Cellular and Molecular Mechanisms of Biomineralisation in a Silicifying Haptophyte Prymnesium Neolepis
Total Page:16
File Type:pdf, Size:1020Kb
University of Plymouth PEARL https://pearl.plymouth.ac.uk 04 University of Plymouth Research Theses 01 Research Theses Main Collection 2014 CELLULAR AND MOLECULAR MECHANISMS OF BIOMINERALISATION IN A SILICIFYING HAPTOPHYTE PRYMNESIUM NEOLEPIS Durak, Grazyna http://hdl.handle.net/10026.1/3098 Plymouth University All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. CELLULAR AND MOLECULAR MECHANISMS OF BIOMINERALISATION IN A SILICIFYING HAPTOPHYTE PRYMNESIUM NEOLEPIS by GRAŻYNA MAŁGORZATA DURAK A thesis submitted to the University of Plymouth in partial fulfilment for the degree of DOCTOR OF PHILOSOPHY School of Marine Science & Engineering Faculty of Science & Technology In collaboration with The Marine Biological Association of the United Kingdom -August 2013- -1- Copyright Statement This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the author's prior consent. -2- Grażyna Małgorzata Durak ABSTRACT CELLULAR AND MOLECULAR MECHANISMS OF BIOMINERALISATION IN A SILICIFYING HAPTOPHYTE PRYMNESIUM NEOLEPIS Haptophytes are renowned for the most prominent and biogeochemically important group of marine calcifiers: coccolithophores. The unexpected discovery of a unique, silicifying member of this clade - Prymnesium neolepis - prompted questions regarding mechanisms of silicification and their origin in the calcifier-dominated haptophytes. To address these questions I used cell physiology, biochemistry and molecular approaches, investigating cellular and molecular mechanisms involved in silicification in haptophytes. Comparisons of this system with calcification in coccolithophores and other silica-based systems in eukaryotes were also made. Here I report that P. neolepis is an obligate silicifier, producing silica scales in a process fundamentally different to that observed in coccolithophores. Scale deposition and secretion in P. neolepis is localized in the posterior, vacuolar part of the cell rather than in the anterior part near the flagellar roots as in calcifying coccolithophores. The organic matrix underlying silica scales in P. neolepis was found to be non-homologous with organic scales, which in coccolithophores serve as coccolith baseplates. This suggests, that silica scales and coccoliths arise from two distinct, most likely non-homologous processes, which is further supported by the comparative investigation of the role of cytoskeleton in silica scale production in P. neolepis and coccolithogenesis in a representative calcifier, Coccolithus pelagicus. Using cytoskeleton inhibitors I established, that the cytoskeleton components used for morphogenesis and secretion of biomineralised structures are different in these two systems. Analysis of P. neolepis biosilica revealed the presence of an intimately associated organic fraction consisting of a putatively chitin-containing material, potentially serving as an organic matrix underlying silica scales. Further biochemical investigation of the biosilica-associated organics confirmed the presence of long chain polyamines (LCPAs) dissimilar to those previously reported in diatoms and sponges. Additionally, a potentially novel, proline and lysine-rich protein sharing a weak homology with lipocalins was recovered, suggesting that this silicification system is unique to haptophytes. Several theories concerning acquisition of the ability to silicify in haptophytes were proposed. Overall, the findings presented in this study provide a detailed description of Si biomineralisation system in this unique, silicifying haptophyte and supply novel information on biomineralisation systems in marine haptophytes. This study contributes a basis on which the phenomenon of silicification in haptophytes can be further investigated, as well as novel information which can be further used in elucidation of origins of silicification in algae and other Eucarya. -3- LIST OF CONTENTS PAGE ABSTRACT .................................................................................................................... 3 LIST OF FIGURES AND TABLES ................................................................................... 11 LIST OF ABBREVIATIONS ............................................................................................. 17 ACKNOWLEDGEMENTS ............................................................................................... 20 AUTHOR'S DECLARATION .................................................................................. 21 CHAPTER I: METABOLISM AND PHYSIOLOGY OF SILICON. MECHANISMS AND FUNCTIONS OF BIOMINERALISATION IN DIFFERENT PHYLA ....................................... 23 I.1. INTRODUCTION ..................................................................................................... 23 I.2. ALGAE: SILICA ..................................................................................................... 26 I.3. DIATOMS (HETEROKONTOPHYTA: BACILLARIOPHYCEAE) ................................... 27 I.3.1. Cell cycle ....................................................................................................... 27 I.3.2. Transport and storage .................................................................................... 28 I.3.3. Si Uptake and transport models ...................................................................... 29 I.3.4. Valve formation: SDV .................................................................................... 33 I.3.5. Components involved in silica polymerization ................................................ 34 I.3.6. Organic matrix of the frustule ........................................................................ 36 I.3.7. Polyanionic polysaccharides .......................................................................... 38 I.4. CHRYSOPHYTES .................................................................................................... 38 I.5. HAPTOPHYTES (HAPTOHPYTA: COCCOLITHOPHYCEAE) ...................................... 39 I.5.1. Coccolithales and Isochrysidales: calcification............................................. 40 I.5.1.1. Heterococcolith formation ........................................................................... 40 I.5.I.2. Holococcolith formation .............................................................................. 43 I.5.2. Prymnesiales: Prymnesium neolepis: silicification in haptophytes ............... 44 I.6. SPONGES (PORIFERA) ........................................................................................... 45 -4- I.6.1. Spicule formation ........................................................................................... 46 I.6.2. Silicateins ...................................................................................................... 50 I.6.3. Silicase .......................................................................................................... 52 I.6.4. Silintaphins .................................................................................................... 53 I.6.5. Long chain polyamines................................................................................... 54 I.7. PLANTS ................................................................................................................. 54 I.7.1. Si transporters ............................................................................................... 55 I.8. SUMMARY AND AIMS ............................................................................................ 56 CHAPTER II: PRYMNESIUM NEOLEPIS: GENERAL ORGANISM DESCRIPTION, BIOLOGY AND PHYSIOLOGY OF SILICIFICATION ........................................................................ 59 II.1. INTRODUCTION ................................................................................................... 59 II.1.1. Putative capacity for silicification in Prymnesium sp. ................................... 61 II.2. METHODS ........................................................................................................... 63 II.2.1. Culture conditions ........................................................................................ 63 II.2.2. DNA extraction, gene amplification, sequencing and molecular analysis ...... 64 II.2.3. Confocal microscopy .................................................................................... 66 II.2.4. Differential Interference Contrast (DIC)/light microscopy imaging............... 67 II.2.5. NaOH etching of biosilica material ............................................................... 67 II.2.6. Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Energy Dispersive Microanalysis (EDX) ............................................... 68 II.2.7. Fourier Transform Infrared Spectroscopy (FTIR) ......................................... 68 II.2.8. Light: dark experiment: flow cytometry assessment of silica scale production ............................................................................................................................... 69 II.2.9. High/Low Si experiment ...............................................................................