Table of Contents

Total Page:16

File Type:pdf, Size:1020Kb

Table of Contents Table of Contents 1.0 Introduction . 1 2.0 Scientific Directions . 4 2.1 Plate Motions . 5 2.2 Plate Boundary Zones . 10 2.3 Earthquake Processes . 26 2.4 Plate Rigidity, Intraplate Deformation, and Intraplate Earthquakes . 36 2.5 Volcanic Processes . 39 2.6 Vertical Motions . 44 2.7 Other GPS Applications . 46 3.0 UNAVCO Operations . 49 3.1 Overview of Community and Facility Activities . 49 3.2 Campaign Support . 54 3.3 Permanent Station Support . 56 3.4 Data Management and Archiving . 61 3.5 GPS Technology Support . 70 3.6 Community Scientific Initiatives . 75 3.7 Education and Outreach . 78 4.0 Future Activities and Budget Justification . 81 4.1 Community Activities . 83 4.2 Campaign Support . 88 4.3 Permanent Station Support . 90 4.4 Data Management and Archiving . 92 4.5 Technology Support . 96 i 4.6 Community Scientific Initiatives . 100 5.0 References . 103 Appendix A . Project Support by the UNAVCO Facility . A-1 Appendix B . Status of Boulder Facility Archiving . B-1 Appendix C . GAMIT User Support . C-1 ii 1.0 Introduction UNAVCO, the University NAVSTAR Consortium, is an international organization of more than 90 universities and other research institutions, representing scientists doing geoscience with the Global Positioning System (GPS). Its goal is to promote the acquisition, archiving, distribu- tion, and application of high-precision GPS data for investigation of Earth processes and hazards. UNAVCO was formed in 1984 in response to the challenge of applying GPS to geosciences. Although GPS was developed by the U.S. Department of Defense to provide positions to preci- sions of tens of meters, the scientific community built on experience with other space geodetic techniques1 to allow use of GPS for geodetic measurements with sub-cm precision even between sites thousands of kilometers apart. Hence measurements of positions over time yield relative velocities to precisions almost unimaginable during the early days of plate tectonic studies. More- over, these studies cover much larger areas than practical with traditional geodesy which is restricted to sites in view of each other. Although the scientific possibilities were enormous, the complexity and costs of making these measurements were formidable. Considerable effort by university, government, and industry sci- entists and engineers was required. New types of geodetic monuments, sophisticated geodetic quality GPS receivers2, advanced analysis software, a global satellite tracking network, and large scale data archiving were needed. The success of these efforts, due in large part to the UNAVCO community, has made GPS one of the most powerful tools of the Earth sciences. UNAVCO's mission is to assist university investigators in using GPS for high-precision geod- esy around the world (Figure 1-1). Our goal is to make GPS, which is intrinsically very “big” sci- ence, into almost “small” science that can be conducted at institutions both large and small. Many of the investigators we assist are interested in advancing space-based geodesy. Others, however, wish to use these techniques as tools to solve geological, geophysical, and glaciological problems. Hence, for example, we seek to make it possible for investigators interested in monitoring crustal motions, tracking ice sheet flows, studying sea level change, or mapping uplifted terraces to focus on their scientific goals rather than on the GPS technology. A third group are interested in using or synthesizing the results of various studies, in many cases conducted by others. 1. Space geodesy uses an extraterrestrial reference for high-precision measurements of positions on Earth. Techniques include Very Long Baseline radio Interferometry (VLBI), which uses radio signals from dis- tant quasars, Satellite Laser Ranging (SLR), which uses ground-based lasers and satellite reflectors, and GPS, GLONASS, or DORIS, which use the travel time of radio signals between satellites and ground sta- tions. The most popular, convenient, and cost effective space based geodetic measurements are done using GPS. 2. Geodetic quality GPS receivers are significantly more expensive than those used for standard applica- tions (tens of thousands of dollars relative to a few hundred). The improvement to cm-level or better pre- cision is obtained by using the phase delay of the microwave carriers. The use of differential signals eliminates clock errors. Combining both frequencies transmitted by the satellites removes delays caused by the passage of the GPS signal through the ionosphere. Tropospheric delays can be estimated to reduce position errors and, in addition, to provide valuable atmospheric data. 1 To meet these diverse needs, UNAVCO provides a focal point for the broad community of Earth scien- tists interested in either conducting studies with GPS geodesy or using its results (Figure 1-2). Much of UNAVCO's work is conducted by its Boulder Facility, which assists NSF- and NASA- funded principal investi- gators. As discussed later, support is provided at various levels, depending on the project's needs. This can include GPS equipment, field engi- neering, technology development, training, technology transfer, data management, and archiving. In many Figure 1-1. Archive map. GPS data in the UNAVCO archive (http:/ cases, UNAVCO assists universities /www.unavco.ucar.edu). Data are from a large number of differ- which have their own GPS receivers, ent programs conducted by university and government investiga- often acquired via major equipment tors. purchases organized under UNAVCO auspices. Projects supported include GPS campaigns, where sites are occu- pied for short periods, and local and regional networks of continuously recording GPS receivers1. UNAVCO also provides technical and opera- tional support to the permanent GPS stations in NASA's GPS Global Net- work (GGN), many of which contrib- ute data to the International GPS Service (IGS) global network. UNAVCO also works collaboratively with research institutions in the areas of data processing, technology devel- opment, and data archiving. In addi- tion, through the Boulder Facility, UNAVCO supports scientific inter- change among investigators doing Figure 1-2. Schematic illustration of UNAVCO`s contri- GPS-related science, both from butions to the community of Earth scientists interested in either conducting studies with GPS geodesy or using UNAVCO and from other institutions, its results. 1. Campaign (survey) mode and continuous GPS are both used, depending on the cost vs. precision trade- off for the problem under investigation. Continuous GPS (CGPS) can provide significantly more precise data at higher cost (in the U.S., a 25-station campaign network can often be occupied in survey mode for the cost of a single continuous station). 2 via an annual community meeting, scientific working groups, and other forums. UNAVCO's funding (Figure 1-3) derives primarily from the National Science Foundation's Division of Earth Sciences OTHER (EAR) Instrumentation and Facilities Pro- NASA 7% 36% gram (IF) and NASA's Solid Earth and Nat- ural Hazards Research (SENH) Program. Additional funding comes from sources including the NSF Office of Polar Programs (OPP). The NSF-EAR and NASA funds are used in a complementary fashion since NSF-OPP many of the investigations supported NSF-EAR 6% 51% involve funding from both agencies, and because the science involved often inte- grates both NSF-EAR and NASA aspects. Figure 1-3. UNAVCO funding sources. For example, data from permanent stations supported by various agencies are typically combined in global or regional analyses, data from surveys funded by one agency are used in studies by others, and regional GPS programs funded by NSF rely heavily on the primarily NASA-funded global GPS network. This proposal requests continued NSF funding for UNAVCO activities. We first review some examples of investigations assisted by UNAVCO, then describe UNAVCO's activities, and con- clude by discussing our future plans. We recognize that to prosper, UNAVCO must do an excel- lent job of facilitating outstanding science, planned and conducted by the investigators we support and by the broader community of scientists who use the resulting data. We believe this proposal demonstrates considerable success in this regard. 3 2.0 Scientific Directions The past few years have been exciting ones for GPS science, because GPS technology and data analysis have matured. Although both continue to improve, GPS is now delivering the scien- tific results anticipated a few years ago. GPS geodesy has thus gone from a specialized technol- ogy to a mainstream branch of the Earth sciences, delivering results of broad importance on fundamental problems. The results being obtained to date demonstrate the power of GPS geodesy and illustrate its potential. This maturing has been especially striking in the area of tectonics, as illustrated schemati- cally by Figure 2-1. A few years ago, using GPS data to measure site motions to sub-cm precision was a goal in itself. Now, these motions are combined with global GPS data to determine velocity fields over areas which can be large, such as a 1000-km wide plate bound- ary zone. These GPS-derived vectors are increasingly being made publicly available on the Web, and the results of various GPS studies are often combined with other space geodetic data (VLBI, SLR, DORIS) to produce com- bined solutions for the velocity fields. For example, as discussed later, a recent velocity field for part of the western U.S. [Bennett et al., 1999] combines data from
Recommended publications
  • Shape of the Subducted Rivera and Cocos Plates in Southern Mexico
    JOURNALOF GEOPHYSICAL RESEARCH, VOL. 100, NO. B7, PAGES 12,357-12,373, JULY 10, 1995 Shapeof the subductedRivera and Cocosplates in southern Mexico: Seismic and tectonicimplications Mario Pardo and Germdo Sufirez Insfitutode Geoffsica,Universidad Nacional Aut6noma de M6xico Abstract.The geometry of thesubducted Rivera and Cocos plates beneath the North American platein southernMexico was determined based on the accurately located hypocenters oflocal and te!eseismicearthquakes. The hypocenters ofthe teleseisms were relocated, and the focal depths of 21 eventswere constrainedusing a bodywave inversion scheme. The suductionin southern Mexicomay be approximated asa subhorizontalslabbounded atthe edges by the steep subduction geometryof theCocos plate beneath the Caribbean plate to the east and of theRivera plate beneath NorthAmerica to thewest. The dip of theinterplate contact geometry is constantto a depthof 30 kin,and lateral changes in thedip of thesubducted plate are only observed once it isdecoupled fromthe overriding plate. On thebasis of theseismicity, the focal mechanisms, and the geometry ofthe downgoing slab, southern Mexico may be segmented into four regions ß(1) theJalisco regionto thewest, where the Rivera plate subducts at a steepangle that resembles the geometry of theCocos plate beneath the Caribbean plate in CentralAmerica; (2) theMichoacan region, where thedip angleof theCocos plate decreases gradually toward the southeast, (3) theGuerrero-Oaxac.a region,bounded approximately by theonshore projection of theOrozco and O'Gorman
    [Show full text]
  • Measurements of Upper Mantle Shear Wave Anisotropy from a Permanent Network in Southern Mexico
    GEOFÍSICA INTERNACIONAL (2013) 52-4: 385-402 ORIGINAL PAPER Measurements of upper mantle shear wave anisotropy from a permanent network in southern Mexico Steven A. C. van Benthem, Raúl W. Valenzuela* and Gustavo J. Ponce Received: November 13, 2012; accepted: December 14, 2012; published on line: September 30, 2013 Resumen Abstract Se midió la anisotropía para las ondas de cortante 8SSHU PDQWOH VKHDU ZDYH DQLVRWURS\ XQGHU en el manto superior por debajo de estaciones VWDWLRQVLQVRXWKHUQ0H[LFRZDVPHDVXUHGXVLQJ en el sur de México usando fases SKS. Las records of SKS phases. Fast polarization directions direcciones de polarización rápida donde la placa ZKHUHWKH&RFRVSODWHVXEGXFWVVXEKRUL]RQWDOO\ de Cocos se subduce subhorizontalmente están are oriented in the direction of the relative orientadas aproximadamente paralelas con el PRWLRQEHWZHHQWKH&RFRVDQG1RUWK$PHULFDQ movimiento relativo entre las placas de Cocos y plates, and are trench-perpendicular. This América del Norte y además son perpendiculares SDWWHUQLVLQWHUSUHWHGDVVXEVODEHQWUDLQHGÀRZ DODWULQFKHUD3RUORWDQWRVHLQ¿HUHTXHODSODFD and is similar to that observed at the Cascadia VXEGXFLGD DUUDVWUD HO PDQWR TXH VH HQFXHQWUD subduction zone. Earlier studies have pointed SRUGHEDMR\ORKDFHÀXLU HQWUDLQHGÀRZ 8QD out that both regions have in common the young situación similar existe en la zona de subducción age of the subducting lithosphere. Changes in the GH&DVFDGLD(VWXGLRVSUHYLRVKDQVHxDODGRTXH RULHQWDWLRQRIWKHIDVWD[HVDUHREVHUYHGZKHUH estas dos regiones tienen en común la subducción the subducting
    [Show full text]
  • Geometry and Seismic Properties of the Subducting Cocos Plate in Central Mexico Y
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, B06310, doi:10.1029/2009JB006942, 2010 Click Here for Full Article Geometry and seismic properties of the subducting Cocos plate in central Mexico Y. Kim,1 R. W. Clayton,1 and J. M. Jackson1 Received 31 August 2009; revised 22 December 2009; accepted 25 January 2010; published 17 June 2010. [1] The geometry and properties of the interface of the Cocos plate beneath central Mexico are determined from the receiver functions (RFs) utilizing data from the Meso America Subduction Experiment (MASE). The RF image shows that the subducting oceanic crust is shallowly dipping to the north at 15° for 80 km from Acapulco and then horizontally underplates the continental crust for approximately 200 km to the Trans‐ Mexican Volcanic Belt (TMVB). The crustal image also shows that there is no continental root associated with the TMVB. The migrated image of the RFs shows that the slab is steeply dipping into the mantle at about 75° beneath the TMVB. Both the continental and oceanic Moho are clearly seen in both images, and modeling of the RF conversion amplitudes and timings of the underplated features reveals a thin low‐velocity zone between the plate and the continental crust that appears to absorb nearly all of the strain between the upper plate and the slab. By inverting RF amplitudes of the converted phases and their time separations, we produce detailed maps of the seismic properties of the upper and lower oceanic crust of the subducting Cocos plate and its thickness. High Poisson’s and Vp/Vs ratios due to anomalously low S wave velocity at the upper oceanic crust in the flat slab region may indicate the presence of water and hydrous minerals or high pore pressure.
    [Show full text]
  • Constraints on Mantle Wedge Conditions
    Absarokites from the Western Mexican Volcanic Belt: Constraints on Mantle Wedge Conditions by Marc Hesse H.B.Sc., Geology University of Edinburgh 2000 Submitted in partial fulfillment of the requirements for the degree of Masters of Science at the MASSACHUSETTS INSTITUTE OF TECNOLOGY and the WOODS HOLE OCEANOGRAPHIC INSTITUTION August 2002 @2002 Marc Hesse. All rights reserved The author hereby grants MIT and WHOI permision to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part. Signature of Author ............... ..... ....... MIT-WHOI Joint Program August 2002 7.' Certified by ...................... .1 ................ Prof Timothy Grove Thesis Advisor Ci 1' l A ccepted by .................................... ......................... ...................... Prof Timothy Grove Chair of JCMGG LINDGREN AMASSACHUSETT S I ES Abstract We have investigated the near liquidus phase relations of a primitive absarokite from the Mascota region in Western Mexico. Sample M. 102 was chosen because it has high MgO contents, a high Mg# and Fo90 olivine phenocrysts, indicating it is primitive mantle melt. High- pressure experiments on a synthetic analogue of the absarokite composition with a H20 content of either -1.7 wt% or -5.1 wt% were carried out in a piston cylinder apparatus. The composition with -1.7 wt% H20 is multiply saturated with olivine and orthopyroxene as liquidus phases at 1.6 GPa and 14000 C. At the same pressure clinopyroxene appears 300 C below the liquidus. With a H20 content of -5.1 wt% composition M.102 is multiply saturated with olivine and orthopyroxene on the liquidus at 1.7 GPa and 13000 C. Assuming batch melting, we suggest that absarokite M.
    [Show full text]
  • Geochemical Evidence for Slab Melting in the Trans-Mexican Volcanic Belt
    JOURNAL OF PETROLOGY VOLUME 48 NUMBER 3 PAGES 537^562 2007 doi:10.1093/petrology/egl071 Geochemical Evidence for Slab Melting in the Trans-Mexican Volcanic Belt ARTURO GO¤MEZ-TUENA1*, CHARLES H. LANGMUIR2, STEVEN L. GOLDSTEIN3, SUSANNE M. STRAUB3 AND FERNANDO ORTEGA-GUTIE¤RREZ4 1CENTRO DE GEOCIENCIAS, UNIVERSIDAD NACIONAL AUTO¤ NOMA DE ME¤ XICO, QUERE¤ TARO 76230, MEXICO 2DEPARTMENT OF EARTH AND PLANETARY SCIENCES, HARVARD UNIVERSITY, CAMBRIDGE, MA 02138, USA 3LAMONT^DOHERTY EARTH OBSERVATORY AND DEPARTMENT OF EARTH AND ENVIRONMENTAL SCIENCES, COLUMBIA UNIVERSITY, 61 RT. 9W, PALISADES, NY 10964, USA 4INSTITUTO DE GEOLOGI¤ A, UNIVERSIDAD NACIONAL AUTO¤ NOMA DE ME¤ XICO, CIUDAD UNIVERSITARIA, MEXICO CITY 04510, MEXICO RECEIVED MARCH 17, 2006; ACCEPTED NOVEMBER 2, 2006; ADVANCE ACCESS PUBLICATION DECEMBER 26, 2006 Geochemical studies of Plio-Quaternary volcanic rocks from theValle KEY WORDS: arcs; mantle; Mexico; sediment melting; slab melting de Bravo^Zita¤cuaro volcanic field (VBZ) in central Mexico indi- cate that slab melting plays a key role in the petrogenesis of theTrans- Mexican Volcanic Belt. Rocks from the VBZ are typical arc-related INTRODUCTION high-Mg andesites, but two different rock suites with distinct trace Slab-derived fluxing plays an important role in the element patterns and isotopic compositions erupted concurrently in global geochemical cycle, and gives rise to the distinctive the area, with a trace element character that is also distinct from chemical compositions observed in arc magmas (Gill, that of other Mexican
    [Show full text]
  • The Earth's Lithosphere-Documentary
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/310021377 The Earth's Lithosphere-Documentary Presentation · November 2011 CITATIONS READS 0 1,973 1 author: A. Balasubramanian University of Mysore 348 PUBLICATIONS 315 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Indian Social Sceince Congress-Trends in Earth Science Research View project Numerical Modelling for Prediction and Control of Saltwater Encroachment in the Coastal Aquifers of Tuticorin, Tamil Nadu View project All content following this page was uploaded by A. Balasubramanian on 13 November 2016. The user has requested enhancement of the downloaded file. THE EARTH’S LITHOSPHERE- Documentary By Prof. A. Balasubramanian University of Mysore 19-11-2011 Introduction Earth’s environmental segments include Atmosphere, Hydrosphere, lithosphere, and biosphere. Lithosphere is the basic solid sphere of the planet earth. It is the sphere of hard rock masses. The land we live in is on this lithosphere only. All other spheres are attached to this lithosphere due to earth’s gravity. Lithosphere is a massive and hard solid substratum holding the semisolid, liquid, biotic and gaseous molecules and masses surrounding it. All geomorphic processes happen on this sphere. It is the sphere where all natural resources are existing. It links the cyclic processes of atmosphere, hydrosphere, and biosphere. Lithosphere also acts as the basic route for all biogeochemical activities. For all geographic studies, a basic understanding of the lithosphere is needed. In this lesson, the following aspects are included: 1. The Earth’s Interior. 2.
    [Show full text]
  • Redalyc.Subduction of the Rivera Plate Beneath the Jalisco Block As
    Revista Mexicana de Ciencias Geológicas ISSN: 1026-8774 [email protected] Universidad Nacional Autónoma de México México Corbo-Camargo, Fernando; Arzate-Flores, Jorge Arturo; Álvarez-Béjar, Román; Aranda-Gómez, José Jorge; Yutsis, Vsevolod Subduction of the Rivera plate beneath the Jalisco block as imaged by magnetotelluric data Revista Mexicana de Ciencias Geológicas, vol. 30, núm. 2, 2013, pp. 268-281 Universidad Nacional Autónoma de México Querétaro, México Available in: http://www.redalyc.org/articulo.oa?id=57228307002 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative 268 Corbo-CamargoRevista Mexicana et al. de Ciencias Geológicas, v. 30, núm. 2, 2013, p. 268-281 Subduction of the Rivera plate beneath the Jalisco block as imaged by magnetotelluric data Fernando Corbo-Camargo1*, Jorge Arturo Arzate-Flores2, Román Álvarez-Béjar3, José Jorge Aranda-Gómez2, and Vsevolod Yutsis4 1Posgrado en Ciencias de la Tierra, Centro de Geociencias, Universidad Nacional Autónoma de México, Blvd. Juriquilla no. 3001, C.P. 76230, Querétaro, Mexico. 2Centro de Geociencias, Universidad Nacional Autónoma de México, Blvd. Juriquilla no. 3001, C.P. 76230, Querétaro, México. 3Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas (IIMAS), Universidad Nacional Autónoma de México, Circuito Escolar, C.P. 04510, Ciudad Universitaria, México D.F., Mexico. 4Facultad de Ciencias de la Tierra, Universidad Autónoma de Nuevo León, Carretera a Cerro Prieto Km. 8, Ex Hacienda de Guadalupe, C.P. 67700, Linares N.L., Mexico.
    [Show full text]
  • A Global Review and Digital Database of Large-Scale Extinct Spreading Centers GEOSPHERE
    Research Paper GEOSPHERE A global review and digital database of large-scale extinct GEOSPHERE; v. 13, no. 3 spreading centers doi:10.1130/GES01379.1 Sarah J. MacLeod, Simon E. Williams, Kara J. Matthews, R. Dietmar Müller, and Xiaodong Qin EarthByte Group, School of Geosciences, University of Sydney, Camperdown, New South Wales 2006, Australia 9 figures; 4 tables; 2 supplemental files CORRESPONDENCE: sarah.macleod@ sydney ABSTRACT into which proposed locations are more likely to have been former spreading .edu .au centers, and our analysis further leads to the discovery of several previously Extinct mid-ocean ridges record past plate boundary reorganizations, and unidentified structures in the south of the West Philippine Basin that likely CITATION: MacLeod, S.J., Williams, S.E., Matthews, K.J., Müller, R.D., and Qin, X.D., 2017, A global review identifying their locations is crucial to developing a better understanding of represent extinct ridges and a possible extinct ridge in the western South At- and digital database of large-scale extinct spread- the drivers of plate tectonics and oceanic crustal accretion. Frequently, extinct lantic. We make available our global compilation of data and analyses of indi- ing centers: Geosphere, v. 13, no. 3, p. 911–949, ridges cannot be easily identified within existing geophysical data sets, and vidual ridges in a global extinct ridge data set at the GPlates Portal webpage1. doi:10.1130/GES01379.1. there are many controversial examples that are poorly constrained. We ana- lyze the axial morphology and gravity signal of 29 well-constrained, global, Received 17 June 2016 Revision received 29 November 2016 large-scale extinct ridges that are digitized from global data sets, to describe INTRODUCTION Accepted 15 March 2017 their key characteristics.
    [Show full text]
  • Zoogeography of the San Andreas Fault System: Great Pacific Fracture Zones Correspond with Spatially Concordant Phylogeographic
    Biol. Rev. (2016), 91, pp. 235–254. 235 doi: 10.1111/brv.12167 Zoogeography of the San Andreas Fault system: Great Pacific Fracture Zones correspond with spatially concordant phylogeographic boundaries in western North America Andrew D. Gottscho1,2,∗ 1Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, U.S.A. 2Department of Biology, University of California, Riverside, CA 92521, U.S.A. ABSTRACT The purpose of this article is to provide an ultimate tectonic explanation for several well-studied zoogeographic boundaries along the west coast of North America, specifically, along the boundary of the North American and Pacific plates (the San Andreas Fault system). By reviewing 177 references from the plate tectonics and zoogeography literature, I demonstrate that four Great Pacific Fracture Zones (GPFZs) in the Pacific plate correspond with distributional limits and spatially concordant phylogeographic breaks for a wide variety of marine and terrestrial animals, including invertebrates, fish, amphibians, reptiles, birds, and mammals. These boundaries are: (1) Cape Mendocino and the North Coast Divide, (2) Point Conception and the Transverse Ranges, (3) Punta Eugenia and the Vizcaíno Desert, and (4) Cabo Corrientes and the Sierra Transvolcanica. However, discussion of the GPFZs is mostly absent from the zoogeography and phylogeography literature likely due to a disconnect between biologists and geologists. I argue that the four zoogeographic boundaries reviewed here ultimately originated via the same geological process (triple junction evolution). Finally, I suggest how a comparative phylogeographic approach can be used to test the hypothesis presented here. Key words: fracture zones, historical biogeography, North America, Pacific Ocean, phylogeography, plate tectonics, San Andreas Fault.
    [Show full text]
  • Motion of the Rivera Plate Since 10 Ma Relative to the Pacific and North
    Tectonophysics 318 (2000) 119–159 www.elsevier.com/locate/tecto Motion of the Rivera plate since 10 Ma relative to the Pacific and North American plates and the mantle Charles DeMets *, Stephen Traylen Department of Geology and Geophysics, University of Wisconsin-Madison, 1215 West Dayton Street, Madison, WI 53706, USA Received 4 January 1999; accepted for publication 30 August 1999 Abstract To better understand the influence of Rivera plate kinematics on the geodynamic evolution of western Mexico, we use more than 1400 crossings of seafloor spreading magnetic lineations along the Pacific–Rivera rise and northern Mathematician ridge to solve for rotations of the Rivera plate relative to the underlying mantle and the Pacific and North American plates at 14 times since 9.9 Ma. Our comparison of magnetic anomaly crossings from the undeformed Pacific plate to their counterparts on the Rivera plate indicates that significant areas of the Rivera plate have deformed since 9.9 Ma. Dextral shear along the southern edge of the plate from 3.3–2.2 Ma during a regional plate boundary reorganization deformed the Rivera plate farther into its interior than previously recognized. In addition, seafloor located north of two rupture zones within the Rivera plate sutured to North America after 1.5 Ma. Anomaly crossings from these two deformed regions thus cannot be used to reconstruct motion of the Rivera plate. Finite rotations that best reconstruct Pacific plate anomaly crossings onto their undeformed counterparts on the Rivera plate yield stage spreading rates that decrease gradually by 10% between 10 and 3.6 Ma, decrease rapidly by 20% after 3.6 Ma, and recover after 1 Ma.
    [Show full text]
  • Tectonic Summaries of Magnitude 7 and Greater Earthquakes from 2000 to 2015
    Tectonic Summaries of Magnitude 7 and Greater Earthquakes from 2000 to 2015 Open-File Report 2016–1192 U.S. Department of the Interior U.S. Geological Survey Tectonic Summaries of Magnitude 7 and Greater Earthquakes from 2000 to 2015 By Gavin P. Hayes, Emma K. Myers, James W. Dewey, Richard W. Briggs, Paul S. Earle, Harley M. Benz, Gregory M. Smoczyk, Hanna E. Flamme, William D. Barnhart, Ryan D. Gold, and Kevin P. Furlong Open-File Report 2016–1192 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Director U.S. Geological Survey, Reston, Virginia: 2017 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://store.usgs.gov/. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Hayes, G.P., Myers, E.K., Dewey, J.W., Briggs, R.W., Earle, P.S., Benz, H.M., Smoczyk, G.M., Flamme, H.E., Barnhart, W.D., Gold, R.D., and Furlong, K.P., 2017, Tectonic summaries of magnitude 7 and greater earthquakes from 2000 to 2015: U.S.
    [Show full text]
  • List of Plate Ids to Accompany Seton Et. Al. Global Model 000 Hotspots
    List of Plate IDs to accompany Seton et. al. Global Model Plate ID Abbreviation Name and Description 000 Hotspots 001 AHS Present Day Atlantic/Indian Hotspots 002 PHS Pacific Hotspots 003 PPH Present Day Pacific Hotspots 100 North America and the Arctic 101 NAM North American Craton 102 GRN Greenland 103 NSL North Slope Alaska 104 MEX Mexico 105 BAJ Baja California 106 NBJ Northern Baja California 107 BIS Baffin Island, North America 108 AVA Avalon-Acadia, Alaska 109 PDM Piedmont-Florida, North America 110 ALR Alpha Cordillera Ridge, Arctic 111 MNR Mendeleev Ridge, Arctic 112 CHP Chukchi Plateau, Arctic 113 NWR Northwind Ridge, Arctic 114 LMN Lomonosov Ridge, Arctic 115 CBM Northern Northwind Ridge, Arctic 117 LMN2 Lomonosov Ridge 2, Arctic 118 NSA2 North Slope Alaska 2 116 MVR Marvin Spur Ridge, Arctic 119 AAB Amerasia Basin, Arctic 120 CAI Canadian Arctic Islands 121 ELA East Ellesmere Island, Arctic 122 ELB East-Central Ellesmere Island, Arctic 123 ELC West-Central Ellesmere Island, Arctic 124 ELD West Ellesmere Island, Arctic 125 STT Stikine Terrane, British Columbia 126 WAT Wrangelia and Alexander Terrane, Alaska 127 FRP Faeroe Plate (trapped Greenland crust north of Faeroe Islands) 128 GV1 Trapped Greenland crust off Voring Plateau Plate 1 129 GV2 Trapped Greenland crust off Voring Plateau Plate 2 130 BAF Baffin Bay, North America 147 NSI1 North Sea/Icealand 1 148 NSI2 North Sea/Icealand 2 149 NSI3 North Sea/Icealand 3 150 CHO Chortis, North America 155 FARW Farewell Terrane, North America 160 NAMC North America Craton Margin 161
    [Show full text]