Cover and Decomposition Index Calculus on Elliptic Curves made practical Application to a previously unreachable curve over Fp6 Antoine Joux1 and Vanessa Vitse2 1 DGA and Universit´ede Versailles Saint-Quentin, Laboratoire PRISM, 45 avenue des Etats-Unis,´ F-78035 Versailles cedex, France
[email protected] 2 Universit´ede Versailles Saint-Quentin, Laboratoire PRISM, 45 avenue des Etats-Unis,´ F-78035 Versailles cedex, France
[email protected] Abstract. We present a new \cover and decomposition" attack on the elliptic curve discrete logarithm problem, that combines Weil descent and decomposition-based index calculus into a single discrete logarithm algorithm. This attack applies, at least theoretically, to all composite degree extension fields, and is particularly well-suited for curves defined 3 over Fp6 . We give a real-size example of discrete logarithm computations on a curve over a 151-bit degree 6 extension field, which would not have been practically attackable using previously known algorithms. Key words: elliptic curve, discrete logarithm, index calculus, Weil descent, decomposition attack 1 Introduction Elliptic curves are used in cryptography to provide groups where the discrete logarithm problem is thought to be difficult. We recall that given a finite group G (written additively) and two elements P; Q 2 G, the discrete logarithm problem (DLP) consists in computing, when it exists, an integer x such that Q = xP . When elliptic curves are used in cryptographic applications, the DLP is usually considered to be as difficult as in a generic group of the same size [31]. As a consequence, for a given security level, the key size is much smaller than for other popular cryptosystems based on factorization or discrete logarithms in finite fields.