Fluid Flow Through Seamounts and Implications for Global Mass Fluxes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hydrothermal Circulation Within the Endeavour Segment; Juan De Fuca Ridge
Hydrothermal Circulation within the Endeavour Segment; Juan de Fuca Ridge H. Paul Johnson1, Maurice A. Tivey2, Tor A. Bjorklund1, and Marie S. Salmi1 1School of Oceanography, University of Washington, Seattle, WA 98195-7940 2Department of Geology and Geophysics Woods Hole Oceanographic Institution Woods Hole, MA 02543 Correspondence should be addressed to HPJ, [email protected] 206-543-8474 Hydrothermal Circulation within the Endeavour Segment; Juan de Fuca Ridge Abstract Areas of the seafloor at mid-ocean ridges where hydrothermal vents discharge are easily recognized by the dramatic biological, physical and chemical processes that characterize such sites. Locations where seawater flows into the seafloor to recharge hydrothermal cells within the crustal reservoir are by contrast almost invisible, but can be indirectly identified by a systematic grid of conductive heat flow measurements. An array of conductive heat flow stations in the Endeavour axial valley of the Juan de Fuca Ridge has identified recharge zones that appear to represent a nested system of fluid circulation paths. At the scale of an axial rift valley, conductive heat flow data indicate a general cross-valley fluid flow, where seawater enters the shallow sub-surface crustal reservoir at the eastern wall of the Endeavour axial valley and undergoes a kilometer of horizontal transit beneath the valley floor, finally exiting as warm hydrothermal fluid discharge on the western valley bounding wall. Recharge zones also have been identified as located within an annular ring of very cold seafloor around the large Main Endeavour Hydrothermal Field, with seawater inflow occurring within faults that surround the fluid discharge sites. -
Three-Dimensional Models of Hydrothermal Circulation Through a Seamount Network on Fast-Spreading Crust ∗ Rachel M
Earth and Planetary Science Letters 501 (2018) 138–151 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Three-dimensional models of hydrothermal circulation through a seamount network on fast-spreading crust ∗ Rachel M. Lauer a,b,c, , Andrew T. Fisher b,c, Dustin M. Winslow b,c,d a Department of Geoscience, University of Calgary, Calgary, Alberta, Canada b Earth and Planetary Sciences Department, University of California, Santa Cruz, 95064, USA c Center for Dark Energy Biosphere Investigations, University of California, Santa Cruz, 95064, USA d GrowthIntel, 25-27 Horsell Road, London N5 1XL, UK a r t i c l e i n f o a b s t r a c t Article history: We present results from three-dimensional, transient, fully coupled simulations of fluid and heat Received 25 February 2018 transport on a ridge flank in fast-spread ocean crust. The simulations quantify relationships between rates Received in revised form 17 July 2018 of fluid flow, the extent of advective heat extraction, the geometry of crustal aquifers and outcrops, and Accepted 14 August 2018 crustal hydrologic parameters, with the goal of simulating conditions similar to those seen on 18–24 M.y. Available online xxxx old seafloor of the Cocos plate, offshore Costa Rica. Extensive surveys of this region documented a Editor: M. Bickle 2 ∼14,500 km area of the seafloor with heat flux values that are 10–35% of those predicted from Keywords: conductive cooling models, and identified basement outcrops that serve as pathways for hydrothermal hydrothermal circulation circulation via recharge of bottom water and discharge of cool hydrothermal fluid. -
Mantle Hydration and Cl-Rich Fluids in the Subduction Forearc Bruno Reynard1,2
Reynard Progress in Earth and Planetary Science (2016) 3:9 Progress in Earth and DOI 10.1186/s40645-016-0090-9 Planetary Science REVIEW Open Access Mantle hydration and Cl-rich fluids in the subduction forearc Bruno Reynard1,2 Abstract In the forearc region, aqueous fluids are released from the subducting slab at a rate depending on its thermal state. Escaping fluids tend to rise vertically unless they meet permeability barriers such as the deformed plate interface or the Moho of the overriding plate. Channeling of fluids along the plate interface and Moho may result in fluid overpressure in the oceanic crust, precipitation of quartz from fluids, and low Poisson ratio areas associated with tremors. Above the subducting plate, the forearc mantle wedge is the place of intense reactions between dehydration fluids from the subducting slab and ultramafic rocks leading to extensive serpentinization. The plate interface is mechanically decoupled, most likely in relation to serpentinization, thereby isolating the forearc mantle wedge from convection as a cold, potentially serpentinized and buoyant, body. Geophysical studies are unique probes to the interactions between fluids and rocks in the forearc mantle, and experimental constrains on rock properties allow inferring fluid migration and fluid-rock reactions from geophysical data. Seismic velocities reveal a high degree of serpentinization of the forearc mantle in hot subduction zones, and little serpentinization in the coldest subduction zones because the warmer the subduction zone, the higher the amount of water released by dehydration of hydrothermally altered oceanic lithosphere. Interpretation of seismic data from petrophysical constrain is limited by complex effects due to anisotropy that needs to be assessed both in the analysis and interpretation of seismic data. -
Physiography of the Seafloor Hypsometric Curve for Earth’S Solid Surface
OCN 201 Physiography of the Seafloor Hypsometric Curve for Earth’s solid surface Note histogram Hypsometric curve of Earth shows two modes. Hypsometric curve of Venus shows only one! Why? Ocean Depth vs. Height of the Land Why do we have dry land? • Solid surface of Earth is Hypsometric curve dominated by two levels: – Land with a mean elevation of +840 m = 0.5 mi. (29% of Earth surface area). – Ocean floor with mean depth of -3800 m = 2.4 mi. (71% of Earth surface area). If Earth were smooth, depth of oceans would be 2450 m = 1.5 mi. over the entire globe! Origin of Continents and Oceans • Crust is formed by differentiation from mantle. • A small fraction of mantle melts. • Melt has a different composition from mantle. • Melt rises to form crust, of two types: 1) Oceanic 2) Continental Two Types of Crust on Earth • Oceanic Crust – About 6 km thick – Density is 2.9 g/cm3 – Bulk composition: basalt (Hawaiian islands are made of basalt.) • Continental Crust – About 35 km thick – Density is 2.7 g/cm3 – Bulk composition: andesite Concept of Isostasy: I If I drop a several blocks of wood into a bucket of water, which block will float higher? A. A thick block made of dense wood (koa or oak) B. A thin block made of light wood (balsa or pine) C. A thick block made of light wood (balsa or pine) D. A thin block made of dense wood (koa or oak) Concept of Isostasy: II • Derived from Greek: – Iso equal – Stasia standing • Density and thickness of a body determine how high it will float (and how deep it will sink). -
The Nature of the Mohorovicic Discontinuity, a Compromise 1
JOURNAL OF GEOPHYSICAL RESEARCH VOL. 68, No. 15 AUGUST 1, 1963 The Nature of the Mohorovicic Discontinuity, A Compromise 1 PETER J. WYLLIE Department of Geochemistry and Minemlogy Pennsylvania State Universit.y, University Park Abstract available . The experimental data and steady-state calculations make it difficult M to explain the discontinuity beneath both oceans and continents on the basis of the same change. The phase oceanic M discontinuity may be a chemical discontinuity between basalt and peridotite , and a similar chemical discontinuity ma,y thus be expected b�neath the conti nents. Since ayailable experimental data place the basalt-eclogite phase change at about thE' same depth as the continental M discontinuity, intersections may exist between a zone of chemical discontinuity and a phase transition zone, the transition being either basalt-ecloO"ite or feldspathic peridotite-garnet peridotite. Detection of the latter transition by seismic t�'h niques ma,y be difficult. The M discontinuity could therefore represent the basalt-eclogite phase change in some localities (e.g. mountain belts) and the chemical discontinuity in others (e.g. oceans and continental shields). Variations in the depth to the chemical discontinuity and in the positions of geoisotherms produce great flexibility in oro genetic models. Interse; tions between the two zones at depth could be reflected at the surface by major fault zones separating large structural blocks of different elevations. Chemical discontinuity. The conyentional termediate between dunite and basalt is view that the Moho discontinuity at the base of qualitatively reasonable for the mantle. the crust is caused by a chemical change from Ringwood [1962a, c] adopted a specific model basaltic rock to peridotite has been expounded compounded from the concepts advanced and recently by Hess [1955], Wager [1958], and developed by many petrologists and geochem Harris and Rowell [1960]. -
27. Chinook Trough Rifting and Hydrothermal Deposition at Sites 885 and 8861
Rea, D.K., Basov, I.A., Scholl, D.W., and Allan, J.F. (Eds.), 1995 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 145 27. CHINOOK TROUGH RIFTING AND HYDROTHERMAL DEPOSITION AT SITES 885 AND 8861 Gerald R. Dickens2 and Robert M. Owen2 ABSTRACT The Chinook Trough is a pronounced deep located in the central North Pacific Ocean that spans approximately 1500 km in a northeast-southwest direction. Geophysical and geomorphological considerations suggest that this feature is the southern litho- spheric scar marking initiation of Late Cretaceous north-south rifting within the ancient Farallon Plate. If this hypothesis is correct, then, by analogy to other active and passive mid-ocean rift zones, Late Cretaceous sediment deposited immediately south of the Chinook Trough should contain significant amounts of hydrothermal material deposited in association with the intraplate rifting event. Because the proposed tectonic origin for the Chinook Trough places seafloor south of the eastern end of the trough beneath the Cretaceous calcite compensation depth (CCD), expected hydrothermal components deposited during the Late Cretaceous at these locations also should lack carbonate dilution. Ocean Drilling Program Sites 885 and 886 were drilled approximately 60 km south of the northeast section of the Chinook Trough. High-resolution chemical and mineralogical analyses demonstrate that sediment deposited after 75-81 Ma at these sites contains an extensive record of hydrothermal deposition without associated carbonate. Various proxy indicators -
Density of Oceanic Crust
Density of Oceanic Crust Introduction Procedures Certain properties of a substance are both distinctive and Part 1 relatively easy to determine. Density, the ratio between 1. Complete Report Sheet 1 by calculating the missing a sample’s mass and volume at a specific temperature densities. How will you deal with the differences in and pressure (like standard ambient temperature and significant digits? Make sure to include units in your pressure), is one such property. Regardless of the size of a answers. sample, the density of a substance will always remain the 2. Using the depths and densities from your chart, plot same. The density of a rock sample can, therefore, be used a graph on your own paper (or use an electronic in the identification process. graphing tool) and title it Depth vs. Density. Hint: Think about independent and dependent variables. Using a While density may vary only slightly from rock to rock, blue colored pencil, draw a line of best fit from the XY- detailed sampling and correlation with other factors like intercept through the plotted points. depth may reveal important information about the history of a core, or may help to improve the use of seismic Part 2 profiles. The average density of oceanic crust is 3.0 g/cm3, 1. Find the mass and volume for each of the four continental while continental crust has an average of 2.7 g/cm3. samples as instructed by your teacher. How will you deal with error in the laboratory? How about significant Objectives digits? Record your answers in the space provided. -
Peter Castro | Michael E. Huber
TEACHER’S MANUAL Marine Science Peter Castro | Michael E. Huber SECOND EDITION Waves and Tides Chapter Introduce the BIG IDEA Waves and Tides Have students watch a short video clip of ocean waves 4 breaking on the shore. Have them make observations about the movement of water as the wave breaks and then retreats back to the ocean. If any students have been to the ocean, have them share their experience of the water and the waves. Pose students these questions and let them discuss responses in small groups. 1. Why does the size of a wave change as it approaches the shore? 2. What factors affect the tides and make the tide come in and leave again? 3. What hardships do marine organisms deal with that live in the intertidal zones? Small groups can share back with the whole group on key GO ONLINE To access points their groups discussed. inquiry and investigative activities to accompany this chapter. Ocean Section Pacing Main Idea and Key Questions Literacy Labs and Activities Standards 4.1 Introduc- 1 day Waves carry energy across the sea surface but Key Questions Activity: tion to Wave do not transport water. Making Waves Energy and 1. What are the three most common generating Motion forces of waves? 2. What are the two restoring forces that cause the water surface to return to its undisturbed state? 4.2 Types of 2 days There are several types of waves, each with its 2.d, 5.j, 6.f, Laboratory Manual: Making Waves own characteristics and different ways of 7.e Waves (p. -
Seafloor Hydrothermal Activity Around a Large Non-Transform
Journal of Marine Science and Engineering Article Seafloor Hydrothermal Activity around a Large Non-Transform Discontinuity along Ultraslow-Spreading Southwest Indian Ridge (48.1–48.7◦ E) Dong Chen 1,2, Chunhui Tao 2,3,*, Yuan Wang 2, Sheng Chen 4, Jin Liang 2, Shili Liao 2 and Teng Ding 1 1 Institute of Marine Geology, College of Oceanography, Hohai University, Nanjing 210098, China; [email protected] (D.C.); [email protected] (T.D.) 2 Key Laboratory of Submarine Geosciences, SOA & Second Institute of Oceanography, MNR, Hangzhou 310012, China; [email protected] (Y.W.); [email protected] (J.L.); [email protected] (S.L.) 3 School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China 4 Ocean Technology and Equipment Research Center, School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; [email protected] * Correspondence: [email protected] Abstract: Non-transform discontinuity (NTD) is one category of tectonic units along slow- and ultraslow-spreading ridges. Some NTD-related hydrothermal fields that may reflect different driving mechanisms have been documented along slow-spreading ridges, but the discrete survey strategy makes it hard to evaluate the incidence of hydrothermal activity. On ultraslow-spreading ridges, fewer NTD-related hydrothermal activities were reported. Factors contributing to the occurrence of hydrothermal activities at NTDs and whether they could be potential targets for hydrothermal explo- Citation: Chen, D.; Tao, C.; Wang, Y.; Chen, S.; Liang, J.; Liao, S.; Ding, T. ration are poorly known. Combining turbidity and oxidation reduction potential (ORP) sensors with Seafloor Hydrothermal Activity a near-bottom camera, Chinese Dayang cruises from 2014 to 2018 have conducted systematic towed around a Large Non-Transform surveys for hydrothermal activity around a large NTD along the ultraslow-spreading Southwest ◦ Discontinuity along Indian Ridge (SWIR, 48.1–48.7 E). -
Complex Subsurface Hydrothermal Fluid Mixing at a Submarine Arc Volcano Supports Distinct and Highly Diverse Microbial Communities
Complex subsurface hydrothermal fluid mixing at a submarine arc volcano supports distinct and highly diverse microbial communities Anna-Louise Reysenbacha,1,2, Emily St. Johna,2, Jennifer Meneghina, Gilberto E. Floresb, Mircea Podarc, Nina Dombrowskid, Anja Spangd,e, Stephane L’Haridonf, Susan E. Humphrisg, Cornel E. J. de Rondeh, Fabio Caratori Tontinih, Maurice Tiveyg, Valerie K. Stuckeri, Lucy C. Stewarth,j, Alexander Diehlk,l, and Wolfgang Bachk,l aCenter for Life in Extreme Environments, Biology Department, Portland State University, Portland, OR 97201; bDepartment of Biology, California State University, Northridge, CA 91330; cBiosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831; dRoyal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, NL-1790 AB Den Burg, The Netherlands; eDepartment of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden; fCNRS, Institut Français de Recherche pour l’Exploitation de la Mer, Laboratoire de Microbiologie des Environnements Extrêmes, Université de Bretagne Occidentale, F-29280 Plouzané, France; gDepartment of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; hDepartment of Earth Systems and Resources, GNS Science, Avalon, Lower Hutt 5010, New Zealand; iLaboratories and Collections, GNS Science, Avalon, Lower Hutt 5010, New Zealand; jToha Science, Wellington 6011, New Zealand; kFaculty of Geosciences, University of Bremen, 28359 Bremen, Germany; and lMARUM - Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany Edited by Edward F. DeLong, University of Hawaii at Manoa, Honolulu, HI, and approved November 3, 2020 (received for review September 10, 2020) Hydrothermally active submarine volcanoes are mineral-rich bio- seawater circulation through oceanic crust. -
Global Sea Level Rise Scenarios for the United States National Climate Assessment
Global Sea Level Rise Scenarios for the United States National Climate Assessment December 6, 2012 PhotoPhPhototo prpprovidedrovovidideedd bbyy thtthehe GrGGreaterreaeateter LaLLafourcheafofoururchche PoPortrt CoComommissionmimissssioion NOAA Technical Report OAR CPO-1 GLOBAL SEA LEVEL RISE SCENARIOS FOR THE UNITED STATES NATIONAL CLIMATE ASSESSMENT Climate Program Office (CPO) Silver Spring, MD Climate Program Office Silver Spring, MD December 2012 UNITED STATES NATIONAL OCEANIC AND Office of Oceanic and DEPARTMENT OF COMMERCE ATMOSPHERIC ADMINISTRATION Atmospheric Research Dr. Rebecca Blank Dr. Jane Lubchenco Dr. Robert Dietrick Acting Secretary Undersecretary for Oceans and Assistant Administrator Atmospheres NOTICE from NOAA Mention of a commercial company or product does not constitute an endorsement by NOAA/OAR. Use of information from this publication concerning proprietary products or the tests of such products for publicity or advertising purposes is not authorized. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Oceanic and Atmospheric Administration. Report Team Authors Adam Parris, Lead, National Oceanic and Atmospheric Administration Peter Bromirski, Scripps Institution of Oceanography Virginia Burkett, United States Geological Survey Dan Cayan, Scripps Institution of Oceanography and United States Geological Survey Mary Culver, National Oceanic and Atmospheric Administration John Hall, Department of Defense -
Drilling the Crust at Mid-Ocean Ridges
or collective redistirbution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of Th e Oceanography Society. Send all correspondence to: [email protected] or Th eOceanography PO Box 1931, Rockville, USA.Society, MD 20849-1931, or e to: [email protected] Oceanography correspondence all Society. Send of Th approval portionthe ofwith any articlepermitted only photocopy by is of machine, reposting, this means or collective or other redistirbution articleis has been published in Th SPECIAL ISSUE FEATURE Oceanography Drilling the Crust Threproduction, Republication, systemmatic research. for this and teaching article copy to use in reserved. e is rights granted All OceanographyPermission Society. by 2007 eCopyright Oceanography Society. journal of Th 20, Number 1, a quarterly , Volume at Mid-Ocean Ridges An “in Depth” perspective BY BENOÎT ILDEFONSE, PETER A. RONA, AND DONNA BLACKMAN In April 1961, 13.5 m of basalts were drilled off Guadalupe In the early 1970s, almost 15 years after the fi rst Mohole Island about 240 km west of Mexico’s Baja California, to- attempt, attendees of a Penrose fi eld conference (Confer- gether with a few hundred meters of Miocene sediments, in ence Participants, 1972) formulated the concept of a layered about 3500 m of water. This fi rst-time exploit, reported by oceanic crust composed of lavas, underlain by sheeted dikes, John Steinbeck for Life magazine, aimed to be the test phase then gabbros (corresponding to the seismic layers 2A, 2B, for the considerably more ambitious Mohole project, whose and 3, respectively), which themselves overlay mantle perido- objective was to drill through the oceanic crust down to tites.