………………………………………………..…....9 1.2.3 Organophosphorus Conpounds in Medicine…………………………….11 1.2.4 Phosphorus in Biological Compounds…………………………………..12 1.3 References……………………………………………………………………..15 Chapter 2…………………………………………………………………………17 THE HYPERCOORDINATE STATES OF PHOSPHORUS 2.1 The 5-Coordinate State of Phosphorus……………………………………….17 2.2 Pentacoordinated structures and their non rigid character…………………….18 2.3 Permutational isomerization…………………………………………………..19 2.3.1 Berry pseudorotation……………………………………………………20 2.3.2 Turnstile rotation………………………………………………………..21 2.4 The 6-Coordinate State of Phosphorus……………………………………….22 2.5 References…………………………………………………………………......24 I Chapter
    [Show full text]
  • Natural Products Containing 'Rare'
    Natural Products Containing ‘Rare’ Organophosphorus Functional Groups The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Petkowski, Janusz, et al. “Natural Products Containing ‘Rare’ Organophosphorus Functional Groups.” Molecules, vol. 24, no. 5, Feb. 2019, p. 866. As Published http://dx.doi.org/10.3390/molecules24050866 Publisher Multidisciplinary Digital Publishing Institute Version Final published version Citable link http://hdl.handle.net/1721.1/120918 Terms of Use Creative Commons Attribution Detailed Terms https://creativecommons.org/licenses/by/4.0/ molecules Review Natural Products Containing ‘Rare’ Organophosphorus Functional Groups Janusz J. Petkowski 1,* , William Bains 2 and Sara Seager 1,3,4 1 Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA; [email protected] 2 Rufus Scientific, 37 The Moor, Melbourn, Royston, Herts SG8 6ED, UK; [email protected] 3 Department of Physics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA 4 Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA * Correspondence: [email protected] Received: 21 January 2019; Accepted: 22 February 2019; Published: 28 February 2019 Abstract: Phosphorous-containing molecules are essential constituents of all living cells. While the phosphate functional group is very common in small molecule natural products, nucleic acids, and as chemical modification in protein and peptides, phosphorous can form P–N (phosphoramidate), P–S (phosphorothioate), and P–C (e.g., phosphonate and phosphinate) linkages. While rare, these moieties play critical roles in many processes and in all forms of life.
    [Show full text]
  • Organophosphorus Chemistry (Kanda, 2019)
    Baran lab Group Meeting Yuzuru Kanda Organophosphorus Chemistry 09/20/19 bonding and non-bonding MOs of PH3 bonding and non-bonding MOs of PH5 # of R P(III) ← → P(V) O P P R R R R R R phosphine phosphine oxide D3h C3v C2v O O JACS. 1972, 3047. P P P P R NH R OH R OH R NH Chem. Rev. 1994, 1339. R 2 R R R 2 D C phosphineamine phosphinite phosphinate phosphinamide 3h 4v O O O R P R P R P R P R P R P NH2 NH2 OH OH NH2 NH2 H2N HO HO HO HO H2N phosphinediamine phosphonamidite phosphonite phosphonate phosphonamidate phosphonamide O O O O H N P P P P P P P P 2 NH HO HO HO HO HO HO H2N H N 2 NH2 NH2 OH OH NH2 NH2 NH2 2 H2N HO HO HO HO H2N H2N phosphinetriamine phosphorodiamidite phosphoramidite phosphite phosphate phosphoramidate phosphorodiamidate phosphoramide more N O more O Useful Resources more N P P P Corbridge, D. E. C. Phosphorus: Chemistry, Biochemistry and H OH H H H H H H H Technology, 6th ed.; CRC Press Majoral, J. P. New Aspects In Phosphorus Chemistry III.; Springer phosphinous phosphane phosphane Murphy, P. J. Organophosphorus Reagents.; Oxford acid oxide Hartley, F. R. The chemistry of organophosphorus compounds, O O volume 1-3.; Wiley P P P Cadogan. J. I. G. Organophosphorus Reagents in Organic H OH H OH H OH HO HO H Synthesis.; Academic Pr phosphonate phosphonus acid phosphinate Not Going to Cover ↔ (phosphite) Related GMs Metal complexes, FLP, OPV Highlights in Peptide and Protein NH S R • oxidation state +5, +4, +3, +2, +1, 0, -1, -2, -3 Synthesis (Malins, 2016) R P-Stereogenic Compounds P P R P • traditionally both +3 and -3 are written as (III) R • 13/25th most abundant element on the earth (Rosen, 2014) R • but extremely rare outside of our solar system Ligands in Transition Metal phosphine imide phosphine sulfide phosphorane Catalysis (Farmer, 2016) Baran lab Group Meeting Yuzuru Kanda Organophosphorus Chemistry 09/20/19 Me P Me Me Low-Coordinate Low Oxidation State P tBu tBu P P phosphaalkyne R N P PivCl 2 P Me Cl TMS OTMS NaOH R = tBu Nb N tBu PTMS3 P O H O P NR2 then Na/Hg tBu N -2 Nb tBu R2N Me Nb N tBu 5x10 mbar, 160 ºC NR2 95% R2N Me N O 1.
    [Show full text]
  • Acscatal.0C01923.Pdf
    This is a repository copy of Phosphoranyl Radical Fragmentation Reactions Driven by Photoredox Catalysis. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/163811/ Version: Published Version Article: Rossi-Ashton, James A., Clarke, Aimee K., Unsworth, William P. orcid.org/0000-0002- 9169-5156 et al. (1 more author) (2020) Phosphoranyl Radical Fragmentation Reactions Driven by Photoredox Catalysis. ACS Catalysis. pp. 7250-7261. ISSN 2155-5435 https://doi.org/10.1021/acscatal.0c01923 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. pubs.acs.org/acscatalysis Perspective Phosphoranyl Radical Fragmentation Reactions Driven by Photoredox Catalysis James A. Rossi-Ashton,* Aimee K. Clarke, William P. Unsworth, and Richard J. K. Taylor Cite This: ACS Catal. 2020, 10, 7250−7261 Read Online ACCESS Metrics & More Article Recommendations ABSTRACT: Photocatalytic generation of phosphoranyl radicals is fast emerging as an essential method for the generation of diverse and valuable radicals, typically via deoxygenation or desulfurization processes.
    [Show full text]
  • Synthesis, Crystal Structure and Biological Evaluation of New
    Bioorganic Chemistry 86 (2019) 482–493 Contents lists available at ScienceDirect Bioorganic Chemistry journal homepage: www.elsevier.com/locate/bioorg Synthesis, crystal structure and biological evaluation of new phosphoramide T derivatives as urease inhibitors using docking, QSAR and kinetic studies ⁎ Khodayar Gholivanda, , Mahsa Pooyana, Fahimeh Mohammadpanaha, Foroogh Pirastefara, Peter C. Junkb, Jun Wangb, Ali Asghar Ebrahimi Valmoozia, Ahmad Mani-Varnosfaderania a Department of Chemistry, Faculty of Science, Tarbiat Modares University, Tehran, Iran b College of Science & Engineering, James Cook University, Townsville, Queensland 4811, Australia ARTICLE INFO ABSTRACT Keywords: In an attempt to achieve a new class of phosphoramide inhibitors with high potency and resistance to the Bisphosphoramide derivatives hydrolysis process against urease enzyme, we synthesized a series of bisphosphoramide derivatives (01–43) and Urease enzyme characterized them by various spectroscopic techniques. The crystal structures of compounds 22 and 26 were Inhibitory activity investigated using X-ray crystallography. The inhibitory activities of the compounds were evaluated against the Docking jack bean urease and were compared to monophosphoramide derivatives and other known standard inhibitors. Kinetics The compounds containing aromatic amines and their substituted derivatives exhibited very high inhibitory QSAR −10 activity in the range of IC50 = 3.4–1.91 × 10 nM compared with monophosphoramides, thiourea, and acetohydroxamic acid. It was also found that derivatives with P]O functional groups have higher anti-urease activity than those with P]S functional groups. Kinetics and docking studies were carried out to explore the binding mechanism that showed these compounds follow a mixed-type mechanism and, due to their extended structures, can cover the entire binding pocket of the enzyme, reducing the formation of the enzyme-substrate complex.
    [Show full text]
  • Chemistry of Phosphorylated Formaldehyde Derivatives. Part I
    Molecules 2014, 19, 12949-13009; doi:10.3390/molecules190912949 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Chemistry of Phosphorylated Formaldehyde Derivatives. Part I Vasily P. Morgalyuk Laboratory of Organophosphorus Compounds, Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova str., 28, Moscow 119991, Russia; E-Mail: [email protected]; Tel.: +7-499-135-92-50; Fax: +7-495-135-65-49 Received: 8 July 2014; in revised form: 8 August 2014 / Accepted: 15 August 2014 / Published: 25 August 2014 Abstract: The underinvestigated derivatives of unstable phosphorylated formaldehyde acetals and some of the structurally related compounds, such as thioacetals, aminonitriles, aminomethylphosphinoyl compounds, are considered. Separately considered are halogen aminals of phosphorylated formaldehyde, acetals of phosphorylated formaldehyde of H-phosphinate-type and a phosphorylated gem-diol of formaldehyde. Synthetic methods, chemical properties and examples of practical applications are given. Keywords: phosphorylated acetals; -thioacetals; -aminonitriles; -aminomethylphosphinoyl compounds; -chloro(or bromo)aminals; -gem-dioles; -ketene acetale; H-phosphinate 1. Introduction Among organophosphorus compounds, α-phosphorylated carbonyl compounds stand out by the capacity of cleavage of phosphorus–carbon bond under mild conditions when reacted with nucleophiles [1–5]. The cleavage of phosphorus–carbon bond may proceed spontaneously as well. At the same time, α-oxoalkylphosphinoyl compounds also retain properties inherent in carbonyl compounds, for example, they undergo cross aldol condensation. The least stable compounds among them are phosphorylated formaldehyde derivatives, dialkyl formylphosphonates (1) [6–11] and N,N,N',N'-tetraalkyl formylphosphondiamides (2) [12] (Figure 1), whose existence was even disputed in the first half of the 1970s [13,14].
    [Show full text]
  • 20. Phosphorus Chemistry
    Professor David L. Van Vranken Chemistry 201: Organic Reaction Mechanisms I Topic 20: Phosphorus Chemistry References: Literature cited Phosphorus Functional Groups ■ Here’s how to name phosphorus functional groups: R R R OR R OR O O R P P P R P P(III) R R OR O R phosphine phosphinite phosphonite phosphite (ester) O O O O R R R OR R OR O O P P P R P R P(V) R R OR O R phosphine oxide phosphinate phosphonate phosphate (ester) ■ Few of these functional groups are common. O O O H P N P HO OH O CH HO F 3 glyphosate sarin Phosphorus Functional Groups ■ pKas reveal the difference in basicity between trialkylphosphines and triarylphosphines Et Ph .. + + N N Ph2N Et Et Ph Ph resonance H H reduces l.p. basicity pKa 11 ~ -5 .. Bu Ph Ph P + + 2 P P not so much Bu Bu Ph Ph H H resonance pKa 9 3 ■ Trialkylphosphines are way more nucleophilic than triarylphosphines Bu Ph Bu P: Ph P: Bu Ph way more nucleophilic Howard ST, et al. Can. J. Chem. 1997, 75, 60. Allman, T.; Goel, R. G. Can. J. Chem. 1982, 60, 716.. POCl3 is a Very Reactive Electrophile ■ Old conditions for elimination of OH groups. Contrast the outcomes. SOCl Cl 2 pyridine OH POCl3 pyridine (solvent) ■ Phosphates don’t substitute very quickly, but Cl3P=O is special ■ Vilsmeier-Haack Reaction - amides attack Cl3P=O + NMe O Cl NMe 2 2 E.A.S. MeO + MeO H2O MeO H OMe OMe workup OMe POCl3 + DMF Mechanism for formation of the Vilsmeier reagent: : .
    [Show full text]
  • Novel Organophosphorus Compounds for Materials and Organic Synthesis
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1546 Novel Organophosphorus Compounds for Materials and Organic Synthesis KEYHAN ESFANDIARFARD ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-513-0045-0 UPPSALA urn:nbn:se:uu:diva-328295 2017 Dissertation presented at Uppsala University to be publicly examined in Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, Friday, 13 October 2017 at 10:00 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Declan Gilheany (Centre for Synthesis and Chemical Biology, University College Dublin). Abstract Esfandiarfard, K. 2017. Novel Organophosphorus Compounds for Materials and Organic Synthesis. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1546. 84 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0045-0. This thesis is devoted to the development of new organophosphorus compounds for potential uses in material science and as reagents in Organic Chemistry. Organophosphorus compounds in a single molecule or organic electronics context are appealing as the phosphorous centers perturb the electronic properties of the π-conjugated systems while at the same time provide synthetic handles for subsequent synthetic modifications. As such, new synthetic methodology to such compounds and the exploration of new building blocks is of considerable interest. In a different study, novel organophosphorus compounds are synthesized and shown to promote a reaction in Organic Chemistry that has previously not been possible, i.e. the stereoselective reductive coupling of aldehydes to alkenes. Such developments enlarge the toolkit of reactions that are available to Organic Chemists, and may impact the synthetic routes to pharmaceuticals and other important commodity chemicals.
    [Show full text]