General Disclaimer One Or More of the Following Statements May Affect
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Newberry Springs BUREAU of LAND MANAGEMENT
BLM SPECIAL EDITION 1998 EXAMPLES OF AGENCY SIGNS SURFACE MANAGEMENT STATUS DESERT ACCESS GUIDE Newberry Springs BUREAU OF LAND MANAGEMENT USDA FOREST SERVICE I:100,000-Scale topographic map showing: • Highways, roads and other manmade structures • Water features • Contours and elevations in meters • Recreation sites • Coverage of former desert access guide #11 Johnson Valley NATIONAL PARK SERVICE UNITED STATES DEPARTMENT OF THE INTERIOR OF f AND MANAGEMENT CALIFORNIA STATE PARKS Edited and published by the Bureau of Land Management National Applied Resource Sciences Center, Denver, Colorado in cooperation with the Bureau of Land Management California State Office. Planimetry partially revised by BLM from various source material. Revised information not field checked. Base map prepared by the U.S. Geological Survey. Compiled from USGS 1:24,000 and l:62,500-scale I -i >|i <i ! . • Kips dated 1953 1971, and from advance T" materials. Partially revised from aerial photographs taken 1976 and other source data. Bev'sed information not CALIFORNIA STATE field checked. Map edited 1977. Map photoinspected VEHICULAR RECREATION AREA using 1989 photographs. No major culture or drainage changes found. Help protect your public lands by observing posted Projection and 10,000-meter grid, zone 11: Universal OHV designations. Watch for OHV signs and read Transverse Mercator. 25,000-foot grid ticks based on them carefully. California coordinate system, zone 5. 1927 North American Datum. For more information contact the BLM, USDA Forest Service, National Park Service, California State Park, Land lines are omitted in areas of extensive tract surveys. or California State Motorized Vechicle Recreation Area Office (see back panel for address and phone There may be private inholdings within the boundaries of numbers). -
Geomorphological Evolution and Chronology of the Eruptive Activity of the Columba and Cuevas Volcanoes (Campo De Calatrava Volcanic Field, Ciudad Real, Central Spain)
Accepted Manuscript Geomorphological evolution and chronology of the eruptive activity of the Columba and Cuevas volcanoes (Campo de Calatrava Volcanic Field, Ciudad Real, Central Spain) Miguel Ángel Poblete Piedrabuena, Joan Martí Molist, Salvador Beato Bergua, José Luis Marino Alfonso PII: S0169-555X(19)30125-4 DOI: https://doi.org/10.1016/j.geomorph.2019.03.026 Reference: GEOMOR 6720 To appear in: Geomorphology Received date: 4 December 2018 Revised date: 14 March 2019 Accepted date: 25 March 2019 Please cite this article as: M.Á.P. Piedrabuena, J.M. Molist, S.B. Bergua, et al., Geomorphological evolution and chronology of the eruptive activity of the Columba and Cuevas volcanoes (Campo de Calatrava Volcanic Field, Ciudad Real, Central Spain), Geomorphology, https://doi.org/10.1016/j.geomorph.2019.03.026 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Geomorphological evolution and chronology of the eruptive activity of the Columba and Cuevas volcanoes (Campo de Calatrava Volcanic Field, Ciudad Real, Central Spain) Miguel Ángel Poblete Piedrabuena1*, Joan Martí Molist2, Salvador Beato Bergua1, José Luis Marino Alfonso1 Department of Geography, University of Oviedo, Campus de El Milán, C/Amparo Pedregal, 5, Oviedo-33011, Spain. -
9.3 PISGAH 1 2 3 9.3.1 Background and Summary of Impacts 4 5 6 9.3
1 9.3 PISGAH 2 3 4 9.3.1 Background and Summary of Impacts 5 6 7 9.3.1.1 General Information 8 9 The proposed Pisgah SEZ has a total area of 23,950 acres (97 km2) and is located in 10 San Bernardino County in southeastern California, about 100 mi (160 km) northeast of Los 11 Angeles (Figure 9.3.1.1-1). In 2008, the county population was 2,086,465. The nearest 12 population center to the SEZ is the City of Barstow, which is located about 25 mi (40 km) to 13 the west of the SEZ and had a 2008 population of 24,596. Interstate 40 (I-40) runs east–west 14 through the proposed Pisgah SEZ, bisecting it into a northern portion that contains about two- 15 thirds of the SEZ acreage and a southern portion with the remainder of the acreage. Access to the 16 SEZ from I-40 is available from exits at Fort Cady Road (to the west of the SEZ), Hector Road 17 (midway through the SEZ), and Pisgah Crater Road (at the eastern end of the SEZ). Hector Road 18 runs north–south through the middle of the SEZ, and a number of other local dirt roads cross the 19 SEZ. The National Trails Highway (historic U.S. 66) also passes through the SEZ as it runs 20 south of and parallel to I-40. The BNSF Railroad serves the area and traverses the SEZ from the 21 northwest to the southeast, running approximately parallel to and about 0.8 mi (1.3 km) north of 22 I-40. -
Notice Concerning Copyright Restrictions
NOTICE CONCERNING COPYRIGHT RESTRICTIONS This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used for any commercial purpose. Users may not otherwise copy, reproduce, retransmit, distribute, publish, commercially exploit or otherwise transfer any material. The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specific conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use," that user may be liable for copyright infringement. This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law. POTENTIALLY ACTIVE VOLCANIC ZONES IN CALIFORNIA Charles W. Chesterman, Senior Scientist (retired) California Division of Mines and Geology and Curator of Mineralogy, California Academy of Sciences San Francisco, California ABSTRACT zones and 18 other volcanic zones whose latest eruptions are known (or presumed) to Volcanic activity has played a dominant be Quaternary in age, but had not erupted in role in California's long geologic history. the last 2,000,000 years, constitute the Records in rocks of many ages demonstrate known potentially active volcanic zones in that volcanic activity commenced in the California. -
Radar Imaging of Volcanic Fields and Sand Dune Fields: Implications for Voir*
RADAR IMAGING OF VOLCANIC FIELDS AND SAND DUNE FIELDS: IMPLICATIONS FOR VOIR* C. Elachi, R. Blom, M. Daily, T. Farr, and R. S. Saunders Earth and Space Science Division Jet Propulsion Laboratory Pasadena. California ABSTRACT A number of volcanic fields and sand dune fields in the western part of North America have been studied using aircraft and Seasat SAR images and Landsat images. The objective of the study was to assess the capability of radars with different characteristics (i.e., fre quency, polarization and look-angles) to identify and map different volcanic features, lava flows and sand dune types. It was concluded that (1) volcanic features which have a relatively large topographic expression (i.e., cinder cones, collapse craters, calderas, etc.) are easily identified; (2) lava flows of different ages can be identified, particularly on the L-band images; and (3) sand dunes are clearly observed and their extent and large-scale geometric characteristics determined, provided the proper imaging geometry exists. I. INTRODUCTION Airborne imaging radars have been used, over the last decade, as a major source of information for geologic mapping in regions of the world where heavy vegetation and extensive cloud cover limit the usefulness of visible and IR sensors. Radar has, in fact, provided the only practical geologic~l recon naissance exploration technique in those regions of the world that are almost perpetually cloud covered. Many countries in the equatorial regions, such as Brazil, Nigeria, Togo and Indonesia, have conducted large-scale radar mapping programs and obtained accurate maps of vast areas that were formerly almost unknown and largely unmapped (e.g .• MacDonald, 1969). -
Origin of Late Cenozoic Basalts at the Cima Volcanic Field, Mojave Desert, California
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 100, NO. B5, PAGES 8399-8415, MAY 10, 1995 Origin of late Cenozoic basalts at the Cima volcanic field, Mojave Desert, California G. L. Farmer, 1A. F. Glazner,2 H. G. Wilshire,3 J. L. Wooden,3W. J. Pickthom,3 and M. Katz4 Abstract. Major element,trace element, and isotopicdata from late Cenozoicalkali basalts comprisingthe Cima volcanicfield, southeasternCalifornia, are usedto characterizebasalt sourcesbeneath this portion of the Mojave Desertover the past8 m.y. The basaltsare dominantlytrachybasalts with traceelement compositions similar to modernocean-island basalts (OIB), regardlessof the presenceor absenceof mantle-derivedxenoliths. In detail,the basalts can be dividedinto threegroups based on theirages and on theirtrace element and isotopic characteristics.Those basalts <1 m.y. in age, and the majorityof those3-5 m.y. old, belongto Group1 definedby high end values (7.6 to 9.3), low s7sr/SSSr (0.7028 to 0.7040), low whole rock•5•SO (5.89'oo to6.49'oo), and a restrictedrange of Pbisotopic compositions thatgenerally plot on the mid-oceanridge basalt (MORB) portionof the northernhemisphere reference line. The 3 to 5-m.y.-oldbasalts have rare earthelement (REE) andother incompatible element abundances thatincrease regularly with decreasing%MgO andapparently have undergone more extensive differentiationthan the younger,<1 m.y.-oldbasalts. The Group2 and 3 basaltsare minor constituentsof thepreserved volcanic material, but are consistentlyolder (5-7.6 m.y.) andhave lower end (5.1 to 7.5) valuesthan the Group 1 basalts.These basalts have distinctive trace elementsignatures, with the Group2 basaltshaving higher Ni, lowerHf, and slightlylower middleREE abundancesthan the Group 1 basalts,while the Group3 basaltsare characterizedby higherand more fractionated REE abundances,as well ashigher Ca, P, Ti, Th, Ta, andSc contents.The isotopicand trace element characteristics of all thebasalts are interpretedto have beenlargely inherited from their mantle source regions. -