Logical Clifford Synthesis for Stabilizer Codes

Total Page:16

File Type:pdf, Size:1020Kb

Logical Clifford Synthesis for Stabilizer Codes Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000. Digital Object Identifier Logical Clifford Synthesis for Stabilizer Codes NARAYANAN RENGASWAMY1, (Member, IEEE), ROBERT CALDERBANK1, (Fellow, IEEE), SWANAND KADHE2, (Member, IEEE), and HENRY D. PFISTER1, (Senior Member, IEEE) 1Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708 USA (e-mail: { narayanan.rengaswamy, robert.calderbank, henry.pfister }@duke.edu) 2Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720 USA (e-mail: [email protected]) Corresponding author: Narayanan Rengaswamy (e-mail: [email protected]). Part of this work has been presented at the 2018 IEEE International Symposium on Information Theory [1]. This work was supported in part by the National Science Foundation (NSF) under Grant Nos. 1718494, 1908730 and 1910571. Any opinions, findings, conclusions, and recommendations expressed in this material are those of the authors and do not necessarily reflect the views of these sponsors. ABSTRACT Quantum error-correcting codes are used to protect qubits involved in quantum computation. This process requires logical operators to be translated into physical operators acting on physical quantum states. We propose a mathematical framework for synthesizing physical circuits that implement logical Clifford operators for stabilizer codes. Circuit synthesis is enabled by representing the desired physical Clifford operator in CN×N as a 2m×2m binary symplectic matrix, where N = 2m. We prove two theorems that use symplectic transvections to efficiently enumerate all binary symplectic matrices that satisfy a system of linear equations. As a corollary, we prove that for an [[m; k]] stabilizer code every logical Clifford operator has 2r(r+1)=2 symplectic solutions, where r = m − k, up to stabilizer degeneracy. The desired physical circuits are then obtained by decomposing each solution into a product of elementary symplectic matrices, that correspond to elementary circuits. This enumeration of all physical realizations enables optimization over the ensemble with respect to a suitable metric. Furthermore, we show that any circuit that normalizes the stabilizer can be transformed into a circuit that centralizes the stabilizer, while realizing the same logical operation. Our method of circuit synthesis can be applied to any stabilizer code, and this paper discusses a proof of concept synthesis for the [[6; 4; 2]] CSS code. Programs implementing the algorithms in this paper, which includes routines to solve for binary symplectic solutions of general linear systems and our overall LCS (logical circuit synthesis) algorithm, can be found at https://github.com/nrenga/symplectic-arxiv18a. INDEX TERMS Clifford group, Heisenberg-Weyl group, logical operators, stabilizer codes, binary symplectic group, transvections I. INTRODUCTION arXiv:1907.00310v2 [quant-ph] 18 Aug 2021 realizing error-resilient quantum computation in practice. T is expected that universal fault-tolerant quantum com- The Clifford hierarchy of unitary operators was defined I putation will be achieved by employing quantum error- to help demonstrate that universal quantum computation can correcting codes (QECCs) to protect the information stored be realized via the teleportation protocol [9]. The first level in the quantum computer and to enable error-resilient com- C(1) in the hierarchy is the Pauli group of unitary operators, putation on that data. The first QECC was discovered by and subsequent levels C(`); ` ≥ 2, are defined recursively as Shor [2], and subsequently, a systematic framework was de- those unitary operators that map the Pauli group into C(`−1), veloped by Calderbank, Shor and Steane [3], [4] to translate under conjugation. By this definition, the second level is the (pairs of) classical error-correcting codes into QECCs. Codes normalizer of the Pauli group in the unitary group, and hence produced using this framework are referred to as CSS codes. C(2) is the Clifford group [5]. It is well-known that the levels The general class of stabilizer codes includes CSS codes as a C(`) do not form a group for ` ≥ 3, but that the Clifford group special case and was introduced by Calderbank, Rains, Shor along with any unitary in C(3) can be used to approximate an and Sloane [5], and by Gottesman [6]. These codes, and their arbitrary unitary operator up to any desired precision. (Note variations [7], [8], still remain the preferred class of codes for that using a simple inductive argument it can be proven that VOLUME 4, 2016 1 N. Rengaswamy et al.: Logical Clifford Synthesis for Stabilizer Codes each level in the hierarchy is closed under multiplication by The primary contributions of this paper are the four theo- Clifford group elements.) Therefore, the standard strategy rems that we state and prove in Section III-B, and the main for realizing universal computation with QECCs is to first LCS algorithm (Algorithm 3) which builds on the results of synthesize1 logical Paulis, then logical Cliffords, and finally these theorems. These results form part of a larger program some logical non-Clifford in the third level of the Clifford for fault-tolerant quantum computation, where the goal is hierarchy. In this paper, we will be primarily concerned to achieve reliability by using classical computers to track with logical Cliffords because specific QECCs, such as tri- and control physical quantum systems, and perform error orthogonal codes [10], can be used to distill magic states [11] correction only as needed. for a non-Clifford gate in C(3), and these states can then We note that there are several works that focus on exactly be “injected” into the computation via teleportation in order decomposing, or approximating, an arbitrary unitary operator to realize the action of that gate at the logical level [9]. as a sequence of operators from a fixed instruction set, such Hence, any circuit implemented on the computer equipped as Clifford + T [18]–[23]. However, these works do not with error-correction might be expected to consist only of consider the problem of circuit synthesis or optimization over Clifford gates, augmented with ancilla magic states, and Pauli different realizations of unitary operators on the encoded measurements. space. We also note that there exists several works in the For the task of synthesizing the logical Pauli operators for literature that study this problem for specific codes and oper- stabilizer codes, the first algorithm was introduced by Gottes- ations, e.g., see [6]–[8], [24]–[27]. However, we believe our man [6, Sec. 4] and subsequently, another algorithm based work is the first to propose a systematic framework to address on a symplectic Gram-Schmidt procedure was proposed by this problem for general stabilizer codes, and hence enable Wilde [12]. The latter is closely related to earlier work by automated circuit synthesis for encoded Clifford operators. Brun et al. [13], [14]. Since the logical Paulis are inputs to This procedure is more systematic in considering all degrees our algorithm that synthesizes logical Clifford operators for of freedom than conjugating the desired logical operator by stabilizer codes, we will consider the above two procedures the encoding circuit for the QECC. to be “preprocessors” for our algorithm. Recently, we have used the LCS algorithm to translate Given the logical Pauli operators for an [[m; k]] stabilizer the unitary 2-design we constructed from classical Kerdock QECC, that encodes k logical qubits into m physical qubits, codes into a logical unitary 2-design [28], and in general physical Clifford realizations of Clifford operators on the log- any design consisting of only Clifford elements can be trans- ical qubits can be represented by 2m×2m binary symplectic formed into a logical design using our algorithm. An imple- matrices, thereby reducing the complexity dramatically from mentation of the design is available at: https://github.com/ 22m complex variables to 4m2 binary variables (see [15], nrenga/symplectic-arxiv18a. This finds direct application in [16] and Section II). We exploit this fact to propose an the logical randomized benchmarking protocol proposed by algorithm that efficiently assembles all 2r(r+1)=2, where r = Combes et al. [29]. This protocol is a more robust pro- m − k, symplectic matrices representing physical Clifford cedure to estimate logical gate fidelities than extrapolating operators (circuits) that realize a given logical Clifford oper- results from randomized benchmarking performed on phys- ator on the protected qubits. We will refer to this procedure ical gates [30]. Now we discuss some more motivations and as the Logical Clifford Synthesis (LCS) algorithm. Here, potential applications for the LCS algorithm. each symplectic solution represents an equivalence class of Clifford circuits, all of which “propagate” input Pauli opera- A. NOISE VARIATION IN QUANTUM SYSTEMS tors through them in an identical fashion (see Section III). Although depth or the number of two-qubit gates might Moreover, as we will discuss later in the context of the appear to be natural metrics for optimization, near-term quan- algorithm, the other degrees of freedom not captured by our tum computers can also benefit from more nuanced metrics algorithm are those provided by stabilizers (see Remark 12). depending upon the physical system. For example, it is now But, at the cost of some increased computational complexity, established that the noise in
Recommended publications
  • Conversion of a General Quantum Stabilizer Code to an Entanglement
    Conversion of a general quantum stabilizer code to an entanglement distillation protocol∗ Ryutaroh Matsumoto Dept. of Communications and Integrated Systems Tokyo Institute of Technology, 152-8552 Japan Email: [email protected] April 4, 2003 Abstract We show how to convert a quantum stabilizer code to a one-way or two- way entanglement distillation protocol. The proposed conversion method is a generalization of those of Shor-Preskill and Nielsen-Chuang. The recurrence protocol and the quantum privacy amplification protocol are equivalent to the protocols converted from [[2, 1]] stabilizer codes. We also give an example of a two-way protocol converted from a stabilizer bet- ter than the recurrence protocol and the quantum privacy amplification protocol. The distillable entanglement by the class of one-way protocols converted from stabilizer codes for a certain class of states is equal to or greater than the achievable rate of stabilizer codes over the channel cor- responding to the distilled state, and they can distill asymptotically more entanglement from a very noisy Werner state than the hashing protocol. 1 Introduction arXiv:quant-ph/0209091v4 4 Apr 2003 In many applications of quantum mechanics to communication, the sender and the receiver have to share a maximally entangled quantum state of two particles. When there is a noiseless quantum communication channel, the sender can send one of two particles in a maximally entangled state to the receiver and sharing of it is easily accomplished. However, the quantum communication channel is usually noisy, that is, the quantum state of the received particle changes probabilistically from the original state of a particle.
    [Show full text]
  • Lattice Surgery with a Twist: Simplifying Clifford Gates of Surface Codes
    Lattice Surgery with a Twist: Simplifying Clifford Gates of Surface Codes Daniel Litinski and Felix von Oppen Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universit¨at Berlin, Arnimallee 14, 14195 Berlin, Germany We present a planar surface-code-based bilizers requires more potentially faulty controlled-not scheme for fault-tolerant quantum computation (CNOT) gates. which eliminates the time overhead of single- The main drawback of surface codes in comparison qubit Clifford gates, and implements long-range to color codes is the absence of transversal single-qubit multi-target CNOT gates with a time overhead Clifford gates, i.e., the gates that are products of the that scales only logarithmically with the control- Hadamard gate H and the phase gate S. While the target separation. This is done by replacing transversal Clifford gates of color codes provide them hardware operations for single-qubit Clifford with fast logical H and S gates, defect-based propos- gates with a classical tracking protocol. Inter- als for surface codes [14] implement the H gate via a qubit communication is added via a modified multi-step measurement protocol, and the S gate via a lattice surgery protocol that employs twist de- distilled ancilla qubit. In order to lower the overhead fects of the surface code. The long-range multi- of single-qubit Clifford gates, surface code qubits can target CNOT gates facilitate magic state distil- be encoded using twist defects [15], which are essen- lation, which renders our scheme fault-tolerant tially Majoranas that can be braided via code defor- and universal. mation [16].
    [Show full text]
  • Mathematics of Data Science
    SIAM JOURNAL ON Mathematics of Data Science Volume 2 • 2020 Editor-in-Chief Tamara G. Kolda, Sandia National Laboratories Section Editors Mark Girolami, University of Cambridge, UK Alfred Hero, University of Michigan, USA Robert D. Nowak, University of Wisconsin, Madison, USA Joel A. Tropp, California Institute of Technology, USA Associate Editors Maria-Florina Balcan, Carnegie Mellon University, USA Vianney Perchet, ENSAE, CRITEO, France Rina Foygel Barber, University of Chicago, USA Jonas Peters, University of Copenhagen, Denmark Mikhail Belkin, University of California, San Diego, USA Natesh Pillai, Harvard University, USA Robert Calderbank, Duke University, USA Ali Pinar, Sandia National Laboratories, USA Coralia Cartis, University of Oxford, UK Mason Porter, University of Califrornia, Los Angeles, USA Venkat Chandrasekaran, California Institute of Technology, Maxim Raginsky, University of Illinois, USA Urbana-Champaign, USA Patrick L. Combettes, North Carolina State University, USA Bala Rajaratnam, University of California, Davis, USA Alexandre d’Aspremont, CRNS, Ecole Normale Superieure, Philippe Rigollet, MIT, USA France Justin Romberg, Georgia Tech, USA Ioana Dumitriu, University of California, San Diego, USA C. Seshadhri, University of California, Santa Cruz, USA Maryam Fazel, University of Washington, USA Amit Singer, Princeton University, USA David F. Gleich, Purdue University, USA Marc Teboulle, Tel Aviv University, Israel Wouter Koolen, CWI, the Netherlands Caroline Uhler, MIT, USA Gitta Kutyniok, University of Munich, Germany
    [Show full text]
  • Digital Communication Systems 2.2 Optimal Source Coding
    Digital Communication Systems EES 452 Asst. Prof. Dr. Prapun Suksompong [email protected] 2. Source Coding 2.2 Optimal Source Coding: Huffman Coding: Origin, Recipe, MATLAB Implementation 1 Examples of Prefix Codes Nonsingular Fixed-Length Code Shannon–Fano code Huffman Code 2 Prof. Robert Fano (1917-2016) Shannon Award (1976 ) Shannon–Fano Code Proposed in Shannon’s “A Mathematical Theory of Communication” in 1948 The method was attributed to Fano, who later published it as a technical report. Fano, R.M. (1949). “The transmission of information”. Technical Report No. 65. Cambridge (Mass.), USA: Research Laboratory of Electronics at MIT. Should not be confused with Shannon coding, the coding method used to prove Shannon's noiseless coding theorem, or with Shannon–Fano–Elias coding (also known as Elias coding), the precursor to arithmetic coding. 3 Claude E. Shannon Award Claude E. Shannon (1972) Elwyn R. Berlekamp (1993) Sergio Verdu (2007) David S. Slepian (1974) Aaron D. Wyner (1994) Robert M. Gray (2008) Robert M. Fano (1976) G. David Forney, Jr. (1995) Jorma Rissanen (2009) Peter Elias (1977) Imre Csiszár (1996) Te Sun Han (2010) Mark S. Pinsker (1978) Jacob Ziv (1997) Shlomo Shamai (Shitz) (2011) Jacob Wolfowitz (1979) Neil J. A. Sloane (1998) Abbas El Gamal (2012) W. Wesley Peterson (1981) Tadao Kasami (1999) Katalin Marton (2013) Irving S. Reed (1982) Thomas Kailath (2000) János Körner (2014) Robert G. Gallager (1983) Jack KeilWolf (2001) Arthur Robert Calderbank (2015) Solomon W. Golomb (1985) Toby Berger (2002) Alexander S. Holevo (2016) William L. Root (1986) Lloyd R. Welch (2003) David Tse (2017) James L.
    [Show full text]
  • Principles of Communications ECS 332
    Principles of Communications ECS 332 Asst. Prof. Dr. Prapun Suksompong (ผศ.ดร.ประพันธ ์ สขสมปองุ ) [email protected] 1. Intro to Communication Systems Office Hours: Check Google Calendar on the course website. Dr.Prapun’s Office: 6th floor of Sirindhralai building, 1 BKD 2 Remark 1 If the downloaded file crashed your device/browser, try another one posted on the course website: 3 Remark 2 There is also three more sections from the Appendices of the lecture notes: 4 Shannon's insight 5 “The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point.” Shannon, Claude. A Mathematical Theory Of Communication. (1948) 6 Shannon: Father of the Info. Age Documentary Co-produced by the Jacobs School, UCSD- TV, and the California Institute for Telecommunic ations and Information Technology 7 [http://www.uctv.tv/shows/Claude-Shannon-Father-of-the-Information-Age-6090] [http://www.youtube.com/watch?v=z2Whj_nL-x8] C. E. Shannon (1916-2001) Hello. I'm Claude Shannon a mathematician here at the Bell Telephone laboratories He didn't create the compact disc, the fax machine, digital wireless telephones Or mp3 files, but in 1948 Claude Shannon paved the way for all of them with the Basic theory underlying digital communications and storage he called it 8 information theory. C. E. Shannon (1916-2001) 9 https://www.youtube.com/watch?v=47ag2sXRDeU C. E. Shannon (1916-2001) One of the most influential minds of the 20th century yet when he died on February 24, 2001, Shannon was virtually unknown to the public at large 10 C.
    [Show full text]
  • MIMO Wireless Communications Ezio Biglieri, Robert Calderbank, Anthony Constantinides, Andrea Goldsmith, Arogyaswami Paulraj and H
    Cambridge University Press 978-0-521-13709-6 - MIMO Wireless Communications Ezio Biglieri, Robert Calderbank, Anthony Constantinides, Andrea Goldsmith, Arogyaswami paulraj and H. Vincent Poor Frontmatter More information MIMO Wireless Communications Multiple-input multiple-output (MIMO) technology constitutes a breakthrough in the design of wireless communication systems, and is already at the core of several wireless standards. Exploiting multi-path scattering, MIMO techniques deliver significant performance enhancements in terms of data transmission rate and interference reduction. This book is a detailed introduction to the analysis and design of MIMO wireless systems. Beginning with an overview of MIMO technology, the authors then examine the fundamental capacity limits of MIMO systems. Transmitter design, including precoding and space–time coding, is then treated in depth, and the book closes with two chapters devoted to receiver design. Written by a team of leading experts, the book blends theoretical analysis with physical insights, and highlights a range of key design challenges. It can be used as a textbook for advanced courses on wireless communications, and will also appeal to researchers and practitioners working on MIMO wireless systems. Ezio Biglieri is a professor in the Department of Technology at the Universitat Pompeu Fabra, Barcelona. Robert Calderbank is a professor in the Departments of Electrical Engineering and Mathematics at Princeton University, New Jersey. Anthony Constantinides is a professor in the Department of Electrical and Electronic Engineering at Imperial College of Science, Technology and Medicine, London. Andrea Goldsmith is a professor in the Department of Electrical Engineering at Stanford University, California. Arogyaswami Paulraj is a professor in the Department of Electrical Engineering at Stanford University, California.
    [Show full text]
  • Quantum Error-Correcting Codes by Concatenation QEC11
    Quantum Error-Correcting Codes by Concatenation QEC11 Second International Conference on Quantum Error Correction University of Southern California, Los Angeles, USA December 5–9, 2011 Quantum Error-Correcting Codes by Concatenation Markus Grassl joint work with Bei Zeng Centre for Quantum Technologies National University of Singapore Singapore Markus Grassl – 1– 07.12.2011 Quantum Error-Correcting Codes by Concatenation QEC11 Why Bei isn’t here Jonathan, November 24, 2011 Markus Grassl – 2– 07.12.2011 Quantum Error-Correcting Codes by Concatenation QEC11 Overview Shor’s nine-qubit code revisited • The code [[25, 1, 9]] • Concatenated graph codes • Generalized concatenated quantum codes • Codes for the Amplitude Damping (AD) channel • Conclusions • Markus Grassl – 3– 07.12.2011 Quantum Error-Correcting Codes by Concatenation QEC11 Shor’s Nine-Qubit Code Revisited Bit-flip code: 0 000 , 1 111 . | → | | → | Phase-flip code: 0 + ++ , 1 . | → | | → | − −− Effect of single-qubit errors on the bit-flip code: X-errors change the basis states, but can be corrected • Z-errors at any of the three positions: • Z 000 = 000 | | “encoded” Z-operator Z 111 = 111 | −| = Bit-flip code & error correction convert the channel into a phase-error ⇒ channel = Concatenation of bit-flip code and phase-flip code yields [[9, 1, 3]] ⇒ Markus Grassl – 4– 07.12.2011 Quantum Error-Correcting Codes by Concatenation QEC11 The Code [[25, 1, 9]] The best single-error correcting code is = [[5, 1, 3]] • C0 Re-encoding each of the 5 qubits with yields = [[52, 1, 32]]
    [Show full text]
  • Lecture 6: Quantum Error Correction and Quantum Capacity
    Lecture 6: Quantum error correction and quantum capacity Mark M. Wilde∗ The quantum capacity theorem is one of the most important theorems in quantum Shannon theory. It is a fundamentally \quantum" theorem in that it demonstrates that a fundamentally quantum information quantity, the coherent information, is an achievable rate for quantum com- munication over a quantum channel. The fact that the coherent information does not have a strong analog in classical Shannon theory truly separates the quantum and classical theories of information. The no-cloning theorem provides the intuition behind quantum error correction. The goal of any quantum communication protocol is for Alice to establish quantum correlations with the receiver Bob. We know well now that every quantum channel has an isometric extension, so that we can think of another receiver, the environment Eve, who is at a second output port of a larger unitary evolution. Were Eve able to learn anything about the quantum information that Alice is attempting to transmit to Bob, then Bob could not be retrieving this information|otherwise, they would violate the no-cloning theorem. Thus, Alice should figure out some subspace of the channel input where she can place her quantum information such that only Bob has access to it, while Eve does not. That the dimensionality of this subspace is exponential in the coherent information is perhaps then unsurprising in light of the above no-cloning reasoning. The coherent information is an entropy difference H(B) − H(E)|a measure of the amount of quantum correlations that Alice can establish with Bob less the amount that Eve can gain.
    [Show full text]
  • Arxiv:2003.09412V2 [Quant-Ph] 7 Jul 2021 Hadamard-Free Circuits Expose the Structure of the Clifford Group
    Hadamard-free circuits expose the structure of the Clifford group Sergey Bravyi and Dmitri Maslov IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, USA July 8, 2021 Abstract The Clifford group plays a central role in quantum randomized benchmarking, quantum tomography, and error correction protocols. Here we study the structural properties of this group. We show that any Clifford operator can be uniquely written in the canonical form F1HSF2, where H is a layer of Hadamard gates, S is a permutation of qubits, and Fi are parameterized Hadamard-free circuits chosen from suitable subgroups of the Clifford group. Our canonical form provides a one-to-one correspondence between Clifford operators and layered quantum circuits. We report a polynomial-time algorithm for computing the canonical form. We employ this canonical form to generate a random uniformly distributed n-qubit Clifford operator in runtime O(n2). The number of random bits consumed by the algorithm matches the information-theoretic lower bound. A surprising connection is highlighted between random uniform Clifford operators and the Mallows distribution on the symmetric group. The variants of the canonical form, one with a short Hadamard- free part and one allowing a circuit depth 9n implementation of arbitrary Clifford unitaries in the Linear Nearest Neighbor architecture are also discussed. Finally, we study computational quantum advantage where a classical reversible linear circuit can be implemented more efficiently using Clifford gates, and show an explicit example where such an advantage takes place. 1 Introduction Clifford circuits can be defined as quantum computations by the circuits with Phase (p), Hadamard (h), and cnot gates, applied to a computational basis state, such as |00...0i.
    [Show full text]
  • Quantum Topological Error Correction Codes Are Capable of Improving the Performance of Clifford Gates
    1 Quantum Topological Error Correction Codes Are Capable of Improving the Performance of Clifford Gates Daryus Chandra, Zunaira Babar, Hung Viet Nguyen, Dimitrios Alanis, Panagiotis Botsinis, Soon Xin Ng, and Lajos Hanzo Abstract—The employment of quantum error correction codes under certain conditions we can transform various classes of (QECCs) within quantum computers potentially offers a reli- powerful classical error correction codes into their quantum ability improvement for both quantum computation and com- counterparts, such as Quantum Turbo Codes (QTCs) [8], [9], munications tasks. However, incorporating quantum gates for performing error correction potentially introduces more sources Quantum Low-Density Parity-Check (QLDPC) codes [10], of quantum decoherence into the quantum computers. In this [11], and Quantum Polar Codes (QPCs) [12], [13]. However, scenario, the primary challenge is to find the sufficient condition several challenges remain, hindering the immediate employ- required by each of the quantum gates for beneficially employing ment of these powerful QSCs in quantum computers. Firstly, QECCs in order to yield reliability improvements given that the the reliability of the state-of-the-art quantum gates is still quantum gates utilized by the QECCs also introduce quantum decoherence. In this treatise, we approach this problem by significantly lower compared to classical gates. For exam- firstly presenting the general framework of protecting quantum ple, the reliability of a two-qubit quantum gate is between gates by the amalgamation of the transversal configuration of 90:00% 99:90% across various technology platforms, such quantum gates and quantum stabilizer codes (QSCs), which can as spin− electronics, photonics, superconducting, trapped-ion, be viewed as syndrome-based QECCs.
    [Show full text]
  • Performance of Various Low-Level Decoder for Surface Codes in the Presence of Measurement Error
    Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 3-2021 Performance of Various Low-level Decoder for Surface Codes in the Presence of Measurement Error Claire E. Badger Follow this and additional works at: https://scholar.afit.edu/etd Part of the Computer Sciences Commons Recommended Citation Badger, Claire E., "Performance of Various Low-level Decoder for Surface Codes in the Presence of Measurement Error" (2021). Theses and Dissertations. 4885. https://scholar.afit.edu/etd/4885 This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. Performance of Various Low-Level Decoders for Surface Codes in the Presence of Measurement Error THESIS Claire E Badger, B.S.C.S., 2d Lieutenant, USAF AFIT-ENG-MS-21-M-008 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in this document are those of the author and do not reflect the official policy or position of the United States Air Force, the United States Department of Defense or the United States Government. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENG-MS-21-M-008 Performance of Various Low-Level Decoders for Surface Codes in the Presence of Measurement Error THESIS Presented to the Faculty Department of Electrical and Computer Engineering Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command in Partial Fulfillment of the Requirements for the Degree of Master of Science in Computer Science Claire E Badger, B.S.C.S., B.S.E.E.
    [Show full text]
  • Universal Quantum Computation with Ideal Clifford Gates and Noisy Ancillas
    PHYSICAL REVIEW A 71, 022316 ͑2005͒ Universal quantum computation with ideal Clifford gates and noisy ancillas Sergey Bravyi* and Alexei Kitaev† Institute for Quantum Information, California Institute of Technology, Pasadena, 91125 California, USA ͑Received 6 May 2004; published 22 February 2005͒ We consider a model of quantum computation in which the set of elementary operations is limited to Clifford unitaries, the creation of the state ͉0͘, and qubit measurement in the computational basis. In addition, we allow the creation of a one-qubit ancilla in a mixed state ␳, which should be regarded as a parameter of the model. Our goal is to determine for which ␳ universal quantum computation ͑UQC͒ can be efficiently simu- lated. To answer this question, we construct purification protocols that consume several copies of ␳ and produce a single output qubit with higher polarization. The protocols allow one to increase the polarization only along certain “magic” directions. If the polarization of ␳ along a magic direction exceeds a threshold value ͑about 65%͒, the purification asymptotically yields a pure state, which we call a magic state. We show that the Clifford group operations combined with magic states preparation are sufficient for UQC. The connection of our results with the Gottesman-Knill theorem is discussed. DOI: 10.1103/PhysRevA.71.022316 PACS number͑s͒: 03.67.Lx, 03.67.Pp I. INTRODUCTION AND SUMMARY additional operations ͑e.g., measurements by Aharonov- Bohm interference ͓13͔ or some gates that are not related to The theory of fault-tolerant quantum computation defines topology at all͒. Of course, these nontopological operations an important number called the error threshold.
    [Show full text]