Colonization Kinetics and Implantation Follow-Up of the Sewage Microbiome in an Urban Wastewater Treatment Plant

Total Page:16

File Type:pdf, Size:1020Kb

Colonization Kinetics and Implantation Follow-Up of the Sewage Microbiome in an Urban Wastewater Treatment Plant www.nature.com/scientificreports OPEN Colonization kinetics and implantation follow‑up of the sewage microbiome in an urban wastewater treatment plant Loïc Morin1, Anne Goubet2, Céline Madigou2, Jean‑Jacques Pernelle2, Karima Palmier1, Karine Labadie3, Arnaud Lemainque3, Ophélie Michot4, Lucie Astoul4, Paul Barbier5, Jean‑Luc Almayrac4 & Abdelghani Sghir5* The Seine-Morée wastewater treatment plant (SM_WWTP), with a capacity of 100,000 population- equivalents, was fed with raw domestic wastewater during all of its start‑up phase. Its microbiome resulted from the spontaneous evolution of wastewater‑borne microorganisms. This rare opportunity allowed us to analyze the sequential microbiota colonization and implantation follow up during the start-up phase of this WWTP by means of regular sampling carried out over 8 months until the establishment of a stable and functional ecosystem. During the study, biological nitrifcation– denitrifcation and dephosphatation occurred 68 days after the start-up of the WWTP, followed by focs decantation 91 days later. High throughput sequencing of 18S and 16S rRNA genes was performed using Illumina’s MiSeq and PGM Ion Torrent platforms respectively, generating 584,647 16S and 521,031 18S high-quality sequence rDNA reads. Analyses of 16S and 18S rDNA datasets show three colonization phases occurring concomitantly with nitrifcation, dephosphatation and foc development processes. Thus, we could defne three microbiota profles that sequentially colonized the SM_WWTP: the early colonizers, the late colonizers and the continuous spectrum population. Shannon and inverse Simpson diversity indices indicate that the highest microbiota diversity was reached at days 133 and 82 for prokaryotes and eukaryotes respectively; after that, the structure and complexity of the wastewater microbiome reached its functional stability. This study demonstrates that physicochemical parameters and microbial metabolic interactions are the main forces shaping microbial community structure, gradually building up and maintaining a functionally stable microbial ecosystem. Te wastewater treatment process is based on the use of sludge microbial populations to treat domestic and indus- trial pollutants. Tese populations constitute a complex ecosystem with biomass concentration approximating 2–10 g L−11, with the majority aggregated into structures called focs. Te foc structure represents a protection strategy for microorganisms against predation as well as toxic chemicals, meanwhile allowing efcient uptake of nutrients. Tese focs may contain up to 1010 prokaryotes mL−1 and 106 micro-eukaryotes mL−1. Molecular approaches reveal that they ofen share persistent prokaryotic and eukaryotic core species stably retained over time, including among others, members of the Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria phyla2–4. However, in comparison with prokaryotes, micro-eukaryotic diversity has benefted relatively little from modern molecular tools and high throughput sequencing technologies. Te few sequencing-based analyses 1Institut de Biologie Intégrative de la Cellule, Université Paris Saclay, 91405 Orsay Cedex, France. 2INRAE, PROSE, Université Paris-Saclay, 92761 Antony, France. 3Genoscope, Institut de Biologie François-Jacob, CEA, Université Paris-Saclay, 91057 Evry, France. 4Laboratoire SIAAP Site Seine Amont, Usine Marne Aval, 100 rue de la Plaine, 93160 Noisy-Le-Grand, France. 5Génomique métabolique, Genoscope, Institut de Biologie François Jacob, CEA, CNRS, Université d’Evry, Université Paris-Saclay, 91057 Evry, France. *email: [email protected] SCIENTIFIC REPORTS | (2020) 10:11634 | https://doi.org/10.1038/s41598-020-68496-z 1 Vol.:(0123456789) www.nature.com/scientificreports/ performed on samples from WWTP or sewage treatment bioreactors suggest that large knowledge gaps in diversity and functional ecology of this group of microorganisms 5–8 exist, preventing accurate defnitions of their identity, diversity and their roles in the depollution process. To provide a holistic view of the functioning of whole ecosystems, major fundamental studies are necessary for assessing the network of interactions between all kinds of microbes (Bacteria, Archaea, Eukarya and viruses) and with their environment. Tis will permit the inference of the ecological rules guiding assembly of complex microbial communities and their functional impli- cations across temporal gradients, and biological and physicochemical perturbations, which still await discovery. Such studies should help anticipate the structure and activity of microbial communities and consequently the functional stability of the ecosystem. Recent studies have reported temporal variations in both composition and structure of microbial communities9,10. To the best of our knowledge, no work has studied the colonization kinetics and the estab- lishment of the wastewater microbiome through to the constitution of a complex and functional microbial ecosystem. In the present study, we are taking advantage of the start-up of a domestic WWTP to achieve full characterization of 23 time series samples from the SM_WWTP over 236 days. We hence, followed the coloni- zation kinetics of wastewater-borne microorganisms from March 3rd through October 31st, 2014, using high throughput prokaryotic 16S and eukaryotic 18S rRNA gene sequencing, until the establishment of a complex functional and stable ecosystem. Results Physicochemical and overall molecular diversity analyses of microbial populations. Te infor- mation regarding plant localization and process description, variation of plant operational parameters and phys- icochemical conditions, treatment performance, are detailed in Supplementary material online (Fig. S1, Fig. S2 and Table S1). Nitrogen measurement defnes three periods: (1) Te frst period lasts for 11 weeks (13–40 days) during which ammonia in the aerobic basin is at its maximal concentration. (2) In the second period that lasts about 1 month, the ammonia starts decreasing concomitantly with the appearance of nitrite (day 40) and nitrate (day 68), until day 133 (Fig. 1A). (3) In the third period (133–236 days) nitrite is completely oxidized to nitrate at day 133 and remains relatively stable during the rest of the time. Biological dephosphatation started at day 40, and phosphorus concentration fuctuated from day 68 through day 133, to be completely reduced over this third period (133–236 days). Flocs decantation appeared 91 days afer the start-up of the SM_WWTP. Principal component analyses of the microbiota 16S and 18S rDNA data sets, revealed a diversifcation in microbial composition between samples, concomitantly occurring with the physicochemical transformations (e.g. nitrifcation, dephosphatation and foc development processes). Tis analysis indicates the constitution of three main homogeneous prokaryotic groups (Fig. 1B) whereas 18S rDNA tags indicates four eukaryotic groups (Fig. 1C). Afer stabilization, the plant could efectively remove 97.8% of chemical oxygen demand (COD) and 99.6% biological oxygen demand (BOD) from the sewage (Table S1). A total of 584,647 and 521,031 high quality reads were generated from 23 SM_WWTP rDNA amplicon sequencing (Table 1), with an average of 25,419 and 22,653 reads per sample for bacteria and eukaryotes respec- tively. Phylotype richness calculation for individual samples based on the construction of rarefaction curves shows a complete saturation of microbial diversity (Fig. S3A, Fig. S3B). Sequence read clustering, based on 97% sequence similarity reveals, the occurrence of 6,696 bacterial operational taxonomic units (OTUs) and 1,423 eukaryotic OTUs (Table 1). Taxonomic afliations using Silva database-132 shows that the 6,696 bacterial OTUs afliated with 36 phyla among which we describe 30 persistent OTUs, occur at various abundancies through- out the study (Table 1). Among the 1,423 eukaryotic OTUs, we describe 19 persistent OTUs afliating with 15 phyla (Table 1). Shannon and Inverse Simpson diversity indices show the occurrence of two periods, the frst one where microbiota increase in numbers and diversity and the second period where the microbiota reaches its steady state (Fig. 1F,G). Overall description of wastewater microbiota phylogenetic groups. Te most predominant phy- logenetic groups within the Bacteria domain are the Gram-negative bacteria, represented by Proteobacteria and Bacteroidetes, and the Gram-positives represented by Firmicutes and Actinobacteria, averaging 64.8% and 13.1% of the total number of OTUs respectively. Planctomycetes, Chlorofexi, Verrucomicrobia, and Acidobacteria, rep- resent an average of 17.6% of the total OTUs. Te remaining 28 minor phylogenetic groups account for only 4.5%. In terms of abundance, nine phylogenetic groups, Proteobacteria, Bacteroidetes, Planctomycetes, Chloro- fexi, Firmicutes, Actinobacteria, Acidobacteria, Gemmatimonadetes, and Patescibacteria (Saccharibacteria) rep- resent up to 97.6% of the total reads (Fig. S5A), whereas the remaining 27 minor phyla made up only 2.4% of the total reads. Inside these phyla, the distribution of subphyla follows the same pattern, with major and minor sub- phyla (Fig. S5A). On the other hand, the distribution of genera abundance is characterized by a large diversity, i.e. many genera with a low abundance. However, some genera emerge with a slightly more elevated abundance; such is the case for Acinetobacter, an unknown genus from Gammaproteobacteria, Terrimonas, and an unknown genus from Saprospiraceae, and Flavobacterium, that together
Recommended publications
  • The Terminal Oxidases of Paracoccus Denitrificans Gier, Jan-Willem L
    University of Groningen The terminal oxidases of Paracoccus denitrificans Gier, Jan-Willem L. de; Lübben, Mathias; Reijnders, Willem N.M.; Tipker, Corinne A.; Slotboom, Dirk-Jan; Spanning, Rob J.M. van; Stouthamer, Adriaan H.; Oost, John van der Published in: Molecular Microbiology IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 1994 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Gier, J-W. L. D., Lübben, M., Reijnders, W. N. M., Tipker, C. A., Slotboom, D-J., Spanning, R. J. M. V., Stouthamer, A. H., & Oost, J. V. D. (1994). The terminal oxidases of Paracoccus denitrificans. Molecular Microbiology, 13(2), 183-196. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Isolation and Characterization of Achromobacter Sp. CX2 From
    Ann Microbiol (2015) 65:1699–1707 DOI 10.1007/s13213-014-1009-6 ORIGINAL ARTICLE Isolation and characterization of Achromobacter sp. CX2 from symbiotic Cytophagales, a non-cellulolytic bacterium showing synergism with cellulolytic microbes by producing β-glucosidase Xiaoyi Chen & Ying Wang & Fan Yang & Yinbo Qu & Xianzhen Li Received: 27 August 2014 /Accepted: 24 November 2014 /Published online: 10 December 2014 # Springer-Verlag Berlin Heidelberg and the University of Milan 2014 Abstract A Gram-negative, obligately aerobic, non- degradation by cellulase (Carpita and Gibeaut 1993). There- cellulolytic bacterium was isolated from the cellulolytic asso- fore, efficient degradation is the result of multiple activities ciation of Cytophagales. It exhibits biochemical properties working synergistically to efficiently solubilize crystalline cel- that are consistent with its classification in the genus lulose (Sánchez et al. 2004;Lietal.2009). Most known Achromobacter. Phylogenetic analysis together with the phe- cellulolytic organisms produce multiple cellulases that act syn- notypic characteristics suggest that the isolate could be a novel ergistically on native cellulose (Wilson 2008)aswellaspro- species of the genus Achromobacter and designated as CX2 (= duce some other proteins that enhance cellulose hydrolysis CGMCC 1.12675=CICC 23807). The strain CX2 is the sym- (Wang et al. 2011a, b). Synergistic cooperation of different biotic microbe of Cytophagales and produces β-glucosidase. enzymes is a prerequisite for the efficient degradation of cellu- The results showed that the non-cellulolytic Achromobacter lose (Jalak et al. 2012). Both Trichoderma reesi and Aspergillus sp. CX2 has synergistic activity with cellulolytic microbes by niger were co-cultured to increase the levels of different enzy- producing β-glucosidase.
    [Show full text]
  • Multilayered Horizontal Operon Transfers from Bacteria Reconstruct a Thiamine Salvage Pathway in Yeasts
    Multilayered horizontal operon transfers from bacteria reconstruct a thiamine salvage pathway in yeasts Carla Gonçalvesa and Paula Gonçalvesa,1 aApplied Molecular Biosciences Unit-UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal Edited by Edward F. DeLong, University of Hawaii at Manoa, Honolulu, HI, and approved September 22, 2019 (received for review June 14, 2019) Horizontal acquisition of bacterial genes is presently recognized as nisms presumed to have facilitated a transition from bacterial an important contribution to the adaptation and evolution of operon transcription to eukaryotic-style gene expression were eukaryotic genomes. However, the mechanisms underlying ex- proposed, such as gene fusion giving rise to multifunctional pro- pression and consequent selection and fixation of the prokaryotic teins (6, 23, 24), increase in intergenic distances between genes to genes in the new eukaryotic setting are largely unknown. Here we generate room for eukaryotic promoters, and independent tran- show that genes composing the pathway for the synthesis of the scription producing mRNAs with poly(A) tails have been dem- essential vitamin B1 (thiamine) were lost in an ancestor of a yeast onstrated (22). In the best documented study, which concerns a lineage, the Wickerhamiella/Starmerella (W/S) clade, known to bacterial siderophore biosynthesis operon acquired by yeasts be- harbor an unusually large number of genes of alien origin. The longing to the Wickerhamiella/Starmerella (W/S) clade, the bacte- thiamine pathway was subsequently reassembled, at least twice, rial genes acquired as an operon were shown to be functional (22). by multiple HGT events from different bacterial donors involving Thiamine, commonly known as vitamin B1, is essential for all both single genes and entire operons.
    [Show full text]
  • Microbiology of Endodontic Infections
    Scient Open Journal of Dental and Oral Health Access Exploring the World of Science ISSN: 2369-4475 Short Communication Microbiology of Endodontic Infections This article was published in the following Scient Open Access Journal: Journal of Dental and Oral Health Received August 30, 2016; Accepted September 05, 2016; Published September 12, 2016 Harpreet Singh* Abstract Department of Conservative Dentistry & Endodontics, Gian Sagar Dental College, Patiala, Punjab, India Root canal system acts as a ‘privileged sanctuary’ for the growth and survival of endodontic microbiota. This is attributed to the special environment which the microbes get inside the root canals and several other associated factors. Although a variety of microbes have been isolated from the root canal system, bacteria are the most common ones found to be associated with Endodontic infections. This article gives an in-depth view of the microbiology involved in endodontic infections during its different stages. Keywords: Bacteria, Endodontic, Infection, Microbiology Introduction Microorganisms play an unequivocal role in infecting root canal system. Endodontic infections are different from the other oral infections in the fact that they occur in an environment which is closed to begin with since the root canal system is an enclosed one, surrounded by hard tissues all around [1,2]. Most of the diseases of dental pulp and periradicular tissues are associated with microorganisms [3]. Endodontic infections occur and progress when the root canal system gets exposed to the oral environment by one reason or the other and simultaneously when there is fall in the body’s immune when the ingress is from a carious lesion or a traumatic injury to the coronal tooth structure.response [4].However, To begin the with, issue the if notmicrobes taken arecare confined of, ultimately to the leadsintra-radicular to the egress region of pathogensIn total, and bacteria their by-productsdetected from from the the oral apical cavity foramen fall into to 13 the separate periradicular phyla, tissues.
    [Show full text]
  • University of Cincinnati
    UNIVERSITY OF CINCINNATI Date: February 22, 2007 I, _ Samuel Lee Hayes________________________________________, hereby submit this work as part of the requirements for the degree of: Doctor of Philosophy in: Biological Sciences It is entitled: Response of Mammalian Models to Exposure of Bacteria from the Genus Aeromonas Evaluated using Transcriptional Analysis and Conjectures on Disease Mechanisms This work and its defense approved by: Chair: _Brian K. Kinkle _Dennis W. Grogan _Richard D. Karp _Mario Medvedovic _Stephen J. Vesper Response of Mammalian Models to Exposure of Bacteria from the Genus Aeromonas Evaluated using Transcriptional Analysis and Conjectures on Disease Mechanisms A dissertation submitted to the Division of Graduate Studies and Research of the University of Cincinnati in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in the Department of Biological Sciences of the College of Arts and Sciences 2007 by Samuel Lee Hayes B.S. Ohio University, 1978 M.S. University of Cincinnati, 1986 Committee Chair: Dr. Brian K. Kinkle Abstract The genus Aeromonas contains virulent bacteria implicated in waterborne disease, as well as avirulent strains. One of my research objectives was to identify and characterize host- pathogen relationships specific to Aeromonas spp. Aeromonas virulence was assessed using changes in host mRNA expression after infecting cell cultures and live animals. Messenger RNA extracts were hybridized to murine genomic microarrays. Initially, these model systems were infected with two virulent A. hydrophila strains, causing up-regulation of over 200 and 50 genes in animal and cell culture tissues, respectively. Twenty-six genes were common between the two model systems. The live animal model was used to define virulence for many Aeromonas spp.
    [Show full text]
  • Identification of Active Methylotroph Populations in an Acidic Forest Soil
    Microbiology (2002), 148, 2331–2342 Printed in Great Britain Identification of active methylotroph populations in an acidic forest soil by stable- isotope probing Stefan Radajewski,1 Gordon Webster,2† David S. Reay,3‡ Samantha A. Morris,1 Philip Ineson,4 David B. Nedwell,3 James I. Prosser2 and J. Colin Murrell1 Author for correspondence: J. Colin Murrell. Tel: j44 24 7652 2553. Fax: j44 24 7652 3568. e-mail: cmurrell!bio.warwick.ac.uk 1 Department of Biological Stable-isotope probing (SIP) is a culture-independent technique that enables Sciences, University of the isolation of DNA from micro-organisms that are actively involved in a Warwick, Coventry CV4 7AL, UK specific metabolic process. In this study, SIP was used to characterize the active methylotroph populations in forest soil (pH 35) microcosms that were exposed 2 Department of Molecular 13 13 13 13 and Cell Biology, to CH3OH or CH4. Distinct C-labelled DNA ( C-DNA) fractions were resolved University of Aberdeen, from total community DNA by CsCl density-gradient centrifugation. Analysis of Institute of Medical 16S rDNA sequences amplified from the 13C-DNA revealed that bacteria related Sciences, Foresterhill, Aberdeen AB25 2ZD, UK to the genera Methylocella, Methylocapsa, Methylocystis and Rhodoblastus had assimilated the 13C-labelled substrates, which suggested that moderately 3 Department of Biological Sciences, University of acidophilic methylotroph populations were active in the microcosms. Essex, Wivenhoe Park, Enrichments targeted towards the active proteobacterial CH3OH utilizers were Colchester, Essex CO4 3SQ, successful, although none of these bacteria were isolated into pure culture. A UK parallel analysis of genes encoding the key enzymes methanol dehydrogenase 4 Department of Biology, and particulate methane monooxygenase reflected the 16S rDNA analysis, but University of York, PO Box 373, YO10 5YW, UK unexpectedly revealed sequences related to the ammonia monooxygenase of ammonia-oxidizing bacteria (AOB) from the β-subclass of the Proteobacteria.
    [Show full text]
  • Delineation of Aeromonas Hydrophila Pathotypes by Dectection of Putative Virulence Factors Using Polymerase Chain Reaction and N
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@Kennesaw State University Kennesaw State University DigitalCommons@Kennesaw State University Master of Science in Integrative Biology Theses Biology & Physics Summer 7-20-2015 Delineation of Aeromonas hydrophila Pathotypes by Dectection of Putative Virulence Factors using Polymerase Chain Reaction and Nematode Challenge Assay John Metz Kennesaw State University, [email protected] Follow this and additional works at: http://digitalcommons.kennesaw.edu/integrbiol_etd Part of the Integrative Biology Commons Recommended Citation Metz, John, "Delineation of Aeromonas hydrophila Pathotypes by Dectection of Putative Virulence Factors using Polymerase Chain Reaction and Nematode Challenge Assay" (2015). Master of Science in Integrative Biology Theses. Paper 7. This Thesis is brought to you for free and open access by the Biology & Physics at DigitalCommons@Kennesaw State University. It has been accepted for inclusion in Master of Science in Integrative Biology Theses by an authorized administrator of DigitalCommons@Kennesaw State University. For more information, please contact [email protected]. Delineation of Aeromonas hydrophila Pathotypes by Detection of Putative Virulence Factors using Polymerase Chain Reaction and Nematode Challenge Assay John Michael Metz Submitted in partial fulfillment of the requirements for the Master of Science Degree in Integrative Biology Thesis Advisor: Donald J. McGarey, Ph.D Department of Molecular and Cellular Biology Kennesaw State University ABSTRACT Aeromonas hydrophila is a Gram-negative, bacterial pathogen of humans and other vertebrates. Human diseases caused by A. hydrophila range from mild gastroenteritis to soft tissue infections including cellulitis and acute necrotizing fasciitis. When seen in fish it causes dermal ulcers and fatal septicemia, which are detrimental to aquaculture stocks and has major economic impact to the industry.
    [Show full text]
  • APP201895 APP201895__Appli
    APPLICATION FORM DETERMINATION Determine if an organism is a new organism under the Hazardous Substances and New Organisms Act 1996 Send by post to: Environmental Protection Authority, Private Bag 63002, Wellington 6140 OR email to: [email protected] Application number APP201895 Applicant Neil Pritchard Key contact NPN Ltd www.epa.govt.nz 2 Application to determine if an organism is a new organism Important This application form is used to determine if an organism is a new organism. If you need help to complete this form, please look at our website (www.epa.govt.nz) or email us at [email protected]. This application form will be made publicly available so any confidential information must be collated in a separate labelled appendix. The fee for this application can be found on our website at www.epa.govt.nz. This form was approved on 1 May 2012. May 2012 EPA0159 3 Application to determine if an organism is a new organism 1. Information about the new organism What is the name of the new organism? Briefly describe the biology of the organism. Is it a genetically modified organism? Pseudomonas monteilii Kingdom: Bacteria Phylum: Proteobacteria Class: Gamma Proteobacteria Order: Pseudomonadales Family: Pseudomonadaceae Genus: Pseudomonas Species: Pseudomonas monteilii Elomari et al., 1997 Binomial name: Pseudomonas monteilii Elomari et al., 1997. Pseudomonas monteilii is a Gram-negative, rod- shaped, motile bacterium isolated from human bronchial aspirate (Elomari et al 1997). They are incapable of liquefing gelatin. They grow at 10°C but not at 41°C, produce fluorescent pigments, catalase, and cytochrome oxidase, and possesse the arginine dihydrolase system.
    [Show full text]
  • Clavibacter Michiganensis Subsp
    Bulletin OEPP/EPPO Bulletin (2016) 46 (2), 202–225 ISSN 0250-8052. DOI: 10.1111/epp.12302 European and Mediterranean Plant Protection Organization Organisation Europe´enne et Me´diterrane´enne pour la Protection des Plantes PM 7/42 (3) Diagnostics Diagnostic PM 7/42 (3) Clavibacter michiganensis subsp. michiganensis Specific scope Specific approval and amendment This Standard describes a diagnostic protocol for Approved in 2004-09. Clavibacter michiganensis subsp. michiganensis.1,2 Revision adopted in 2012-09. Second revision adopted in 2016-04. The diagnostic procedure for symptomatic plants (Fig. 1) 1. Introduction comprises isolation from infected tissue on non-selective Clavibacter michiganensis subsp. michiganensis was origi- and/or semi-selective media, followed by identification of nally described in 1910 as the cause of bacterial canker of presumptive isolates including determination of pathogenic- tomato in North America. The pathogen is now present in ity. This procedure includes tests which have been validated all main areas of production of tomato and is quite widely (for which available validation data is presented with the distributed in the EPPO region (EPPO/CABI, 1998). Occur- description of the relevant test) and tests which are currently rence is usually erratic; epidemics can follow years of in use in some laboratories, but for which full validation data absence or limited appearance. is not yet available. Two different procedures for testing Tomato is the most important host, but in some cases tomato seed are presented (Fig. 2). In addition, a detection natural infections have also been recorded on Capsicum, protocol for screening for symptomless, latently infected aubergine (Solanum dulcamara) and several Solanum tomato plantlets is presented in Appendix 1, although this weeds (e.g.
    [Show full text]
  • Characterization of the Uncommon Enzymes from (2004)
    OPEN Mannosylglucosylglycerate biosynthesis SUBJECT AREAS: in the deep-branching phylum WATER MICROBIOLOGY MARINE MICROBIOLOGY Planctomycetes: characterization of the HOMEOSTASIS MULTIENZYME COMPLEXES uncommon enzymes from Rhodopirellula Received baltica 13 March 2013 Sofia Cunha1, Ana Filipa d’Avo´1, Ana Mingote2, Pedro Lamosa3, Milton S. da Costa1,4 & Joana Costa1,4 Accepted 23 July 2013 1Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal, 2Instituto de Tecnologia Quı´mica Published e Biolo´gica, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal, 3Centro de Ressonaˆncia Magne´tica Anto´nio Xavier, 7 August 2013 Instituto de Tecnologia Quı´mica e Biolo´gica, Universidade Nova de Lisboa, 2781-901 Oeiras, Portugal, 4Department of Life Sciences, University of Coimbra, Apartado 3046, 3001-401 Coimbra, Portugal. Correspondence and The biosynthetic pathway for the rare compatible solute mannosylglucosylglycerate (MGG) accumulated by requests for materials Rhodopirellula baltica, a marine member of the phylum Planctomycetes, has been elucidated. Like one of the should be addressed to pathways used in the thermophilic bacterium Petrotoga mobilis, it has genes coding for J.C. ([email protected].) glucosyl-3-phosphoglycerate synthase (GpgS) and mannosylglucosyl-3-phosphoglycerate (MGPG) synthase (MggA). However, unlike Ptg. mobilis, the mesophilic R. baltica uses a novel and very specific MGPG phosphatase (MggB). It also lacks a key enzyme of the alternative pathway in Ptg. mobilis – the mannosylglucosylglycerate synthase (MggS) that catalyses the condensation of glucosylglycerate with GDP-mannose to produce MGG. The R. baltica enzymes GpgS, MggA, and MggB were expressed in E. coli and characterized in terms of kinetic parameters, substrate specificity, temperature and pH dependence.
    [Show full text]
  • Differential Depth Distribution of Microbial Function and Putative Symbionts Through Sediment-Hosted Aquifers in the Deep Terrestrial Subsurface
    ARTICLES https://doi.org/10.1038/s41564-017-0098-y Differential depth distribution of microbial function and putative symbionts through sediment-hosted aquifers in the deep terrestrial subsurface Alexander J. Probst1,5,7, Bethany Ladd2,7, Jessica K. Jarett3, David E. Geller-McGrath1, Christian M. K. Sieber1,3, Joanne B. Emerson1,6, Karthik Anantharaman1, Brian C. Thomas1, Rex R. Malmstrom3, Michaela Stieglmeier4, Andreas Klingl4, Tanja Woyke 3, M. Cathryn Ryan 2* and Jillian F. Banfield 1* An enormous diversity of previously unknown bacteria and archaea has been discovered recently, yet their functional capacities and distributions in the terrestrial subsurface remain uncertain. Here, we continually sampled a CO2-driven geyser (Colorado Plateau, Utah, USA) over its 5-day eruption cycle to test the hypothesis that stratified, sandstone-hosted aquifers sampled over three phases of the eruption cycle have microbial communities that differ both in membership and function. Genome- resolved metagenomics, single-cell genomics and geochemical analyses confirmed this hypothesis and linked microorganisms to groundwater compositions from different depths. Autotrophic Candidatus “Altiarchaeum sp.” and phylogenetically deep- branching nanoarchaea dominate the deepest groundwater. A nanoarchaeon with limited metabolic capacity is inferred to be a potential symbiont of the Ca. “Altiarchaeum”. Candidate Phyla Radiation bacteria are also present in the deepest groundwater and they are relatively abundant in water from intermediate depths. During the recovery phase of the geyser, microaerophilic Fe- and S-oxidizers have high in situ genome replication rates. Autotrophic Sulfurimonas sustained by aerobic sulfide oxidation and with the capacity for N2 fixation dominate the shallow aquifer. Overall, 104 different phylum-level lineages are present in water from these subsurface environments, with uncultivated archaea and bacteria partitioned to the deeper subsurface.
    [Show full text]