Evolution, Systematics and Distribution of Desmosomatidae (Isopoda, Peracarida, Crustacea) in the Deep Sea

Total Page:16

File Type:pdf, Size:1020Kb

Evolution, Systematics and Distribution of Desmosomatidae (Isopoda, Peracarida, Crustacea) in the Deep Sea Evolution, Systematics and Distribution of Desmosomatidae (Isopoda, Peracarida, Crustacea) in the deep sea Dissertation Zur Erlangung des Doktorgrades im Department Biologie der Fakultät für Mathematik, Informatik und Naturwissenschaften der Universität Hamburg vorgelegt von Saskia Bianca Brix aus Ellerau Hamburg 2006 According to ICZN article 8.3 all names and nomenclatural acts in this thesis are disclaimed for nomenclatural purposes. Table of contents Table of contents Summary i Abbrevations iii 1 Introduction 1 1.1 Deep-sea Isopoda 1 1.2 Desmosomatidae Sars, 1897 1 1.2.1 South Atlantic 3 1.2.2 Southern Ocean 6 1.2.3 Systematic problems 7 1.3 Phylogenetic cladistics 8 1.4 Aims and Questions 9 2 Material and methods 10 2.1 Sampling 10 2.2 Taxonomic methods 12 2.3 Collection Material 15 2.3.1 University of Hamburg: Zoological Museum 15 2.3.2 Smithonian Institution: Natural Museum of Natural History (Washington D.C., U.S.A. 16 2.3.3 American Museum of Natural History (New York, U.S.A.) 17 2.3.4 Museum Victoria (Melbourne, Australia) 17 2.3.5 Australian Museum (Sydney, Australia) 18 2.3.6 New Zealand Institution of Oceanographic and Atmospheric Research (NIWA) (Wellington, New Zealand) 18 2.3.7 Zoologisk Museum Kopenhavn (Kopenhagen, Danmark) 18 2.4 SEM: handling of species used for pictures 19 2.5 Phylogenetic Methods 19 2.6 List of species used for phylogenetic analysis 21 2.7 Characters used in phylogenetic analysis 24 3 Results 25 3.0 Zoogeographic aspects 25 3.0.1 Desmosomatidae of DIVA-1 25 3.0.2 Species composition at the seven EBS stations of DIVA-1 26 3.0.3 Desmosomatidae of ANDEEP I & II 29 3.0.4 Species composition at the ANDEEP stations 30 3.0.5 Distribution of the family Desmosomatidae 33 3.1 Taxonomy 38 3.1.1 Systematic overview 38 3.1.2 Groundpattern of Janiroidea (modified after Ax 1999; Gruner 1965; Hessler, Wilson & Thistle 1979; Wilson 1987 and Wägele 1989) 38 3.1.3 Characters of Desmosomatidae referring to the groundpattern of Janiroidea 39 3.1.3.1 Body 39 3.1.3.2 Anus 42 3.1.3.3 Sexual dimorphism 42 3.1.3.4 Cephalic rostrum 43 3.1.3.5 Eyes 43 3.1.3.6 Antennula 43 3.1.3.7 Antenna 44 3.1.3.8 Mandible 44 3.1.3.9 Maxillae 45 Table of contents 3.1.3.10 Maxilliped 46 3.1.3.11 Face of cephalon 47 3.1.3.12 Coxae 47 3.1.3.13 Pereonites 47 3.1.3.14 Pereopods 48 3.1.3.14.1 Pereopod I 49 3.1.3.14.2 Pereopods II and III 52 3.1.3.14.3 Pereopods IV to VII 52 3.1.3.15 Pleopods 53 3.1.3.16 Uropods 53 3.1.3.17 Pleotelson 54 3.1.4 Diagnoses 54 3.1.4.1 Desmosomatidae Sars, 1897 54 3.1.4.2 Diagnoses of the subfamilies 56 3.1.4.2.1 Austroniscinae subfam. nov. 56 3.1.4.2.2 Desmosomatinae Hessler, 1970 57 3.1.4.2.3 Eugerdellatinae Hessler, 1970 57 3.1.4.2.4 Nannoniscinae (Hansen, 1916) 57 3.1.4.2.5 Pseudomesinae (Hansen, 1916) 57 3.1.4.3 Diagnoses of the genera 58 3.1.4.3.1 Austroniscus Vanhöffen, 1914 58 3.1.4.3.2 Chelator Hessler, 1970 58 3.1.4.3.3 Cryodesma Svavarsson, 1988 58 3.1.4.3.4 Desmosoma Sars, 1864 59 3.1.4.3.5 Disparella Hessler, 1970 59 3.1.4.3.6 Echinopleura Sars, 1899 60 3.1.4.3.7 Eugerda Meinert, 1890 60 3.1.4.3.8 Eugerdella Kussakin, 1965 61 3.1.4.3.9 Exiliniscus Siebenhaller & Hessler, 1981 61 3.1.4.3.10 Hebefustis Siebenhaller & Hessler, 1977 61 3.1.4.3.11 Micromesus Birstein, 1963 62 3.1.4.3.12 Mirabilicoxa Hessler, 1970 62 3.1.4.3.13 Momedossa Hessler, 1970 63 3.1.4.3.14 Nannoniscoides Hansen, 1916 63 3.1.4.3.15 Nannonisconus Schultz, 1966 63 3.1.4.3.16 Nannoniscus Sars, 1870 64 3.1.4.3.17 genus novum 64 3.1.4.3.18 Oecidiobranchus Hessler, 1970 65 3.1.4.3.19 Panetela Siebenhaller & Hessler, 1981 65 3.1.4.3.20 Paradesmosoma Kussakin, 1965 65 3.1.4.3.21 Prochelator Hessler, 1970 66 3.1.4.3.22 Pseudogerda Kussakin, 1965 66 3.1.4.3.23 Pseudergella gen. nov. 66 3.1.4.3.24 Pseudomesus Hansen, 1916 67 3.1.4.3.25 Rapaniscus Siebenhaller & Hessler, 1981 67 3.1.4.3.26 Reductosoma Brandt, 1992 67 3.1.4.3.27 Regabellator Siebenhaller & Hessler, 1981 68 3.1.4.3.28 Saetoniscus Brandt 2002 68 3.1.4.3.29 Thaumastosoma Hessler, 1970 68 3.1.4.3.30 Torwolia Hessler, 1970 68 3.1.4.3.31 Whoia Hessler, 1970 68 Table of contents 3.1.5 New species 70 3.1.5.1 DIVA-1 70 3.1.5.1.1 Desmosoma renatae sp. nov. 70 3.1.5.1.2 Eugerdella theodori sp. nov. 78 3.1.5.1.3 Momedossa longipedis sp. nov. 87 3.1.5.1.4 Torwolia tinbienae sp. nov. 95 3.1.5.2 ANDEEP I & II 103 Eugerdella serrata sp. nov. 103 3.1.5.3 Collection material 114 3.1.5.3.1 gen. nov. sp. nov. A 114 3.1.5.3.2 Prochelator maorii sp. nov 116 3.1.5.3.3 Pseudomesus satanus sp. nov. 125 3.1.5.3.4 Paradesmomsoma australis sp. nov. 132 3.1.5.3.5 Oecidiobranchus slopei sp. nov. 140 3.1.5.3.6 Disparella kensleyi sp. nov. 146 3.1.5.3.7 Echinopleura cephalomagna sp. nov. 153 3.1.5.3.8 Whoia victoriensis sp. nov. 161 3.1.5.3.9 Pseudogerda anversense (Schultz, 1979) 196 3.1.5.4 Redescriptions 170 3.1.5.4.1 Chelator brevicauda (Menzies & George, 1972) 170 3.1.5.4.2 Disparella neomana (Menzies & George, 1972) 176 3.1.5.4.3 Disparella funalis (Menzies & George, 1972) 185 3.1.5.4.4 Eugerdella rotunda (Menzies & George, 1972) 193 3.1.5.4.5 Pseudogerda anversense (Schultz, 1979) 196 3.1.5.4.6 Desmosoma dolosa (Menzies & George, 1972) 203 3.1.5.4.7 Mirabilicoxa acuta (Menzies & George, 1972) 210 3.1.5.4.8 Mirabilicoxa similipes (Menzies & George, 1972) 217 3.2 Phylogeny 225 3.2.1 List of characters used in the phylogenetic analysis 225 3.2.2 Consensus trees 233 3.2.3 Character distribution in the trees 237 4 Discussion 248 4.0 Zoogeographic aspects 248 4.1 Are Desmosomatidae monophyletic? 250 4.1.1 Relationships of the families 250 4.1.2 Molecular hints 253 4.1.3 Two families or one? 254 4.2 One family – five subfamilies 257 4.2.1 Discussion of the subfamilies and genera 257 4.2.1.1 Austroniscinae subfam. nov. 257 4.2.1.1.1 Nannoniscoides Hansen, 1916 257 4.2.1.1.2 Nannoniscella (Hansen, 1916) 258 4.2.1.2 Desmosomatinae Hessler, 1970 259 4.2.1.2.1 Balbidocolon Hessler, 1970 259 4.2.1.2.2 Desmosoma Sars, 1864 261 4.2.1.2.3 Echinopleura Sars, 1897 263 4.2.1.2.4 Eugerda Meinert, 1890 263 4.2.1.2.5 Mirabilicoxa Hessler, 1970 270 4.2.1.2.6 Momedossa Hessler, 1970 271 4.2.1.2.7 Pseudogerda Kussakin, 1965 272 4.2.1.2.8 Torwolia Hessler, 1970 272 Table of contents 4.2.1.3 Eugerdellatinae Hessler, 1970 273 4.2.1.3.1 Chelator Hessler, 1970 273 4.2.1.3.2 Chelibranchus Mezhov, 1986 275 4.2.1.3.3 Cryodesma Svavarsson, 1988 276 4.2.1.3.4 Disparella Hessler, 1970 278 4.2.1.3.5 Eugerdella Kussakin, 1965 278 4.2.1.3.6 Leutziniscus George, 2001 283 4.2.1.3.7 Oecidiobranchus Hessler, 1970 284 4.2.1.3.8 Paradesmosoma Kussakin, 1965 285 4.2.1.3.9 Prochelator Hessler, 1970 286 4.2.1.3.10 Reductosoma Brandt, 1992 298 4.2.1.3.11 Thaumastosoma Hessler, 1970 298 4.2.1.3.12 Whoia Hessler, 1970 300 4.2.1.4 Nannoniscinae (Hansen, 1916) 302 4.2.1.5 Pseudomesinae (Hansen, 1916) 304 4.2.1.5.1 Pseudergella gen. nov. 304 4.2.1.5.2 Pseudomesus Hansen, 1916 306 4.2.2 Discussion of characters used in phylogeny 307 4.2.2.1 Setation 308 4.2.2.2 Characters 309 4.3 Results of phylogenetic analysis 343 4.3.1 Topology and tree data 343 4.3.2 Results compared to previous phylogenetic studies 344 4.3.3 Problematic characters and clades and their plausibility 345 5 Outlook 348 6 References 349 7 Acknowledgments 361 8 Appendix 363 Summary Summary The present thesis deals with one deep-sea family of Isopoda: Desmosomatidae Sars, 1897. It contains three major topics: 1) taxonomy, 2) biogeographic and distributional aspects (aspects of zoogeography) and 3) phylogeny. Based on morphological characters, a revision of the family Desmosomatidae Sars, 1897 is presented. In the taxonomy part four new species, Desmosoma renatae sp. nov., Eugerdella theodori sp. nov., Momedossa longipedis sp. nov. and Torwolia tinbienae sp. nov. are described from material of the DIVA-1 expedition and Eugerdella serrata sp.
Recommended publications
  • (Janiridae, Isopoda, Crustacea), a Second Species of Austrofilius in the Mediterranean Sea, with a Discussion on the Evolutionary Biogeography of the Genus J
    Austrofilius MAJORICENSIS SP. NOV. (JANIRIDAE, ISOPODA, CRUSTACEA), A SECOND SPECIES OF AUSTROFILIUS IN THE MEDITERRANEAN SEA, WITH A DISCUSSION ON THE EVOLUTIONARY BIOGEOGRAPHY OF THE GENUS J. Castelló To cite this version: J. Castelló. Austrofilius MAJORICENSIS SP. NOV. (JANIRIDAE, ISOPODA, CRUSTACEA), A SECOND SPECIES OF AUSTROFILIUS IN THE MEDITERRANEAN SEA, WITH A DISCUS- SION ON THE EVOLUTIONARY BIOGEOGRAPHY OF THE GENUS. Vie et Milieu / Life & Environment, Observatoire Océanologique - Laboratoire Arago, 2008, pp.193-201. hal-03246157 HAL Id: hal-03246157 https://hal.sorbonne-universite.fr/hal-03246157 Submitted on 2 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. VIE ET MILIEU - LIFE AND ENVIRONMENT, 2008, 58 (3/4): 193-201 AUSTROFILIUS MAJORICENSIS SP. NOV. (JANIRIDAE, ISOPODA, CRUSTACEA), A SECOND SPECIES OF AUSTROFILIUS IN THE MEDITERRANEAN SEA, WITH A DISCUSSION ON THE EVOLUTIONARY BIOGEOGRAPHY OF THE GENUS J. CASTELLÓ Departament de Didàctica de les Ciències Experimentals i de la Matemàtica, Universitat de Barcelona, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain [email protected] ISOPODA Abstract. – A new species of Janiroidean isopod, Austrofilius majoricensis sp. nov., from ASELLOTA JANIRIDAE Majorca (Balearic Islands, Western Mediterranean), is described.
    [Show full text]
  • Crustacea, Malacostraca)*
    SCI. MAR., 63 (Supl. 1): 261-274 SCIENTIA MARINA 1999 MAGELLAN-ANTARCTIC: ECOSYSTEMS THAT DRIFTED APART. W.E. ARNTZ and C. RÍOS (eds.) On the origin and evolution of Antarctic Peracarida (Crustacea, Malacostraca)* ANGELIKA BRANDT Zoological Institute and Zoological Museum, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany Dedicated to Jürgen Sieg, who silently died in 1996. He inspired this research with his important account of the zoogeography of the Antarctic Tanaidacea. SUMMARY: The early separation of Gondwana and the subsequent isolation of Antarctica caused a long evolutionary his- tory of its fauna. Both, long environmental stability over millions of years and habitat heterogeneity, due to an abundance of sessile suspension feeders on the continental shelf, favoured evolutionary processes of “preadapted“ taxa, like for exam- ple the Peracarida. This taxon performs brood protection and this might be one of the most important reasons why it is very successful (i.e. abundant and diverse) in most terrestrial and aquatic environments, with some species even occupying deserts. The extinction of many decapod crustaceans in the Cenozoic might have allowed the Peracarida to find and use free ecological niches. Therefore the palaeogeographic, palaeoclimatologic, and palaeo-hydrographic changes since the Palaeocene (at least since about 60 Ma ago) and the evolutionary success of some peracarid taxa (e.g. Amphipoda, Isopo- da) led to the evolution of many endemic species in the Antarctic. Based on a phylogenetic analysis of the Antarctic Tanaidacea, Sieg (1988) demonstrated that the tanaid fauna of the Antarctic is mainly represented by phylogenetically younger taxa, and data from other crustacean taxa led Sieg (1988) to conclude that the recent Antarctic crustacean fauna must be comparatively young.
    [Show full text]
  • Deep Sea Isopods from the Western Mediterranean: Distribution and Habitat
    University of Texas Rio Grande Valley ScholarWorks @ UTRGV Earth, Environmental, and Marine Sciences Faculty Publications and Presentations College of Sciences 10-2020 Deep Sea Isopods from the western Mediterranean: distribution and habitat Joan E. Cartes Diego F. Figueroa The University of Texas Rio Grande Valley Follow this and additional works at: https://scholarworks.utrgv.edu/eems_fac Part of the Earth Sciences Commons, Environmental Sciences Commons, and the Marine Biology Commons Recommended Citation Cartes, Joan E., and Diego F. Figueroa. 2020. “Deep Sea Isopods from the Western Mediterranean: Distribution and Habitat.” Progress in Oceanography 188 (October): 102415. https://doi.org/10.1016/ j.pocean.2020.102415. This Article is brought to you for free and open access by the College of Sciences at ScholarWorks @ UTRGV. It has been accepted for inclusion in Earth, Environmental, and Marine Sciences Faculty Publications and Presentations by an authorized administrator of ScholarWorks @ UTRGV. For more information, please contact [email protected], [email protected]. 1 Deep Sea Isopods from the western Mediterranean: distribution and habitat. 2 3 4 5 Joan E. Cartes1, Diego F. Figueroa2 6 7 1Institut de Ciències del Mar, ICM-CSIC, P/Marítim de La Barceloneta, 37-49, 08003 Barcelona, Spain 8 9 2School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, 10 Brownsville, Texas, 78520, USA 11 13 Abstract. Isopods are a highly diversified group of deep-sea fauna, with a wide variety of shapes which 14 must reflect a similar great variety of adaptations to the deep environments. The deep Mediterranean, 15 however, has a low diversity of isopods related to its oligotrophy, the thermal stability of deep-water 16 masses (~12.8 °C below 150 ˗ 200 m) and rather homogeneous geomorphology.
    [Show full text]
  • Systematics, Zoogeography, Evolution and Biodiversity of Antarctic Deep-Sea Isopoda (Crustacea: Malacostraca)
    Systematics, zoogeography, evolution and biodiversity of Antarctic deep-sea Isopoda (Crustacea: Malacostraca) Dissertation zur Erlangung des Doktorgrades des Fachbereichs Biologie der Universität Hamburg vorgelegt von Wiebke Brökeland aus Essen Hamburg 2005 Our knowledge can only be finite, while our ignorance must necessarily be infinite. Karl Raimund Popper According to ICZN article 8.3 all names and nomenclatural acts in this thesis are disclaimed for nomenclatural purposes. Table of contents Summary..................................................................................................................................... i 1 Introduction............................................................................................................................ 1 1.1 The deep sea................................................................................................................................. 1 1.2 The Southern Ocean ................................................................................................................... 2 1.3 Deep-sea Isopoda......................................................................................................................... 3 1.4 Aims and questions ..................................................................................................................... 5 2 Material and Methods ............................................................................................................ 6 2.1 Sampling .....................................................................................................................................
    [Show full text]
  • Isopoda, Munnopsidae) from Icelandic Waters
    vol. 35, no. 2, pp. 361–388, 2014 doi: 10.2478/popore−2014−0013 Two new species of the genus Eurycope (Isopoda, Munnopsidae) from Icelandic waters Sarah SCHNURR1* and Marina V. MALYUTINA2 1 Senckenberg am Meer, German Center for Marine Biodiversity Research (DZMB), c/o Biocentrum Grindel, Martin−Luther−King−Platz 3, 20146 Hamburg, Germany <[email protected]> 2 A.V. Zhirmunsky Institute of Marine Biology FEB RAS, Palchevsky Str, 17, 690041, Far East Federal University, Oktiabrskaya Str, 29, 690600, Vladivostok, Russia <[email protected]> * corresponding author Abstract: Collections of munnopsid isopods of the BIOICE (Benthic Invertebrates of Ice− landic Waters; 1991–2004) and the IceAGE1 (Icelandic Marine Animals: Genetics and Ecology; since 2011) expeditions included ten species of the genus Eurycope G.O. Sars, 1864, thereof are two species new to science. Thus, the descriptions of the two new species are presented herein. Eurycope elianae sp. n. is distinguished from the other species of the genus mainly by two long, slightly robust, simple setae on the tip of the rostrum in combina− tion with the size and shape of the rostrum itself. E elianae sp. n. shares the presence of two long, slightly robust, simple seta on the tip of the rostrum with E. tumidicarpus. The shape of the rostrum itself is more similar to E. inermis and species of the E. complanata complex. E. aculeata sp. n. is characterized by possessing dorsomedial acute projections on pereo− nites 5–7, which is unusual for the genus. E. aculeata sp. n. is most similar to E. cornuta. Both new species are, so far, known only from localities south of the Greenland−Scotland Ridge.
    [Show full text]
  • Angelika Brandt
    PUBLICATION LIST: DR. ANGELIKA BRANDT Research papers (peer reviewed) Wägele, J. W. & Brandt, A. (1985): New West Atlantic localities for the stygobiont paranthurid Curassanthura (Crustacea, Isopoda, Anthuridea) with description of C. bermudensis n. sp. Bijdr. tot de Dierkd. 55 (2): 324- 330. Brandt, A. (1988):k Morphology and ultrastructure of the sensory spine, a presumed mechanoreceptor of the isopod Sphaeroma hookeri (Crustacea, Isopoda) and remarks on similar spines in other peracarids. J. Morphol. 198: 219-229. Brandt, A. & Wägele, J. W. (1988): Antarbbbcturus bovinus n. sp., a new Weddell Sea isopod of the family Arcturidae (Isopoda, Valvifera) Polar Biology 8: 411-419. Wägele, J. W. & Brandt, A. (1988): Protognathia n. gen. bathypelagica (Schultz, 1978) rediscovered in the Weddell Sea: A missing link between the Gnathiidae and the Cirolanidae (Crustacea, Isopoda). Polar Biology 8: 359-365. Brandt, A. & Wägele, J. W. (1989): Redescriptions of Cymodocella tubicauda Pfeffer, 1878 and Exosphaeroma gigas (Leach, 1818) (Crustacea, Isopoda, Sphaeromatidae). Antarctic Science 1(3): 205-214. Brandt, A. & Wägele, J. W. (1990): Redescription of Pseudidothea scutata (Stephensen, 1947) (Crustacea, Isopoda, Valvifera) and adaptations to a microphagous nutrition. Crustaceana 58 (1): 97-105. Brandt, A. & Wägele, J. W. (1990): Isopoda (Asseln). In: Sieg, J. & Wägele, J. W. (Hrsg.) Fauna der Antarktis. Verlag Paul Parey, Berlin und Hamburg, S. 152-160. Brandt, A. (1990): The Deep Sea Genus Echinozone Sars, 1897 and its Occurrence on the Continental shelf of Antarctica (Ilyarachnidae, Munnopsidae, Isopoda, Crustacea). Antarctic Science 2(3): 215-219. Brandt, A. (1991): Revision of the Acanthaspididae Menzies, 1962 (Asellota, Isopoda, Crustacea). Journal of the Linnean Society of London 102: 203-252.
    [Show full text]
  • Deep-Sea Life Issue 16, January 2021 Cruise News Sedimentation Effects Survey Series (ROBES III) Completed
    Deep-Sea Life Issue 16, January 2021 Despite the calamity caused by the global pandemic, we are pleased to report that our deep ocean continues to be investigated at an impressive rate. Deep-Sea Life 16 is another bumper issue, brimming with newly published research, project news, cruise news, scientist profiles and so on. Even though DOSI produce a weekly Deep-Sea Round Up newsletter and DOSI and DSBS are active on social media, there’s still plenty of breaking news for Deep- Sea Life! Firstly a quick update on the status of INDEEP. As most of you are aware, INDEEP was a legacy programme of the Census of Marine Life (2000-2010) and was established to address knowledge gaps in deep-sea ecology. Among other things, the INDEEP project played central role in the creation of the Deep-Ocean Stewardship Initiative and funded initial DOSI activities. In 2018, the DOSI Decade of Ocean Science working group was established with a view to identifying key priorities for deep-ocean science to support sustainable development and to ensure deep- ocean ecological studies were included in the UN Decade plans via truly global collaborative science. This has resulted in an exciting new initiative called “Challenger 150”. You are all invited to learn more about this during a webinar on 9th Feb (see p. 22 ). INDEEP has passed on the baton and has now officially closed its doors.Eva and I want to sincerely thank all those that led INDEEP with us and engaged in any of the many INDEEP actions. It was a productive programme that has left a strong legacy.
    [Show full text]
  • The Desmosomatidae (Isopoda, Asellota) of the Gay Head–Bermuda Transect
    THE DESMOSOMATIDAE (ISOPODA, ASELLOTA) OF THE GAY HEAD–BERMUDA TRANSECT BY ROBERT R. HESSLER UNIVERSITY OF CALIFORNIA PRESS BERKELEY • LOS ANGELES • LONDON 1970 BULLETIN OF THE SCRIPPS INSTITUTION OF OCEANOGRAPHY UNIVERSITY OF CALIFORNIA,SAN DIEGO LA JOLLA,CALIFORNIA EDITORS: G. O. S. ARRHENUIS, C. S. COX, E. W. FAGER, C. H. HAND,TODD NEWBERRY, M. B. SCHAEFER Volume 15 Approved for publication June 20, 1969 Issued June 23, 1970 Price, $6.00 UNIVERSITY OF CALIFORNIA PRESS BERKELEY AND LOS ANGELES CALIFORNIA UNIVERSITY OF CALIFORNIA PRESS,LTD. LONDON,ENGLAND ISBN: 0-520-09319-4 LIBRARY OF CONGRESS CATALOG CARD NUMBER: 70-627813 [CONTRIBUTION FROM THE SCRIPPS INSTITUTION OF OCEANOGRAPHY, NEW SERIES] © 1970 BY THE REGENTS OF THE UNIVERSITY OF CALIFORNIA PRINTED IN THE UNITED STATES OF AMERICA CONTENTS Abstract 1 Introduction 1 Acknowledgments 3 Materials 4 Methods 5 Symbols 10 History of the Family Desmosomatidae G. O. Sars, 1897 10 Subdivision of the Family 11 The mandibular palp 13 The uropodal exopod 13 The first pereopod 15 The first pereonite 17 The fourth pereopod 17 The pleotelson 17 Sexual dimorphism 17 The face of the cephalon 18 The resulting classification 18 Diagnosis of the Family, Subfamilies, and Genera 20 Family Desmosomatidae G. O. Sars, 1897 20 Subfamily Desmosomatinae n. subfam. 22 Genus Balbidocolon n. gen. 22 Genus Whoia n. gen. 22 Genus Momedossa n. gen. 23 Genus Eugerda Meinert, 1890 23 Genus Demosoma G. O. Sars, 1864 24 Genus Mirabilicoxa n. gen. 24 Genus Echinopleura G. O. Sars, 1897 25 Genus Thaumastosoma n. gen. 25 Subfamily Eugerdellatinae n. subfam. 26 Genus Eugerdella Kussakin, 1965 26 Genus Prochelator n.
    [Show full text]
  • ABSTRACTS Deep-Sea Biology Symposium 2018 Updated: 18-Sep-2018 • Symposium Page
    ABSTRACTS Deep-Sea Biology Symposium 2018 Updated: 18-Sep-2018 • Symposium Page NOTE: These abstracts are should not be cited in bibliographies. SESSIONS • Advances in taxonomy and phylogeny • James J. Childress • Autecology • Mining impacts • Biodiversity and ecosystem • Natural and anthropogenic functioning disturbance • Chemosynthetic ecosystems • Pelagic systems • Connectivity and biogeography • Seamounts and canyons • Corals • Technology and observing systems • Deep-ocean stewardship • Trophic ecology • Deep-sea 'omics solely on metabarcoding approaches, where genetic diversity cannot Advances in taxonomy and always be linked to an individual and/or species. phylogenetics - TALKS TALK - Advances in taxonomy and phylogenetics - ABSTRACT 263 TUESDAY Midday • 13:30 • San Carlos Room TALK - Advances in taxonomy and phylogenetics - ABSTRACT 174 Eastern Pacific scaleworms (Polynoidae, TUESDAY Midday • 13:15 • San Carlos Room The impact of intragenomic variation on Annelida) from seeps, vents and alpha-diversity estimations in whalefalls. metabarcoding studies: A case study Gregory Rouse, Avery Hiley, Sigrid Katz, Johanna Lindgren based on 18S rRNA amplicon data from Scripps Institution of Oceanography Sampling across deep sea habitats ranging from methane seeps (Oregon, marine nematodes California, Mexico Costa Rica), whale falls (California) and hydrothermal vents (Juan de Fuca, Gulf of California, EPR, Galapagos) has resulted in a Tiago Jose Pereira, Holly Bik remarkable diversity of undescribed polynoid scaleworms. We demonstrate University of California, Riverside this via DNA sequencing and morphology with respect to the range of Although intragenomic variation has been recognized as a common already described eastern Pacific polynoids. However, a series of phenomenon amongst eukaryote taxa, its effects on diversity estimations taxonomic problems cannot be solved until specimens from their (i.e.
    [Show full text]
  • Program and Abstract Book
    11th International Deep-Sea Biology Symposium NATIONAL OCEANOGRAPHY cENTRE, Southampton, UK 9 - 14 July 2006 BOOK OF ABSTRACTS Compiled by: Sven Thatje Paul Tyler Pam talbot tammy horton Lis Maclaren Sarah Murty Nina Rothe david billett 11th International Deep-Sea Biology Symposium National Oceanography Centre, Southampton Southampton Solent University Conference Centre Southampton UK 9 – 14 July 2006 Symposium Organising Committee • Professor Paul Tyler (Chair), NOC DEEPSEAS Group, UK. • Mrs Pam Talbot (Secretary), George Deacon Division, NOC, UK. • Dr David Billett, NOC DEEPSEAS Group, UK. • Dr Sven Thatje, NOC DEEPSEAS Group, UK. • Professor Monty Priede, OceanLab, University of Aberdeen, UK. • Dr Gordon Paterson, The Natural History Museum, London, UK. • Professor George Wolff, University of Liverpool, UK. • Dr Kerry Howell, Joint Nature Conservation Committee, UK. • Dr Alex Rogers, British Antarctic Survey, Cambridge, UK. • Dr Eva Ramirez Llodra, NOC DEEPSEAS/CSIC Barcelona, Spain. • Dr Phil Bagley, OceanLab, University of Aberdeen, UK. • Dr Maria Baker, NOC DEEPSEAS Group, UK. • Dr Brian Bett, NOC DEEPSEAS Group, UK. • Dr Jon Copley, NOC DEEPSEAS Group, UK. • Dr Adrian Glover, The Natural History Museum, London, UK. • Professor Andrew Gooday, NOC DEEPSEAS Group, UK. • Dr Lawrence Hawkins, NOC DEEPSEAS Group, UK. • Dr Tammy Horton, NOC DEEPSEAS Group, UK. • Dr Ian Hudson, NOC DEEPSEAS Group, UK. • Dr Alan Hughes, NOC DEEPSEAS Group, UK. • Dr Bhavani Narayanaswamy, Scottish Association for Marine Science, Oban, UK. • Dr Martin Sheader, NOC DEEPSEAS Group, UK. • Miss Michelle Sterckx, Southampton Solent University Conference Centre, UK. • Dr Ben Wigham, OceanLab, University of Aberdeen, UK. • Supported by the DEEPSEAS post-graduate/doctorate team: Lis Maclaren, Sarah Murty, Nina Rothe, Tania Smith, John Dinley, Chris Hauton, Jon Copley, Hannah Flint, Abigail Pattenden, Emily Dolan, Teresa Madurell, Teresa Amaro, Janne Kaariainen, Daniel Jones, Kate Larkin, Eulogio Soto.
    [Show full text]
  • (Malacostraca) from the Abyssal Plain of the Angola Basin
    ARTICLE IN PRESS Organisms, Diversity & Evolution 5 (2005) 105–112 www.elsevier.de/ode RESULTS OFTHE DIVA-1 EXPEDITION OFRV ‘‘METEOR’’ (CRUISE M48/1) Diversity of peracarid crustaceans (Malacostraca) from the abyssal plain of the Angola Basin Angelika Brandta,Ã, Nils Brenkeb, Hans-Georg Andresa, Saskia Brixa, Ju¨ rgen Guerrero-Kommritza, Ute Mu¨ hlenhardt-Siegela, Johann-Wolfgang Wa¨ geleb aZoological Museum, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany bRuhr-University Bochum, 44780 Bochum, Germany Abstract During the expedition DIVersity of the abyssal Atlantic benthos (DIVA-1) with RV ‘‘Meteor’’ in July 2000, samples were taken at seven stations by means of an epibenthic sledge north of the Walvis Ridge in the Angola Basin off Namibia in 5125–5415 m depth. Two hundred and forty one species of Peracarida are identified from the material so far. Dominant elements of the peracarid fauna were Isopoda, which were most abundant and diverse, 100 species were identified from 1326 individuals, followed by Tanaidacea with 50 species and 194 individuals, and Cumacea with 45 species and 479 individuals. Amphipoda were less frequent with 39 species and 150 individuals, Mysidacea were rarest yielding only 7 species and 34 individuals. The fauna is characterized by 118 rare species, most of them occurring only with single specimens at one station. Only 123 species occur at more than one station and only two species of the Eurycopinae (Isopoda) at all stations. The few species which are already known are either cosmopolitan or typical for the Atlantic Ocean, while elements known from the Southern Ocean are rare indicating that the Walvis Ridge is an effective distribution barrier for deep-sea organisms.
    [Show full text]
  • Isopoda: Asellota
    Zootaxa 2096: 356–370 (2009) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2009 · Magnolia Press ISSN 1175-5334 (online edition) Macrostylis cerritus sp. nov., a new species of Macrostylidae (Isopoda: Asellota) from the Weddell Sea, Southern Ocean* AIDAN VEY1# & SASKIA BRIX2 1Centre for Ecological and Evolutionary Studies, Biological Centre, University of Groningen, Kerklaan 30, Haren, The Netherlands 2Abt. DZMB, Forschungsinstitut Senckenberg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany # Corresponding author: [email protected] * In: Brökeland, W. & George, K.H. (eds) (2009) Deep-sea taxonomy — a contribution to our knowledge of biodiversity. Zootaxa, 2096, 1–488. Abstract Macrostylis cerritus sp. nov. (Macrostylidae) is described from the Weddell Sea, Antarctica, at a depth of 2149 m. The new species differs from other species of Macrostylis due to the incisor with 4 cusps; the strongly hook-shaped ischium of pereopod 3; pereopod 4 being greatly reduced and juvenile in appearance; the operculum bearing a ventral spine-like seta; and the absence of pleopod 5. This species is the fourth deep-sea macrostylid identified from the Southern Ocean, and is one more species described from the specimens of ANDEEP I–III expeditions. Key words: Macrostylis, Antarctica, deep sea, taxonomy Introduction Recent evidence indicates that a diverse and unique array of deep-sea Isopoda exists in the Southern Ocean (Brandt 2004, Brandt et al. 2007a,b). This is partly due to thermal and oceanographic isolation amongst other factors on the shelf (Kaiser & Brandt 2007), or due to habitat heterogeneity (e.g. grain size, drop stones or different sediments), currents and oxygen levels amongst other factors in the deep sea (e.g.
    [Show full text]