Quantum Proofs Can Be Verified Using Only Single Qubit Measurements
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lattice Surgery with a Twist: Simplifying Clifford Gates of Surface Codes
Lattice Surgery with a Twist: Simplifying Clifford Gates of Surface Codes Daniel Litinski and Felix von Oppen Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universit¨at Berlin, Arnimallee 14, 14195 Berlin, Germany We present a planar surface-code-based bilizers requires more potentially faulty controlled-not scheme for fault-tolerant quantum computation (CNOT) gates. which eliminates the time overhead of single- The main drawback of surface codes in comparison qubit Clifford gates, and implements long-range to color codes is the absence of transversal single-qubit multi-target CNOT gates with a time overhead Clifford gates, i.e., the gates that are products of the that scales only logarithmically with the control- Hadamard gate H and the phase gate S. While the target separation. This is done by replacing transversal Clifford gates of color codes provide them hardware operations for single-qubit Clifford with fast logical H and S gates, defect-based propos- gates with a classical tracking protocol. Inter- als for surface codes [14] implement the H gate via a qubit communication is added via a modified multi-step measurement protocol, and the S gate via a lattice surgery protocol that employs twist de- distilled ancilla qubit. In order to lower the overhead fects of the surface code. The long-range multi- of single-qubit Clifford gates, surface code qubits can target CNOT gates facilitate magic state distil- be encoded using twist defects [15], which are essen- lation, which renders our scheme fault-tolerant tially Majoranas that can be braided via code defor- and universal. mation [16]. -
The Complexity Zoo
The Complexity Zoo Scott Aaronson www.ScottAaronson.com LATEX Translation by Chris Bourke [email protected] 417 classes and counting 1 Contents 1 About This Document 3 2 Introductory Essay 4 2.1 Recommended Further Reading ......................... 4 2.2 Other Theory Compendia ............................ 5 2.3 Errors? ....................................... 5 3 Pronunciation Guide 6 4 Complexity Classes 10 5 Special Zoo Exhibit: Classes of Quantum States and Probability Distribu- tions 110 6 Acknowledgements 116 7 Bibliography 117 2 1 About This Document What is this? Well its a PDF version of the website www.ComplexityZoo.com typeset in LATEX using the complexity package. Well, what’s that? The original Complexity Zoo is a website created by Scott Aaronson which contains a (more or less) comprehensive list of Complexity Classes studied in the area of theoretical computer science known as Computa- tional Complexity. I took on the (mostly painless, thank god for regular expressions) task of translating the Zoo’s HTML code to LATEX for two reasons. First, as a regular Zoo patron, I thought, “what better way to honor such an endeavor than to spruce up the cages a bit and typeset them all in beautiful LATEX.” Second, I thought it would be a perfect project to develop complexity, a LATEX pack- age I’ve created that defines commands to typeset (almost) all of the complexity classes you’ll find here (along with some handy options that allow you to conveniently change the fonts with a single option parameters). To get the package, visit my own home page at http://www.cse.unl.edu/~cbourke/. -
Arxiv:1506.08857V1 [Quant-Ph] 29 Jun 2015
Absolutely Maximally Entangled states, combinatorial designs and multi-unitary matrices Dardo Goyeneche National Quantum Information Center of Gda´nsk,81-824 Sopot, Poland and Faculty of Applied Physics and Mathematics, Technical University of Gda´nsk,80-233 Gda´nsk,Poland Daniel Alsina Dept. Estructura i Constituents de la Mat`eria,Universitat de Barcelona, Spain. Jos´e I. Latorre Dept. Estructura i Constituents de la Mat`eria,Universitat de Barcelona, Spain. and Center for Theoretical Physics, MIT, USA Arnau Riera ICFO-Institut de Ciencies Fotoniques, Castelldefels (Barcelona), Spain Karol Zyczkowski_ Institute of Physics, Jagiellonian University, Krak´ow,Poland and Center for Theoretical Physics, Polish Academy of Sciences, Warsaw, Poland (Dated: June 29, 2015) Absolutely Maximally Entangled (AME) states are those multipartite quantum states that carry absolute maximum entanglement in all possible partitions. AME states are known to play a relevant role in multipartite teleportation, in quantum secret sharing and they provide the basis novel tensor networks related to holography. We present alternative constructions of AME states and show their link with combinatorial designs. We also analyze a key property of AME, namely their relation to tensors that can be understood as unitary transformations in every of its bi-partitions. We call this property multi-unitarity. I. INTRODUCTION entropy S(ρ) = −Tr(ρ log ρ) ; (1) A complete characterization, classification and it is possible to show [1, 2] that the average entropy quantification of entanglement for quantum states re- of the reduced state σ = TrN=2j ih j to N=2 qubits mains an unfinished long-term goal in Quantum Infor- reads: N mation theory. -
Non-Unitary Quantum Computation in the Ground Space of Local Hamiltonians
Non-Unitary Quantum Computation in the Ground Space of Local Hamiltonians Na¨ıri Usher,1, ∗ Matty J. Hoban,2, 3 and Dan E. Browne1 1Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom. 2University of Oxford, Department of Computer Science, Wolfson Building, Parks Road, Oxford OX1 3QD, United Kingdom. 3School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, UK A central result in the study of Quantum Hamiltonian Complexity is that the k-local hamilto- nian problem is QMA-complete [1]. In that problem, we must decide if the lowest eigenvalue of a Hamiltonian is bounded below some value, or above another, promised one of these is true. Given the ground state of the Hamiltonian, a quantum computer can determine this question, even if the ground state itself may not be efficiently quantum preparable. Kitaev's proof of QMA-completeness encodes a unitary quantum circuit in QMA into the ground space of a Hamiltonian. However, we now have quantum computing models based on measurement instead of unitary evolution, further- more we can use post-selected measurement as an additional computational tool. In this work, we generalise Kitaev's construction to allow for non-unitary evolution including post-selection. Fur- thermore, we consider a type of post-selection under which the construction is consistent, which we call tame post-selection. We consider the computational complexity consequences of this construc- tion and then consider how the probability of an event upon which we are post-selecting affects the gap between the ground state energy and the energy of the first excited state of its corresponding Hamiltonian. -
CS286.2 Lectures 5-6: Introduction to Hamiltonian Complexity, QMA-Completeness of the Local Hamiltonian Problem
CS286.2 Lectures 5-6: Introduction to Hamiltonian Complexity, QMA-completeness of the Local Hamiltonian problem Scribe: Jenish C. Mehta The Complexity Class BQP The complexity class BQP is the quantum analog of the class BPP. It consists of all languages that can be decided in quantum polynomial time. More formally, Definition 1. A language L 2 BQP if there exists a classical polynomial time algorithm A that ∗ maps inputs x 2 f0, 1g to quantum circuits Cx on n = poly(jxj) qubits, where the circuit is considered a sequence of unitary operators each on 2 qubits, i.e Cx = UTUT−1...U1 where each 2 2 Ui 2 L C ⊗ C , such that: 2 i. Completeness: x 2 L ) Pr(Cx accepts j0ni) ≥ 3 1 ii. Soundness: x 62 L ) Pr(Cx accepts j0ni) ≤ 3 We say that the circuit “Cx accepts jyi” if the first output qubit measured in Cxjyi is 0. More j0i specifically, letting P1 = j0ih0j1 be the projection of the first qubit on state j0i, j0i 2 Pr(Cx accepts jyi) =k (P1 ⊗ In−1)Cxjyi k2 The Complexity Class QMA The complexity class QMA (or BQNP, as Kitaev originally named it) is the quantum analog of the class NP. More formally, Definition 2. A language L 2 QMA if there exists a classical polynomial time algorithm A that ∗ maps inputs x 2 f0, 1g to quantum circuits Cx on n + q = poly(jxj) qubits, such that: 2q i. Completeness: x 2 L ) 9jyi 2 C , kjyik2 = 1, such that Pr(Cx accepts j0ni ⊗ 2 jyi) ≥ 3 2q 1 ii. -
Restricted Versions of the Two-Local Hamiltonian Problem
The Pennsylvania State University The Graduate School Eberly College of Science RESTRICTED VERSIONS OF THE TWO-LOCAL HAMILTONIAN PROBLEM A Dissertation in Physics by Sandeep Narayanaswami c 2013 Sandeep Narayanaswami Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2013 The dissertation of Sandeep Narayanaswami was reviewed and approved* by the following: Sean Hallgren Associate Professor of Computer Science and Engineering Dissertation Adviser, Co-Chair of Committee Nitin Samarth Professor of Physics Head of the Department of Physics Co-Chair of Committee David S Weiss Professor of Physics Jason Morton Assistant Professor of Mathematics *Signatures are on file in the Graduate School. Abstract The Hamiltonian of a physical system is its energy operator and determines its dynamics. Un- derstanding the properties of the ground state is crucial to understanding the system. The Local Hamiltonian problem, being an extension of the classical Satisfiability problem, is thus a very well-motivated and natural problem, from both physics and computer science perspectives. In this dissertation, we seek to understand special cases of the Local Hamiltonian problem in terms of algorithms and computational complexity. iii Contents List of Tables vii List of Tables vii Acknowledgments ix 1 Introduction 1 2 Background 6 2.1 Classical Complexity . .6 2.2 Quantum Computation . .9 2.3 Generalizations of SAT . 11 2.3.1 The Ising model . 13 2.3.2 QMA-complete Local Hamiltonians . 13 2.3.3 Projection Hamiltonians, or Quantum k-SAT . 14 2.3.4 Commuting Local Hamiltonians . 14 2.3.5 Other special cases . 15 2.3.6 Approximation Algorithms and Heuristics . -
6.845 Quantum Complexity Theory, Lecture 16
6.896 Quantum Complexity Theory Oct. 28, 2008 Lecture 16 Lecturer: Scott Aaronson 1 Recap Last time we introduced the complexity class QMA (quantum Merlin-Arthur), which is a quantum version for NP. In particular, we have seen Watrous’s Group Non-Membership (GNM) protocol which enables a quantum Merlin to prove to a quantum Arthur that some element x of a group G is not a member of H, a subgroup of G. Notice that this is a problem that people do not know how to solve in classical world. To understand the limit of QMA, we have proved that QMA ⊆ P P (and also QMA ⊆ P SP ACE). We have also talked about QMA-complete problems, which are the quantum version of NP complete problem. In particular we have introduced the Local Hamiltonians problem, which is the quantum version of the SAT problem. We also have a quantum version of the Cook-Levin theorem, due to Kitaev, saying that the Local Hamiltonians problem is QMA complete. We will prove Kitaev’s theorem in this lecture. 2 Local Hamiltonians is QMA-complete De¯nition 1 (Local Hamiltonians Problem) Given m measurements E1; : : : ; Em each of which acts on at most k (out of n) qubits where k is a constant, the Local Hamiltonians problem is to decide which of the following two statements is true, promised that one is true: Pm 1. 9 an n-qubit state j'i such that i=1 Pr[Ei accepts j'i] ¸ b; or Pm 2. 8 n-qubit state j'i, i=1 Pr[Ei accepts j'i] · a. -
Arxiv:Quant-Ph/0612113V1 14 Dec 2006 † ∗ Nalo Hs Rosi Euto Ewe Unu Icisadtim and Circuits Quantum C Between Reduction QMA a Is Is Hamiltonian Complete
A new construction for a QMA complete 3-local Hamiltonian. 1, , Daniel Nagaj ∗ and Shay Mozes † 1Center for Theoretical Physics, MIT, Cambridge, MA 02139 (Dated: December 12, 2006) We present a new way of encoding a quantum computation into a 3-local Hamiltonian. Our construction is novel in that it does not include any terms that induce legal-illegal clock transitions. Therefore, the weights of the terms in the Hamiltonian do not scale with the size of the problem as in previous constructions. This improves the construction by Kempe and Regev [2], who were the first to prove that 3-local Hamiltonian is complete for the complexity class QMA, the quantum analogue of NP. Quantum k-SAT, a restricted version of the local Hamiltonian problem using only projector terms, was introduced by Bravyi [1] as an analogue of the classical k-SAT problem. Bravyi proved that quantum 4-SAT is complete for the class QMA with one-sided error (QMA1) and that quantum 2-SAT is in P. We give an encoding of a quantum circuit into a quantum 4-SAT Hamiltonian using only 3-local terms. As an intermediate step to this 3-local construction, we show that quantum 3-SAT for particles with dimensions 3 × 2 × 2 (a qutrit and two qubits) is QMA1 complete. The complexity of quantum 3-SAT with qubits remains an open question. I. INTRODUCTION In recent years, quantum complexity classes have been defined and studied in an attempt to understand the capacity and limitations of quantum computers and quantum algorithms and their relation to classical complexity classes. -
Arxiv:2003.09412V2 [Quant-Ph] 7 Jul 2021 Hadamard-Free Circuits Expose the Structure of the Clifford Group
Hadamard-free circuits expose the structure of the Clifford group Sergey Bravyi and Dmitri Maslov IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, USA July 8, 2021 Abstract The Clifford group plays a central role in quantum randomized benchmarking, quantum tomography, and error correction protocols. Here we study the structural properties of this group. We show that any Clifford operator can be uniquely written in the canonical form F1HSF2, where H is a layer of Hadamard gates, S is a permutation of qubits, and Fi are parameterized Hadamard-free circuits chosen from suitable subgroups of the Clifford group. Our canonical form provides a one-to-one correspondence between Clifford operators and layered quantum circuits. We report a polynomial-time algorithm for computing the canonical form. We employ this canonical form to generate a random uniformly distributed n-qubit Clifford operator in runtime O(n2). The number of random bits consumed by the algorithm matches the information-theoretic lower bound. A surprising connection is highlighted between random uniform Clifford operators and the Mallows distribution on the symmetric group. The variants of the canonical form, one with a short Hadamard- free part and one allowing a circuit depth 9n implementation of arbitrary Clifford unitaries in the Linear Nearest Neighbor architecture are also discussed. Finally, we study computational quantum advantage where a classical reversible linear circuit can be implemented more efficiently using Clifford gates, and show an explicit example where such an advantage takes place. 1 Introduction Clifford circuits can be defined as quantum computations by the circuits with Phase (p), Hadamard (h), and cnot gates, applied to a computational basis state, such as |00...0i. -
Quantum Topological Error Correction Codes Are Capable of Improving the Performance of Clifford Gates
1 Quantum Topological Error Correction Codes Are Capable of Improving the Performance of Clifford Gates Daryus Chandra, Zunaira Babar, Hung Viet Nguyen, Dimitrios Alanis, Panagiotis Botsinis, Soon Xin Ng, and Lajos Hanzo Abstract—The employment of quantum error correction codes under certain conditions we can transform various classes of (QECCs) within quantum computers potentially offers a reli- powerful classical error correction codes into their quantum ability improvement for both quantum computation and com- counterparts, such as Quantum Turbo Codes (QTCs) [8], [9], munications tasks. However, incorporating quantum gates for performing error correction potentially introduces more sources Quantum Low-Density Parity-Check (QLDPC) codes [10], of quantum decoherence into the quantum computers. In this [11], and Quantum Polar Codes (QPCs) [12], [13]. However, scenario, the primary challenge is to find the sufficient condition several challenges remain, hindering the immediate employ- required by each of the quantum gates for beneficially employing ment of these powerful QSCs in quantum computers. Firstly, QECCs in order to yield reliability improvements given that the the reliability of the state-of-the-art quantum gates is still quantum gates utilized by the QECCs also introduce quantum decoherence. In this treatise, we approach this problem by significantly lower compared to classical gates. For exam- firstly presenting the general framework of protecting quantum ple, the reliability of a two-qubit quantum gate is between gates by the amalgamation of the transversal configuration of 90:00% 99:90% across various technology platforms, such quantum gates and quantum stabilizer codes (QSCs), which can as spin− electronics, photonics, superconducting, trapped-ion, be viewed as syndrome-based QECCs. -
Adiabatic Quantum Computation Is Equivalent To
SIAM REVIEW c 2008 Society for Industrial and Applied Mathematics Vol. 50, No. 4, pp. 755–787 Adiabatic Quantum Computation Is Equivalent to ∗ Standard Quantum Computation Dorit Aharonov† Wim van Dam‡ Julia Kempe§ Zeph Landau¶ Seth Lloyd Oded Regev§ Abstract. The model of adiabatic quantum computation is a relatively recent model of quantum com- putation that has attracted attention in the physics and computer science communities. We describe an efficient adiabatic simulation of any given quantum circuit. This implies that the adiabatic computation model and the standard circuit-based quantum compu- tation model are polynomially equivalent. Our result can be extended to the physically realistic setting of particles arranged on a two-dimensional grid with nearest neighbor inter- actions. The equivalence between the models allows one to state the main open problems in quantum computation using well-studied mathematical objects such as eigenvectors and spectral gaps of Hamiltonians. Key words. quantum computation,adiabatic computation,nearest neighbor interactions AMS subject classifications. 81P68,68Q05 DOI. 10.1137/080734479 1. Introduction. The model of quantum computation has been thoroughly in- vestigated in the last two decades and is by now a well-established one [47]. In this ∗ Published electronically November 5,2008. This paper originally appeared in SIAM Journal on Computing,Volume 37,Number 1,2007,pages 166–194. This work was performed by an em- ployee of the U.S. Government or under U.S. Government contract. The U.S. Government retains a nonexclusive,royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so,for U.S. -
Computational Difficulty of Computing the Density of States
Computational Difficulty of Computing the Density of States Brielin Brown,1, 2 Steven T. Flammia,2 and Norbert Schuch3 1University of Virginia, Departments of Physics and Computer Science, Charlottesville, Virginia 22904, USA 2Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada 3California Institute of Technology, Institute for Quantum Information, MC 305-16, Pasadena, California 91125, USA We study the computational difficulty of computing the ground state degeneracy and the density of states for local Hamiltonians. We show that the difficulty of both problems is exactly captured by a class which we call #BQP, which is the counting version of the quantum complexity class QMA. We show that #BQP is not harder than its classical counting counterpart #P, which in turn implies that computing the ground state degeneracy or the density of states for classical Hamiltonians is just as hard as it is for quantum Hamiltonians. Understanding the physical properties of correlated quantum computer. We show that both problems, com- quantum many-body systems is a problem of central im- puting the density of states and counting the ground state portance in condensed matter physics. The density of degeneracy, are complete problems for the class #BQP, states, defined as the number of energy eigenstates per i.e., they are among the hardest problems in this class. energy interval, plays a particularly crucial role in this Having quantified the difficulty of computing the den- endeavor. It is a key ingredient when deriving many sity of states and counting the number of ground states, thermodynamic properties from microscopic models, in- we proceed to relate #BQP to known classical counting cluding specific heat capacity, thermal conductivity, band complexity classes, and show that #BQP equals #P (un- structure, and (near the Fermi energy) most electronic der weakly parsimonious reductions).