CHM 532 Notes on Wavefunctions and the Schrödinger Equation

Total Page:16

File Type:pdf, Size:1020Kb

CHM 532 Notes on Wavefunctions and the Schrödinger Equation CHM 532 Notes on Wavefunctions and the Schr¨odinger Equation In class we have discussed a thought experiment1 that contrasts the behavior of classical particles, classical waves and quantum particles. The thought experiment consists of some method of generating the particles or waves (e.g. a gun), a barrier with two slits and a detector. The details of this thought experiment can be found in The Feynman Lectures on Physics Volume 3, Chapter 1 (Addison-Wesley, Reading MA, 1965) and are not discussed in these notes. Here, we discuss some of the implications of the thought experiment. 1 Wave Packets 1.2 1 0.8 f(x) 0.6 0.4 0.2 0 -6 -4 -2 0 2 4 6 x Before discussing the implications of the double-slit experiment, we first review an im- portant property of wave packets. Recall that for classical wave motion in an ideal string, 1A thought experiment does not imply that the experimental results would be different if the experiment were actually performed. Rather, the thought experiment is a simplification of real experiments. We have every confidence that if the double-slit apparatus could actually be constructed for electrons, the results would be identical to those discussed in class 1 a wave packet is some localized disturbance in the string. Because f(x − ct) for any twice differentiable f(x) is a solution to the classical wave equation, at t = 0 there are a large set of possible wave packets. For simplicity we choose a Gaussian wave packet that has the form 1 2 2 f(x) = √ e−x /2(∆x) (1) 2π∆x and is plotted in the figure for the case that ∆x = 1. The parameter ∆x is often called the standard deviation of the Gaussian, and the standard deviation is a measure of the width of the wave packet. The Gaussian function has the properties that follow: Z ∞ f(x) dx = 1 (2) −∞ Z ∆x f(x) dx ∼= .67 (3) −∆x Z ∞ xf(x) dx = 0 (4) −∞ and Z ∞ x2f(x) dx = (∆x)2. (5) −∞ Equation (2) is a normalization condition (the total area under the Gaussian curve is unity), and Eq. (3) implies that approximately two-thirds of the total area under the Gaussian lies in the range −∆x ≤ x ≤ ∆x. Equation (4) expresses that the average of x with respect to f(x) is zero, and Eq. (5) says that the average of x2 is (∆x)2 so that hx2i − hxi2 = (∆x)2 (6) the standard expression for the standard deviation in probability and statistics. We now imagine that we create a Gaussian wave packet in a string (by pulling the string in some way), and we ask into what distribution of sinusoidal wavelengths is the Gaussian wave packet composed. As we have learned, the distribution of wavelengths is given by g(k) the Fourier transform of the Gaussian2 1 Z ∞ g(k) = √ f(x)e−ikx dx (7) 2π −∞ ∞ 1 Z 1 2 2 = √ √ e−x /2(∆x) e−ikx dx. (8) 2π ∞ 2π∆x 2In evaluating the Fourier integral of a Gaussian, we use the important result ∞ Z 2 2 e−ax +bxdx = (π/a)1/2eb /4a. −∞ 2 1 2 2 = √ e−k (∆x) /2. (9) 2π From Eq. (9) we see that the Fourier transform of the Gaussian wave packet is a Gaussian distributions of wavelengths [remember that the wave vector k is related to the wavelength λ by k = 2π/λ]. Writing 1 ∆k = (10) ∆x Eq. (9) becomes 1 2 2 g(k) = √ e−k /2(∆k) . (11) 2π We then find that for a Gaussian wave packet having width (standard deviation) ∆x, the distribution of wavelengths is also a Gaussian of width 1/∆x; i.e. the widths of the wave packet and its Fourier transform are not independent. The result that we have proved for a Gaussian wave packet is general for all wave packets. The width of the packet is always inversely related to the width of the distribution of wavelengths. In fact, it can be proved in general that 1 ∆x∆k ≥ (12) 2 where the widths for both the wave packet and its Fourier transform are defined as in Eq. (6). 2 The Notion of Probability We next need to have some elementary notion about what is meant by the probability of an event. The usual treatment of probability can be more mathematically formal than needed in the study of quantum mechanics. Rather than giving definitions of probability (usually defined using set theory), it is perhaps more useful to explain the basic notions that we need in terms of a simple example. Let us consider a paper bag that contains 25 red marbles and 75 green marbles. If the bag is shaken so that the marbles are thoroughly mixed and one marble is drawn at random from the sack, the probability of obtaining a red marble is 25/100 and the probability of obtaining a green marble is 75/100. We interpret this probability to mean that if we consider a large collection of identically prepared bags each containing 25 red marbles and 75 green marbles, and we draw one marble at random from each sack, a red marble can be expected to be found 25% of the time and a green marble can be expected to be found 75% of the time. In a crude way, we calculate the probability by dividing the number of possible outcomes for a given event by the total number of possible outcomes. In the next section we must modify this description for the case that the possible outcomes form a continuum. 3 3 An Implication of the Double-slit Experiment From the double-slit experiment performed on quantum particles3, we can conclude that the distribution of particles observed at the detector obeys some of the same mathematical relations as found in the intensity distribution of classical waves. The results of the double- slit experiment do not imply that electrons (for example) are waves. Instead, we can say that the equations that govern the behavior of electrons must be similar in some way to classical wave equations. Because the interference observed in classical waves is described by taking the absolute square of a complex number, we can conclude that there exists some possibly complex function Ψ(x, t) such that P (x, t) dx = Ψ∗(x, t)Ψ(x, t) dx = |Ψ(x, t)|2 dx (13) where P (x, t)dx is the probability that the observation of a particle at time t gives a result between x and x + dx. The function Ψ(x, t) is called a wavefunction, and the probability of observing a position has been carefully defined using an infinitesimal interval. The reason we need the infinitesimal interval is there are a continuum of possible outcomes of a position measurement. Because the number of possible outcomes is infinite, the probability at a point is ill-defined; we can only define the probability over an interval. Another statement for probabilities over a continuum is Z b Z b P = P (x, t) dx = Ψ∗(x, t)Ψ(x, t) dx (14) a a represents the probability that a position measurement gives a result that lies in the interval a ≤ x ≤ b at time t. 4 The de Broglie Wavelength, the Uncertainty Princi- ple and Momentum Space Wavefunctions Having concluded that a wavefunction for particles exists, we need some understanding of the connection between the wavelengths associated with a wavefunction and particle properties. The relation between the wavelength and momentum of a particle was first proposed by de Broglie who wrote h p =hk ¯ = (15) λ whereh ¯ = h/2π with h Planck’s constant. In class we have given some of the ideas that de Broglie used to develop this relation, but what is more important is the experiment of Davisson and Germer who developed electron diffraction methods that verified the de Broglie 3All particles obey the laws of quantum mechanics. When we say quantum particles, we imply that we consider particles with sufficiently small mass that the effects of quantum mechanics can be observed. 4 relation. The wavelength associated with the momentum of a particle is often called the de Broglie wavelength. We assume Eq. (15) to be a verified experimental fact. An important consequence of the de Broglie relation is obtained from Eq. (12). We know from Fourier transform relations that the distribution of wavelengths and the degree of localization of a wave packet in space are inversely related. By substituting Eq. (15) into Eq. (12) we obtain h¯ ∆x∆p ≥ (16) 2 the Heisenberg Uncertainty Principle.4 The uncertainty principle is a direct consequence of our conclusion that quantum particles must obey some kind of wave equation. The uncer- tainty principle states that it is impossible to determine both the momentum and position of a particle simultaneously. Because the usual boundary conditions for Newton’s second law are the specification of the momentum and position of a particle at the same time, the boundary conditions for classical mechanics are excluded in the quantum domain. Our abil- ity to predict the future motion of objects in classical mechanics (often called determinism) is impossible in the quantum domain. Consequently, in quantum theory the most we can know about a physical system must be expressed in terms of probabilities. Equation (13) expresses information about the probability of finding a particle at some location in space. The location of particles is not the only physical information we might want to know about a system. For example, as in classical mechanics, we might also want to know something about the momenta of the particles.
Recommended publications
  • Gaussian Wave Packets
    The Free Particle Gaussian Wave Packets The Gaussian wave packet initial state is one of the few states for which both the {|x i} and {|p i} basis representations are simple analytic functions and for which the time evolution in either representation can be calculated in closed analytic form. It thus serves as an excellent example to get some intuition about the Schr¨odinger equation. We define the {|x i} representation of the initial state to be 2 „ «1/4 − x 1 i p x 2 ψ (x, t = 0) = hx |ψ(0) i = e 0 e 4 σx (5.10) x 2 ~ 2 π σx √ The relation between our σx and Shankar’s ∆x is ∆x = σx 2. As we shall see, we 2 2 choose to write in terms of σx because h(∆X ) i = σx . Section 5.1 Simple One-Dimensional Problems: The Free Particle Page 292 The Free Particle (cont.) Before doing the time evolution, let’s better understand the initial state. First, the symmetry of hx |ψ(0) i in x implies hX it=0 = 0, as follows: Z ∞ hX it=0 = hψ(0) |X |ψ(0) i = dx hψ(0) |X |x ihx |ψ(0) i −∞ Z ∞ = dx hψ(0) |x i x hx |ψ(0) i −∞ Z ∞ „ «1/2 x2 1 − 2 = dx x e 2 σx = 0 (5.11) 2 −∞ 2 π σx because the integrand is odd. 2 Second, we can calculate the initial variance h(∆X ) it=0: 2 Z ∞ „ «1/2 − x 2 2 2 1 2 2 h(∆X ) i = dx `x − hX i ´ e 2 σx = σ (5.12) t=0 t=0 2 x −∞ 2 π σx where we have skipped a few steps that are similar to what we did above for hX it=0 and we did the final step using the Gaussian integral formulae from Shankar and the fact that hX it=0 = 0.
    [Show full text]
  • Lecture 4 – Wave Packets
    LECTURE 4 – WAVE PACKETS 1.2 Comparison between QM and Classical Electrons Classical physics (particle) Quantum mechanics (wave) electron is a point particle electron is wavelike * * motion described by F =ma for energy E, motion described by wavefunction & F = -∇ V (r) * − jωt Ψ()r,t = Ψ ()r e !ω = E * !2 & where V()r − potential energy - ∇2Ψ+V()rΨ=EΨ & 2m typically F due to electric fields from other - differential equation governing Ψ charges & V()r - (potential energy) - this is where the forces acting on the electron are taken into account probability density of finding electron at position & & Ψ()r ⋅ Ψ * ()r 1 p = mv,E = mv2 E = !ω, p = !k 2 & & & We shall now consider "free" electrons : F = 0 ∴ V()r = const. (for simplicity, take V ()r = 0) Lecture 4: Wave Packets September, 2000 1 Wavepackets and localized electrons For free electrons we have to solve Schrodinger equation for V(r) = 0 and previously found: & & * ()⋅ −ω Ψ()r,t = Ce j k r t - travelling plane wave ∴Ψ ⋅ Ψ* = C2 everywhere. We can’t conclude anything about the location of the electron! However, when dealing with real electrons, we usually have some idea where they are located! How can we reconcile this with the Schrodinger equation? Can it be correct? We will try to represent a localized electron as a wave pulse or wavepacket. A pulse (or packet) of probability of the electron existing at a given location. In other words, we need a wave function which is finite in space at a given time (i.e. t=0).
    [Show full text]
  • Path Integrals, Matter Waves, and the Double Slit Eric R
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Herman Batelaan Publications Research Papers in Physics and Astronomy 2015 Path integrals, matter waves, and the double slit Eric R. Jones University of Nebraska-Lincoln, [email protected] Roger Bach University of Nebraska-Lincoln, [email protected] Herman Batelaan University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/physicsbatelaan Jones, Eric R.; Bach, Roger; and Batelaan, Herman, "Path integrals, matter waves, and the double slit" (2015). Herman Batelaan Publications. 2. http://digitalcommons.unl.edu/physicsbatelaan/2 This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Herman Batelaan Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. European Journal of Physics Eur. J. Phys. 36 (2015) 065048 (20pp) doi:10.1088/0143-0807/36/6/065048 Path integrals, matter waves, and the double slit Eric R Jones, Roger A Bach and Herman Batelaan Department of Physics and Astronomy, University of Nebraska–Lincoln, Theodore P. Jorgensen Hall, Lincoln, NE 68588, USA E-mail: [email protected] and [email protected] Received 16 June 2015, revised 8 September 2015 Accepted for publication 11 September 2015 Published 13 October 2015 Abstract Basic explanations of the double slit diffraction phenomenon include a description of waves that emanate from two slits and interfere. The locations of the interference minima and maxima are determined by the phase difference of the waves.
    [Show full text]
  • On Wave-Packets Dynamics
    On Wave-Packets Dynamics Learning notes Paul Durham Scientific Computing Department, STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK 11 February 2020 Abstract These are working notes on wave-packets: their construction, behaviour and dynamics. Wave equations in classical and quantum physics are often linear. In such cases, wave-packets – linear combinations of solutions corresponding to different frequencies or energies – are themselves solutions of the wave equation, and may possess useful properties such as normalisability, localizability etc. They also tend to exhibit the motion occurring in quantum systems in a way that corresponds to classical concepts. These notes deal with the free motion and potential scattering of wave-packets, almost always in one dimension 1 . The basic theory here is (very) well known. Indeed, the quantum dynamics is essentially trivial, because we are considering only motion under a Hamiltonian that is constant in time. This means that we never have to solve the time-dependent Schrödinger equation (TDSE) directly; the solutions of the TDSE are simply linear combinations of energy eigenstate multiplied by the standard dynamical phase factor, which is what I mean by the term wave-packet. The fun part comes with a set of numerical calculations on simple models that demonstrate in great detail how wave-packet dynamics actually works. In these models, the wave-packets are always built from plane waves, because that fits the simple systems considered. But the basic theory applies to wave-packets constructed from energy eigenstates of any kind, depending on the system. C:\Blogs\Blog list\Post 3 - On wave-packet dynamics\Wave-Packet Dynamics.docx Contents 1 Classical wave-packets ...................................................................................................................
    [Show full text]
  • Informal Introduction to QM: Free Particle
    Chapter 2 Informal Introduction to QM: Free Particle Remember that in case of light, the probability of nding a photon at a location is given by the square of the square of electric eld at that point. And if there are no sources present in the region, the components of the electric eld are governed by the wave equation (1D case only) ∂2u 1 ∂2u − =0 (2.1) ∂x2 c2 ∂t2 Note the features of the solutions of this dierential equation: 1. The simplest solutions are harmonic, that is u ∼ exp [i (kx − ωt)] where ω = c |k|. This function represents the probability amplitude of photons with energy ω and momentum k. 2. Superposition principle holds, that is if u1 = exp [i (k1x − ω1t)] and u2 = exp [i (k2x − ω2t)] are two solutions of equation 2.1 then c1u1 + c2u2 is also a solution of the equation 2.1. 3. A general solution of the equation 2.1 is given by ˆ ∞ u = A(k) exp [i (kx − ωt)] dk. −∞ Now, by analogy, the rules for matter particles may be found. The functions representing matter waves will be called wave functions. £ First, the wave function ψ(x, t)=A exp [i(px − Et)/] 8 represents a particle with momentum p and energy E = p2/2m. Then, the probability density function P (x, t) for nding the particle at x at time t is given by P (x, t)=|ψ(x, t)|2 = |A|2 . Note that the probability distribution function is independent of both x and t. £ Assume that superposition of the waves hold.
    [Show full text]
  • 1 the Quantum-Classical Transition and Wave Packet Dispersion C. L
    The Quantum-Classical Transition and Wave Packet Dispersion C. L. Herzenberg Abstract Two recent studies have presented new information relevant to the transition from quantum behavior to classical behavior, and related this to parameters characterizing the universe as a whole. The present study based on a separate approach has developed similar results that appear to substantiate aspects of earlier work and also to introduce further new ideas. Keywords : quantum-classical transition, wave packet dispersion, wave packet evolution, Hubble time, Hubble flow, stochastic quantum mechanics, quantum behavior, classical behavior 1. INTRODUCTION The question of why our everyday world behaves in a classical rather than quantum manner has been of concern for many years. Generally, the assumption is that our world is not essentially classical, but rather quantum mechanical at a fundamental level. Various types of effects that may lead to classicity or classicality in quantum mechanical systems have been examined, including decoherence effects, recently in association with coarse- graining and the presence of fluctuations in experimental apparatus. (1,2) More recently, possible close connections of the transition from quantum to classical behavior with certain characteristics of the universe as a whole have been investigated.(3-6) In the present paper, we will examine such effects further in the context of the dispersion of quantum wave packets. 2. HOW DOES QUANTUM BEHAVIOR TURN INTO CLASSICAL BEHAVIOR? First we will revisit briefly the question of how quantum mechanical behavior can turn into classical mechanical behavior. In classical mechanics, objects are characterized by well-defined positions and momenta that are predictable from precise initial data.
    [Show full text]
  • Measurement in the De Broglie-Bohm Interpretation: Double-Slit, Stern-Gerlach and EPR-B Michel Gondran, Alexandre Gondran
    Measurement in the de Broglie-Bohm interpretation: Double-slit, Stern-Gerlach and EPR-B Michel Gondran, Alexandre Gondran To cite this version: Michel Gondran, Alexandre Gondran. Measurement in the de Broglie-Bohm interpretation: Double- slit, Stern-Gerlach and EPR-B. Physics Research International, Hindawi, 2014, 2014. hal-00862895v3 HAL Id: hal-00862895 https://hal.archives-ouvertes.fr/hal-00862895v3 Submitted on 24 Jan 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Measurement in the de Broglie-Bohm interpretation: Double-slit, Stern-Gerlach and EPR-B Michel Gondran University Paris Dauphine, Lamsade, 75 016 Paris, France∗ Alexandre Gondran École Nationale de l’Aviation Civile, 31000 Toulouse, Francey We propose a pedagogical presentation of measurement in the de Broglie-Bohm interpretation. In this heterodox interpretation, the position of a quantum particle exists and is piloted by the phase of the wave function. We show how this position explains determinism and realism in the three most important experiments of quantum measurement: double-slit, Stern-Gerlach and EPR-B. First, we demonstrate the conditions in which the de Broglie-Bohm interpretation can be assumed to be valid through continuity with classical mechanics.
    [Show full text]
  • Lecture 4: the Schrödinger Wave Equation
    4 THE SCHRODINGER¨ WAVE EQUATION 1 4 The Schr¨odinger wave equation We have noted in previous lectures that all particles, both light and matter, can be described as a localised wave packet. • De Broglie suggested a relationship between the effective wavelength of the wave function associated with a given matter or light particle its the momentum. This relationship was subsequently confirmed experimentally for electrons. • Consideration of the two slit experiment has provided an understanding of what we can and cannot achieve with the wave function representing the particle: The wave function Ψ is not observable. According to the statistical interpretation of Born, the quantity Ψ∗Ψ = |Ψ2| is observable and represents the probability density of locating the particle in a given elemental volume. To understand the wave function further, we require a wave equation from which we can study the evolution of wave functions as a function of position and time, in general within a potential field (e.g. the potential fields associated with the Coulomb or strong nuclear force). As we shall see, manipulation of the wave equation will permit us to calculate “most probable” values of a particle’s position, momentum, energy, etc. These quantities form the study of me- chanics within classical physics. Our quantum theory has now become quantum mechanics – the description of mechanical physics on the quantum scale. The particular sub-branch of quantum mechanics accessible via wave theory is sometimes referred to as wave mechanics. The time–dependent Schr¨odinger wave equation is the quantum wave equation ∂Ψ(x, t) h¯2 ∂2Ψ(x, t) ih¯ = − + V (x, t) Ψ(x, t), (1) ∂t 2m ∂x2 √ where i = −1, m is the mass of the particle,h ¯ = h/2π, Ψ(x, t) is the wave function representing the particle and V (x, t) is a potential energy function.
    [Show full text]
  • Chapter 6 the Quantum Wave Function Let's Just Get to the Point
    Chapter 6 The Quantum Wave Function Let’s just get to the point: Quantum mechanics represents a particle as a wavefunc- tion: ψ(~r, t). What does a wavefunction mean physically? It means that the probability that a particle is located in a volume dV is ψ(~r, t) 2dV . | | To understand this, let’s go back to classical electromagnetic radiation. EM waves have oscillating electric fields (~r, t). The energy E in a volume dV is E 2 E = ε0 [ (~r, t)] dV (1) E where ε0 is the permittivity of the vacuum. We’ll just drop these constants and use proportionality signs: 2 E [ (~r, t)] dV (2) ∝ E In quantum mechanics, energy is carried by photons in packets with energy hf. So the number of photons in dV at ~r is 2 E [ (~r, t)] dV 2 N = E [ (~r, t)] dV (3) hf ∝ hf ∝ E Since the square of a wave is called the intensity, we can say that the number of photons 2 in a small volume dV is proportional to the intensity of the light [ (~r, t)] in dV . There is a slight problem with Eq. (3). Namely, there can be a fraction onE the right hand side and there is an integer on the left hand side. No such thing as half a photon. So it would be better to interpret this by saying that if we took a lot of measurements, then the average number N of photons, or the most probable number of photons, is proportional to the intensity:h i 2 E [ (~r, t)] dV 2 N = E [ (~r, t)] dV (4) h i hf ∝ hf ∝ E So we are associating intensity (square of the wavefunction) with a probability of finding a particle in a small volume.
    [Show full text]
  • Quantum Physics I, Lecture Note 7
    Lecture 7 B. Zwiebach February 28, 2016 Contents 1 Wavepackets and Uncertainty 1 2 Wavepacket Shape Changes 4 3 Time evolution of a free wave packet 6 1 Wavepackets and Uncertainty A wavepacket is a superposition of plane waves eikx with various wavelengths. Let us work with wavepackets at t = 0. Such a wavepacket is of the form 1 Z 1 Ψ(x; 0) = p Φ(k)eikxdk: (1.1) 2π −1−∞ If we know Ψ(x; 0) then Φ(k) is calculable. In fact, by the Fourier inversion theorem, the function Φ(k) is the Fourier transform of Ψ(x; 0), so we can write 1 Z 1 Φ(k)=p Ψ(x; 0)e−ikxdx: (1.2) 2π −1−∞ Note the symmetry in the two equations above. Our goal here is to understand how the uncertainties in Ψ(x; 0) and Φ(k) are related. In the quantum mechanical interpretation of the above equations one ikx recalls that a plane wave with momentum ~k is of the form e . Thus the Fourier representation of the wave Ψ(x; 0) gives the way to represent the wave as a superposition of plane waves of different momenta. Figure 1: A Φ(k) that is centered about k = k0 and has width ∆k. Let us consider a positive-definite Φ(k) that is real, symmetric about a maximum at k = k0, and has a width or uncertainty ∆k, as shown in Fig. 1. The resulting wavefunction Ψ(x; 0) is centered around x = 0. This follows directly from the stationary phase argument applied to (1.1).
    [Show full text]
  • 1 Quantum Wave Packets in Space and Time and an Improved Criterion
    Quantum wave packets in space and time and an improved criterion for classical behavior C. L. Herzenberg Abstract An improved criterion for distinguishing conditions in which classical or quantum behavior occurs is developed by comparing classical and quantum mechanical measures of size while incorporating spatial and temporal restrictions on wave packet formation associated with limitations on spatial extent and duration. Introduction The existence of both quantum behavior and classical behavior in our universe and the nature of the transition between them have been subjects of discussion since the inception of quantum theory. It is a familiar observation that the large extended objects that we observe in everyday life seem to engage in classical behavior, while submicroscopic objects seem to engage in quantum behavior. When a sufficient number of small quantum objects are assembled together, classical behavior seemingly invariably ensues for the combination object, and this appears to be a very robust transition. The question arises as to whether some fairly general features of our universe might account for the fact that size matters in regard to classical and quantum behavior. Classical physics provides a deterministic description of the world in terms of localized objects undergoing well-defined motions, whereas quantum mechanics, on the other hand, provides a probabilistic description of the world in terms of waves and wave behavior. Here we will examine in a very simple manner some aspects of the circumstances in which a wave-based description of the physical world may merge into or overlap or be expressed in terms of the more familiar discrete object-based description of the physical world that we inhabit.
    [Show full text]
  • 5.3 Gaussian Wave Packet As Solution of the Free Schrödinger Equation
    5.3 Gaussian wave packet as solution of the free Schrödinger equation (Computational example) A Gaussian wave packet is formed by the superposition of plane waves with a Gaussian momentum distribution (see below). Free Schrödinger equation (FSE): Wave function of the Gaussian wave packet: clear all syms hbar m b x x0 X p p0 t positive Par=[m==1 hbar==1 b==1 x0==-5 p0==5/2] Par = 1 Plane waves Plane wave as a solution of the FSE: syms g_p f S g_p=sqrt(1/(2*pi*hbar))*exp(i*S/hbar) g_p = S=p*(x-x0)-p^2*t/(2*m) S = 1 g_p=sube(g_p,'S'==S) g_p = 2 Momentum distribution of the Gaussian wave packet Gaussian momentum distribution: f=sqrt(b)/sqrt(hbar*sqrt(sym(pi)))*exp(-b^2*(p-p0)^2/(2*hbar^2)) f = 3 Integration (Fourier transform) Argument f*g_p*exp(-i*p*(x-x0)/hbar) ans = expand(ans) ans = sube(ans,[m==1]); simplify(ans); 2 2*pi*ifourier(ans,p,X); psi=sube(ans,X==(x-x0)/hbar) psi = psi=simplify(psi) psi = 4 Density Density: rho=abs(psi)^2; rho=simplify(rho,'Steps',80) rho = 5 Plots t=0:2:20; x=linspace(-10,40,200); sube(rho,Par) ans = RHO=matlabFunction(ans); plot([0 0],[0 0.6],'k') hold on for n=1:size(t,2) plot(x,RHO(t(n),x)) txt{n}=sprintf('t=%2.f',t(n)); end axis([-10 40 0 0.6]) 3 xlabel('Position x') ylabel('\rho(x,t)') legend(txt) 6 Heisenberg's uncertainty relation It states that the position and momentum of an action quantum cannot be measured arbitrarily exactly.
    [Show full text]