Assessment of Patient Medication Adherence, Medical Record Accuracy, and Medication Blood Concentrations for Prescription and Over-The-Counter Medications

Total Page:16

File Type:pdf, Size:1020Kb

Assessment of Patient Medication Adherence, Medical Record Accuracy, and Medication Blood Concentrations for Prescription and Over-The-Counter Medications Supplementary Online Content Sutherland JJ, Morrison RD, McNaughton CD, et al. Assessment of patient medication adherence, medical record accuracy, and medication blood concentrations for prescription and over-the-counter medications. JAMA Netw Open. 2018;1(7):e184196. doi:10.1001/jamanetworkopen.2018.4196 eMethods eTable 1. Multiplex Assay Panel Medications eTable 2. Multiplex Assay Panel Medications, Medication Classes, Limits of Detection, Reference Ranges and Biological Half Life eTable 3. Proportion of Samples With Detected Medication, by Medication Category eTable 4. Proportion of Medication Detections Without Evidence of Prescription, by Medication Category eFigure 1. Medication Detection Rate in Two Cohorts eFigure 2. Comparison of Differential Prescription and Detection Rates in ED vs Residuals Cohorts eFigure 3. Adherence to Prescription Drugs eFigure 4. Comparison of Naïve Estimates of Adherence by Medication Class vs. Coefficients From Logistic Regression Modelling eFigure 5. Comparison of Detection Rates for Medications not Listed in Subjects’ Health Record in Two Cohorts This supplementary material has been provided by the authors to give readers additional information about their work. © 2018 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/26/2021 eMethods Sample collection Samples were collected in serum phlebotomy tubes and processed within four hours of collection. Resulting serum was frozen at -70°C until shipment on dry ice to Precera Biosciences for analysis. The key linking study-specific identifiers to EHR information was maintained by study personnel at the site and not shared with laboratory or analysis personnel. Laboratory personnel were blinded to study participants’ records, including the EHR medication list, during the measurement phase of the study. LC/MS/MS analysis Sample analysis was executed under the guidelines set forth by the CAP and standard operating procedures commensurate with CLIA-registered operations. Samples were thawed, mixed, and transferred to 96-well plates for processing. Internal standard working solution was added and protein precipitation was performed using Phenomenex Impact Protein Precipitation Plates. Eluate was transferred to a new plate and dried under Nitrogen prior to reconstitution for LC/MS/MS analysis. Reconstituted samples were processed using a Shimadzu Nexera X2 liquid chromatography system (Columbia, MD) fitted with a Phenomenex 2.1 x 50 mm, 1.7um C18 column (Torrence, CA). Sample analysis was performed on a Sciex 5500 Q-Trap Mass Spectrometer (Framingham, MA) with TurboV ion source. Data collection was performed with Sciex Analyst software, version 1.6.2, and data analysis was performed using Indigo BioAutomation Ascent software (Indianapolis, IN). Optimal grade methanol and acetonitrile were obtained from Fisher Scientific (Waltham, MA). Formic acid, ammonium acetate, ammonium formate, and water were LC/MS grade and obtained from Sigma-Aldrich (St. Louis, MO). Dimethylsulfoxide was obtained from Sigma-Aldrich. Ammonium hydroxide was obtained from Thermo Fisher Scientific. Drug naïve human serum used in validation studies was obtained from Bioreclamation IVT (Westbury, NY). All analytical standards were obtained at the highest purity available. Stock solutions were prepared individually in DMSO, water, methanol, or acetonitrile, then combined. Standard Curve and Quality Control samples were prepared in drug naïve human serum. Assay linearity, precision, accuracy, and detection were assessed by adding various amounts of each test drug to human serum. Each of the analytes assayed passed strict analytical validation criteria. The final test panel detected the presence of 277 unique analytes, corresponding to 263 parent drugs (eTable 2). Quantitative Medication Reporting After measurement, medication lists were compared to LC/MS/MS data. The primary information source was the AGNP Consensus Guidelines for Therapeutic Drug Monitoring in Psychiatry1, which provides evidence-based reference ranges for 128 marketed psychiatric medications. If a medication was not listed in this primary source, secondary sources derived from primary literature were utilized as cited. Finally, if no literature values could be obtained, drug label information was utilized. Annotation of drugs by class Medications were mapped to drug classes according to the National Health and Nutrition Examination Survey (NHANES) resource (https://wwwn.cdc.gov/nchs/nhanes/1999-2000/RXQ_DRUG.htm accessed 11/20/2017). Medications were grouped using the variables RXDDCN1A and RXDDCN1B. Groupings were adjusted manually to achieve ≥20 prescriptions and/or detections per category. The categories of medications as used throughout this work are provided in eTable 2 (column: medication class). Coverage of US medication prescribing The most recent NHANES prescription drug survey for 2013-2014 (https://wwwn.cdc.gov/Nchs/Nhanes/2013- 2014/RXQ_RX_H.htm, accessed 03/26/2018) was used to evaluate coverage of the assay. Only 1870 subjects aged 20 years or older and reported to be using 3 or more medications were retained (i.e. a common definition of polypharmacy). Medications were classified as small molecule oral drugs using resources such as Wikipedia © 2018 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/26/2021 (https://www.wikipedia.org; accessed 03/26/2018) and DrugBank (https://www.drugbank.ca; accessed 03/26/2018). This definition excluded therapeutic antibodies, hormones, and vitamins/supplements (e.g. potassium chloride). Hormones are small molecules that can be detected via LC/MS/MS as employed herein, but their natural presence in the body reduces the utility of blood-based detection for medication management. Combination drugs (e.g. ACETAMINOPHEN; HYDROCODONE) were mapped to individual agents and treated as individual prescriptions. Each prescription was weighted according to the subject variable WINT2YR. The weighted sum for all prescriptions in polypharmacy adults was used to normalize each of 554 unique drugs, ranging from 4.9% (lisinopril, i.e. the most commonly reported medication and accounting for 4.9% of all oral drug prescriptions) to 0.002% (sofosbuvir, the least commonly reported medication). Detection rate for prescribed drugs and drug classes The proportion of prescribed drugs detected in patient serum was calculated by excluding prescriptions with PRN status (i.e. prescribed for use “as-needed”). Unless indicated otherwise, when calculating the proportion of medications detected for a given drug, ≥ 20 prescriptions were required in order to avoid estimating detection proportions from very few prescriptions. Calculation of detection proportions in Figure 1 were obtained by pooling prescriptions from the three clinic sample cohorts and our previously described cohorts7,12. For those parent drugs with metabolites on the panel, we considered the prescribed drug ‘detected’ if parent and/or metabolites were detected. Patient medication adherence (adherence drug subset) For evaluating a patient’s overall adherence to prescribed medications, we excluded medications that may be dosed infrequently or administered non-orally: methotrexate, budesonide, buprenorphine, clonidine, dexamethasone, diclofenac, fentanyl, ketorolac, and prednisolone. Further, we excluded 54 drugs with biological half-life ≤ 4 hours having low probability of detection (Figure 1) or prescribed fewer than 20 times across our pooled datasets and hence insufficiently prescribed to estimate detection rates. We also exclude drugs prescribed PRN (“as-needed”), as non-detection does not indicate non-adherence. The complete set of excluded drugs are denoted in eTable 2. In total, 189 drugs were used to calculate each patient’s overall adherence to prescribed medications, ranging from 0% to 100% adherence. In our analyses of factors affecting overall medication adherence, we focused on polypharmacy patients, defined as 3 or more prescribed non-PRN medications from the 189 drug subset. Drug-drug interactions Elsevier Gold Standard database (https://www.elsevier.com/solutions/drug-database; accessed 03/22/2018) was used as the source of DDI information. © 2018 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/26/2021 eTable 1. Multiplex Assay Panel Medications Medication category Drugs anti-infectives cephalexin, efavirenz, emtricitabine, hydroxychloroquine, itraconazole, ketoconazole, lamivudine, nitrofurantoin, oseltamivir, penicillin, sofosbuvir antineoplastics abiraterone, raloxifene angiotensin converting benazepril, enalapril, lisinopril, quinapril, ramipril enzyme inhibitors angiotensin II inhibitors candesartan, irbesartan, losartan, olmesartan, telmisartan, valsartan antiadrenergic agents, alfuzosin, doxazosin, prazosin, reserpine, tamsulosin, terazosin peripherally acting antiarrhythmic agents amiodarone, diltiazem, dofetilide, dronedarone, flecainide, fosphenytoin, phenytoin, procainamide, quinidine, verapamil beta-adrenergic acebutolol, atenolol, bisoprolol, carvedilol, labetalol, metoprolol, nadolol, blocking agents nebivolol, pindolol, propranolol calcium channel amlodipine, felodipine, nifedipine blocking agents diuretics acetazolamide, bumetanide, chlorothiazide, chlorthalidone, furosemide, hydrochlorothiazide, indapamide, metolazone, torsemide, triamterene other cardiovascular cilostazol, clonidine, guanfacine, ranolazine agents anticonvulsants carbamazepine, divalproex,
Recommended publications
  • Table 2. 2012 AGS Beers Criteria for Potentially
    Table 2. 2012 AGS Beers Criteria for Potentially Inappropriate Medication Use in Older Adults Strength of Organ System/ Recommendat Quality of Recomm Therapeutic Category/Drug(s) Rationale ion Evidence endation References Anticholinergics (excludes TCAs) First-generation antihistamines Highly anticholinergic; Avoid Hydroxyzin Strong Agostini 2001 (as single agent or as part of clearance reduced with e and Boustani 2007 combination products) advanced age, and promethazi Guaiana 2010 Brompheniramine tolerance develops ne: high; Han 2001 Carbinoxamine when used as hypnotic; All others: Rudolph 2008 Chlorpheniramine increased risk of moderate Clemastine confusion, dry mouth, Cyproheptadine constipation, and other Dexbrompheniramine anticholinergic Dexchlorpheniramine effects/toxicity. Diphenhydramine (oral) Doxylamine Use of diphenhydramine in Hydroxyzine special situations such Promethazine as acute treatment of Triprolidine severe allergic reaction may be appropriate. Antiparkinson agents Not recommended for Avoid Moderate Strong Rudolph 2008 Benztropine (oral) prevention of Trihexyphenidyl extrapyramidal symptoms with antipsychotics; more effective agents available for treatment of Parkinson disease. Antispasmodics Highly anticholinergic, Avoid Moderate Strong Lechevallier- Belladonna alkaloids uncertain except in Michel 2005 Clidinium-chlordiazepoxide effectiveness. short-term Rudolph 2008 Dicyclomine palliative Hyoscyamine care to Propantheline decrease Scopolamine oral secretions. Antithrombotics Dipyridamole, oral short-acting* May
    [Show full text]
  • Dofetilide (Tikosyn): a New Drug to Control Atrial Fibrillation
    CURRENT DRUG THERAPY WALID I. SALIBA, MD Section of Cardiac Electrophysiology and Pacing, CREDIT Department of Cardiology, Cleveland Clinic Dofetilide (Tikosyn): A new drug to control atrial fibrillation ABSTRACT OFETILIDE (Tikosyn), a new antiarrhyth- mic drug, can convert atrial fibrillation Dofetilide, a new class III antiarrhythmic agent, selectively and atrial flutter to sinus rhythm in approxi- blocks a specific cardiac potassium channel, lKr, increasing mately 30% of cases and maintain sinus the effective refractory period of the myocyte and thereby rhythm after electrical or pharmacologic con- terminating reentrant arrhythmias. Given orally, it appears version for up to 1 year in 60% to 70% of to effectively convert atrial fibrillation and atrial flutter to cases, without increasing the risk of sudden sinus rhythm and maintain sinus rhythm after conversion in death in patients at high risk. appropriately selected patients. This paper reviews the Such new drugs are needed, as many of the pharmacology of dofetilide, the evidence of its antiarrhythmic drugs in use up to now have effectiveness, and the appropriate precautions in using it. actually produced higher mortality rates in clinical trials than did placebo, or cause unac- ceptable side effects. KEY POINTS This article reviews the mechanism of action, safety, effectiveness, and clinical use of Dofetilide is generally well tolerated but like other class III dofetilide. drugs can cause torsades de pointes. The risk is dose- dependent and can be minimized by adjusting the dosage • PROBLEMS WITH PREVIOUS DRUGS according to creatinine clearance and QT interval, by excluding patients with known risk factors for long QT A variety of drugs have been used to terminate syndrome and torsades de pointes, and by starting or prevent atrial and ventricular arrhythmias, treatment in an inpatient monitored setting for the first 3 but their safety, efficacy, and tolerability in days.
    [Show full text]
  • Drug Class Review Beta Adrenergic Blockers
    Drug Class Review Beta Adrenergic Blockers Final Report Update 4 July 2009 Update 3: September 2007 Update 2: May 2005 Update 1: September 2004 Original Report: September 2003 The literature on this topic is scanned periodically. The purpose of this report is to make available information regarding the comparative effectiveness and safety profiles of different drugs within pharmaceutical classes. Reports are not usage guidelines, nor should they be read as an endorsement of, or recommendation for, any particular drug, use, or approach. Oregon Health & Science University does not recommend or endorse any guideline or recommendation developed by users of these reports. Mark Helfand, MD, MPH Kim Peterson, MS Vivian Christensen, PhD Tracy Dana, MLS Sujata Thakurta, MPA:HA Drug Effectiveness Review Project Marian McDonagh, PharmD, Principal Investigator Oregon Evidence-based Practice Center Mark Helfand, MD, MPH, Director Oregon Health & Science University Copyright © 2009 by Oregon Health & Science University Portland, Oregon 97239. All rights reserved. Final Report Update 4 Drug Effectiveness Review Project TABLE OF CONTENTS INTRODUCTION .......................................................................................................................... 6 Purpose and Limitations of Evidence Reports........................................................................................ 8 Scope and Key Questions .................................................................................................................... 10 METHODS.................................................................................................................................
    [Show full text]
  • Optum Essential Health Benefits Enhanced Formulary PDL January
    PENICILLINS ketorolac tromethamineQL GENERIC mefenamic acid amoxicillin/clavulanate potassium nabumetone amoxicillin/clavulanate potassium ER naproxen January 2016 ampicillin naproxen sodium ampicillin sodium naproxen sodium CR ESSENTIAL HEALTH BENEFITS ampicillin-sulbactam naproxen sodium ER ENHANCED PREFERRED DRUG LIST nafcillin sodium naproxen DR The Optum Preferred Drug List is a guide identifying oxacillin sodium oxaprozin preferred brand-name medicines within select penicillin G potassium piroxicam therapeutic categories. The Preferred Drug List may piperacillin sodium/ tazobactam sulindac not include all drugs covered by your prescription sodium tolmetin sodium drug benefit. Generic medicines are available within many of the therapeutic categories listed, in addition piperacillin sodium/tazobactam Fenoprofen Calcium sodium to categories not listed, and should be considered Meclofenamate Sodium piperacillin/tazobactam as the first line of prescribing. Tolmetin Sodium Amoxicillin/Clavulanate Potassium LOW COST GENERIC PREFERRED For benefit coverage or restrictions please check indomethacin your benefit plan document(s). This listing is revised Augmentin meloxicam periodically as new drugs and new prescribing LOW COST GENERIC naproxen kit information becomes available. It is recommended amoxicillin that you bring this list of medications when you or a dicloxacillin sodium CARDIOVASCULAR covered family member sees a physician or other penicillin v potassium ACE-INHIBITORS healthcare provider. GENERIC QUINOLONES captopril ANTI-INFECTIVES
    [Show full text]
  • Opioid and Other Substance Use Disorders
    OPIOID AND OTHER SUBSTANCE USE DISODERS Dr Amit Arya Additional Professor Department of Psychiatry KGMU Lucknow What are addictive substances? Any substance which when taken has an ability to change the person’s consciousness, thinking, mood, behaviour and motor functions Leading to take the substance repeatedly (World Health Organisation, 1992) …Also called as psychoactive substances Layman term: “Drugs” Why are certain substances addictive? Intake of any substance – oral, inhalational, injecting Enters the bloodstream Acts on a specific body part, such as heart, lung, stomach, etc. Addictive substances act on brain Addictive Substances act on brain All substances acting on the brain are not addictive Addictive substances I want to primarily act on a particular take that area/group of neurons in the drug again! brain, Leading the individual to repeatedly administer the addictive / psychoactive substance → “drug seeking” behaviour Addictive substances primarily act on a particular area/group of neurons in the brain. Regions controlling emotions, thinking, Frontal region judgement & memory Mid Brain How are addictive substances different from each other? Broad actions Chemical that the drug class of drugs produces on the brain Source of drug Natural/semi- TYPOLOGY synthetic/synthetic Mode of intake Oral/inhalational/ Availability – parenteral legal/illegal? (injections) Typology – Chemical Class Opioids Alcohol Cannabis Volatile solvents Based on chemical class Stimulants Tobacco Sedative- hypnotics Hallucinogens The usual drug-use
    [Show full text]
  • Diabetes Medications: Oral Medications
    Diabetes Medications: Oral Medications Medication Types 1. Biguanides 2. Sulfonylureas 3. Thiazolidinediones (TZDs) 4. Alpha-Glucosidase Inhibitors 5. D-Phenylalanine Meglitinides 6. SGLT-2 inhibitors 7. DPP-4 inhibitors 8. Combination Oral Medications 1. Biguanides This works by lowering blood glucose by reducing the amount of glucose produced by the liver and helping the body respond better to the insulin made in the pancreas Metformin can be used with diet and exercise or with other agents, diet, and exercise. Types of Biguanides: • Metformin (Glucophage) 500mg/1000mg • Metformin (Glucophage XR) 500mg/1000mg • Fortamet (extended release) 500mg/1000mg • Riomet (oral solution) 500mg/5ml Side Effects: • Cramping • Gas • Diarrhea • Taking the pill before meals may decrease stomach upset 2. Sulfonylureas Sulfonylureas stimulate the pancreas to produce insulin and cause the body to respond better to the insulin it does produce. Sulfonylureas can be used alone or in combination with other medications. Types of Sulfonylureas: • Glimepiride (Amaryl) • Glipizide (Glucotrol, Glucotrol XL) • Glyburide (Diabeta, Micronase) • Glyburide, micronized (Glynase) • Tolbutamide (Orinase) 1st generation • Tolazamide (Tolinase) 1st generation • Acetohexamide (Dymelor) 1st generation • Chlorpropamide (Diabinese) 1st generation Side Effects: • Hypoglycemia • Upset stomach • Weight gain • Skin rash 3. Thiazolidinediones (TZDs) TZDs primarily reduce insulin resistance by improving target cell response (sensitivity) to insulin. They also can decrease glucose output from the liver and increase glucose disposal in the skeletal muscles. Types of TZDs: • Pioglitazione (Actos) 15-45 mg Actos may be taken with or without food • Avandia—off the market Side Effects: • Jaundice • Nausea and vomiting • Stomach pain • Dark urine • Swelling • These medicines are generally safe and do not cause hypoglycemia when used alone.
    [Show full text]
  • Inhibitory Effect of Eslicarbazepine Acetate and S-Licarbazepine on 2 Nav1.5 Channels
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.24.059188; this version posted August 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Inhibitory effect of eslicarbazepine acetate and S-licarbazepine on 2 Nav1.5 channels 3 Theresa K. Leslie1, Lotte Brückner 1, Sangeeta Chawla1,2, William J. Brackenbury1,2* 4 1Department of Biology, University of York, Heslington, York, YO10 5DD, UK 5 2York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK 6 * Correspondence: Dr William J. Brackenbury, Department of Biology and York Biomedical 7 Research Institute, University of York, Wentworth Way, Heslington, York YO10 5DD, UK. Email: 8 [email protected]. Tel: +44 1904 328284. 9 Keywords: Anticonvulsant, cancer, epilepsy, eslicarbazepine acetate, Nav1.5, S-licarbazepine, 10 voltage-gated Na+ channel. 11 Abstract 12 Eslicarbazepine acetate (ESL) is a dibenzazepine anticonvulsant approved as adjunctive treatment for 13 partial-onset epileptic seizures. Following first pass hydrolysis of ESL, S-licarbazepine (S-Lic) 14 represents around 95 % of circulating active metabolites. S-Lic is the main enantiomer responsible 15 for anticonvulsant activity and this is proposed to be through the blockade of voltage-gated Na+ 16 channels (VGSCs). ESL and S-Lic both have a voltage-dependent inhibitory effect on the Na+ current 17 in N1E-115 neuroblastoma cells expressing neuronal VGSC subtypes including Nav1.1, Nav1.2, 18 Nav1.3, Nav1.6 and Nav1.7.
    [Show full text]
  • What Are the Acute Treatments for Migraine and How Are They Used?
    2. Acute Treatment CQ II-2-1 What are the acute treatments for migraine and how are they used? Recommendation The mainstay of acute treatment for migraine is pharmacotherapy. The drugs used include (1) acetaminophen, (2) non-steroidal anti-inflammatory drugs (NSAIDs), (3) ergotamines, (4) triptans and (5) antiemetics. Stratified treatment according to the severity of migraine is recommended: use NSAIDs such as aspirin and naproxen for mild to moderate headache, and use triptans for moderate to severe headache, or even mild to moderate headache when NSAIDs were ineffective in the past. It is necessary to give guidance and cautions to patients having acute attacks, and explain the methods of using medications (timing, dose, frequency of use) and medication use during pregnancy and breast-feeding. Grade A Background and Objective The objective of acute treatment is to resolve the migraine attack completely and rapidly and restore the patient’s normal functions. An ideal treatment should have the following characteristics: (1) resolves pain and associated symptoms rapidly; (2) is consistently effective; (3) no recurrence; (4) no need for additional use of medication; (5) no adverse effects; (6) can be administered by the patients themselves; and (7) low cost. Literature was searched to identify acute treatments that satisfy the above conditions. Comments and Evidence The acute treatment drugs for migraine generally include (1) acetaminophens, (2) non-steroidal anti-inflammatory drugs (NSAIDs), (3) ergotamines, (4) triptans, and (5) antiemetics. For severe migraines including status migrainosus and migraine attacks refractory to treatment, (6) anesthetics, and (7) corticosteroids (dexamethasone) are used (Tables 1 and 2).1)-9) There are two approaches to the selection and sequencing of these medications: “step care” and “stratified care”.
    [Show full text]
  • DESCRIPTION Tolazamide Is an Oral Blood-Glucose-Lowering Drug of the Sulfonylurea Class
    TOLAZAMIDE- tolazamide tablet PD-Rx Pharmaceuticals, Inc. ---------- DESCRIPTION Tolazamide is an oral blood-glucose-lowering drug of the sulfonylurea class. Tolazamide is a white or creamy-white powder very slightly soluble in water and slightly soluble in alcohol. The chemical name is 1-(Hexahydro-1 H-azepin-1-yl)-3-( p-tolylsulfonyl)urea. Tolazamide has the following structural formula: Each tablet for oral administration contains 250 mg or 500 mg of tolazamide, USP and the following inactive ingredients: colloidal silicon dioxide, croscarmellose sodium, magnesium stearate, microcrystalline cellulose, and sodium lauryl sulfate. CLINICAL PHARMACOLOGY Actions Tolazamide appears to lower the blood glucose acutely by stimulating the release of insulin from the pancreas, an effect dependent upon functioning beta cells in the pancreatic islets. The mechanism by which tolazamide lowers blood glucose during long-term administration has not been clearly established. With chronic administration in type II diabetic patients, the blood glucose-lowering effect persists despite a gradual decline in the insulin secretory response to the drug. Extrapancreatic effects may be involved in the mechanism of action of oral sulfonylurea hypoglycemic drugs. Some patients who are initially responsive to oral hypoglycemic drugs, including tolazamide tablets, may become unresponsive or poorly responsive over time. Alternatively, tolazamide tablets may be effective in some patients who have become unresponsive to one or more other sulfonylurea drugs. In addition to its blood glucose-lowering actions, tolazamide produces a mild diuresis by enhancement of renal free water clearance. Pharmacokinetics Tolazamide is rapidly and well absorbed from the gastrointestinal tract. Peak serum concentrations occur at 3 to 4 hours following a single oral dose of the drug.
    [Show full text]
  • Eslicarbazepine Acetate Longer Procedure No
    European Medicines Agency London, 19 February 2009 Doc. Ref.: EMEA/135697/2009 CHMP ASSESSMENT REPORT FOR authorised Exalief International Nonproprietary Name: eslicarbazepine acetate longer Procedure No. EMEA/H/C/000987 no Assessment Report as adopted by the CHMP with all information of a commercially confidential nature deleted. product Medicinal 7 Westferry Circus, Canary Wharf, London, E14 4HB, UK Tel. (44-20) 74 18 84 00 Fax (44-20) 74 18 84 16 E-mail: [email protected] http://www.emea.europa.eu TABLE OF CONTENTS 1. BACKGROUND INFORMATION ON THE PROCEDURE........................................... 3 1.1. Submission of the dossier ...................................................................................................... 3 1.2. Steps taken for the assessment of the product..................................................................... 3 2. SCIENTIFIC DISCUSSION................................................................................................. 4 2.1. Introduction............................................................................................................................ 4 2.2. Quality aspects ....................................................................................................................... 5 2.3. Non-clinical aspects................................................................................................................ 8 2.4. Clinical aspects....................................................................................................................
    [Show full text]
  • Therapeutic Class Overview Anticonvulsants
    Therapeutic Class Overview Anticonvulsants INTRODUCTION Epilepsy is a disease of the brain defined by any of the following (Fisher et al 2014): ○ At least 2 unprovoked (or reflex) seizures occurring > 24 hours apart; ○ 1 unprovoked (or reflex) seizure and a probability of further seizures similar to the general recurrence risk (at least 60%) after 2 unprovoked seizures, occurring over the next 10 years; ○ Diagnosis of an epilepsy syndrome. Types of seizures include generalized seizures, focal (partial) seizures, and status epilepticus (Centers for Disease Control and Prevention [CDC] 2018, Epilepsy Foundation 2016). ○ Generalized seizures affect both sides of the brain and include: . Tonic-clonic (grand mal): begin with stiffening of the limbs, followed by jerking of the limbs and face . Myoclonic: characterized by rapid, brief contractions of body muscles, usually on both sides of the body at the same time . Atonic: characterized by abrupt loss of muscle tone; they are also called drop attacks or akinetic seizures and can result in injury due to falls . Absence (petit mal): characterized by brief lapses of awareness, sometimes with staring, that begin and end abruptly; they are more common in children than adults and may be accompanied by brief myoclonic jerking of the eyelids or facial muscles, a loss of muscle tone, or automatisms. ○ Focal seizures are located in just 1 area of the brain and include: . Simple: affect a small part of the brain; can affect movement, sensations, and emotion, without a loss of consciousness . Complex: affect a larger area of the brain than simple focal seizures and the patient loses awareness; episodes typically begin with a blank stare, followed by chewing movements, picking at or fumbling with clothing, mumbling, and performing repeated unorganized movements or wandering; they may also be called “temporal lobe epilepsy” or “psychomotor epilepsy” .
    [Show full text]
  • Orange Book Patent Listing Dispute List
    Patent Listing Disputes Current through September 10, 2021 Established Drug Product Due Date for NDA Holder NDA Holder NDA Number NDA Holder Strength(s) Relevant U.S. Patent Number(s) Type of Patent Claim Original Use Code (if applicable) Revised Use Code (if applicable) Dispute Outcome Name Response Response Date Disputes Not Related to epinephrine 205029 Belcher 1mg/mL 10,004,700 and 10,039,728 N/A N/A 7/24/2021 Pending Pending Use Code 7 mg 14 mg 8,168,209, 8,173,708, 8,283,379, Disputes Not Related to memantine hydrochloride 22525 Allergan Sales LLC N/A N/A 5/28/2021 5/28/2021 Patent Listing Updated 21 mg 8,329,752, 8,362,085 and 8,598,233 Use Code 28 mg 0.1 mg Disputes Not Related to epinephrine 201739 Kaleo Inc 0.15 mg 10,824,938 N/A N/A 2/28/2021 2/3/2021 Patent Listing Updated Use Code 0.3 mg Disputes Not Related to netarsudil and latanoprost 208259 Aerie Pharms Inc 0.02%/0.005% 10,654,844 N/A N/A 11/18/2020 10/30/2020 Patent Listing Updated Use Code Disputes Not Related to netarsudil 208254 Aerie Pharms Inc 0.02% 10,654,844 N/A N/A 11/18/2020 10/30/2020 Patent Listing Updated Use Code U-2869: IV Administration of cangrelor before U-2979: Method comprising IV administration PCI and continuous infusion for at least 2 of cangrelor before PCI then continuous hours or the duration of the PCI and, during infusion for at least 2 hours or the duration of cangrelor 204958 Chiesi 50 mg/vial 8,680,052 Method of Use 11/8/2020 11/3/2020 Patent Listing Updated or after the continuous infusion, PCI and, during or after continuous infusion,
    [Show full text]