Exploring the Universe with Type Ia Supernova

Total Page:16

File Type:pdf, Size:1020Kb

Exploring the Universe with Type Ia Supernova EMPLOYING MODERN STATISTICS TO EXPLORE THE UNIVERSE WITH TYPE IA SUPERNOVAE by Anja Weyant B.S. in Physics, Carnegie Mellon University, 2008 Submitted to the Graduate Faculty of the Kenneth P. Dietrich School of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2014 UNIVERSITY OF PITTSBURGH DIETRICH SCHOOL OF ARTS AND SCIENCES This dissertation was presented by Anja Weyant It was defended on April 22th 2014 and approved by William Michael Wood-Vasey, PhD, Assistant Professor Jeffrey Newman, PhD, Associate Professor Paul Shepard, PhD, Professor Larry Wasserman, PhD, Professor Andrew Zentner, PhD, Associate Professor Dissertation Director: William Michael Wood-Vasey, PhD, Assistant Professor ii EMPLOYING MODERN STATISTICS TO EXPLORE THE UNIVERSE WITH TYPE IA SUPERNOVAE Anja Weyant, PhD University of Pittsburgh, 2014 The Large Synoptic Survey Telescope (LSST) anticipates observing hundreds of thousands of well-measured Type Ia supernovae (SNe Ia). These stellar remnant explosions are exceptional in that they have a standardizeable light curve which allows for an accurate measurement of their luminosity. The standard nature of SNe Ia allow us to measure relative distances in the Universe with better than 6% precision in distance. With distance estimates in hand to large sets of galaxies through Type Ia Supernova (SN Ia) measurements, we can measure the expansion history of the Universe or create flow models of how galaxies (matter) near the Milky Way are moving. In this new regime of large datasets, weaknesses and limitations of the current techniques for estimating cosmological parameters and modeling local flows are becoming apparent. As statistical errors are reduced systematic uncertainties ranging from calibration to survey design and cadence to host galaxy contamination are dominating the error budget and lim- iting our ability to make improvements on cosmological measurements. Similarly, recent comparisons of flow models reveal systematic inconsistencies between different approaches. For my dissertation I have employed modern statistical methods to improve flow models in the local Universe by accounting for the non-uniform distribution of data across the sky and demonstrated how Approximate Bayesian Computation can tackle complicated likelihood functions in supernova cosmology. I also present the first results of a new near-infrared SN Ia survey called "SweetSpot" whose focus is on improving our ability to standardize the total luminosity of SNe Ia. iii TABLE OF CONTENTS PREFACE ......................................... xiii 1.0 INTRODUCTION .................................1 1.1 Measuring Properties of the Universe.....................2 1.1.1 The Luminosity Distance.......................2 1.1.2 Friedmann Equation..........................5 1.1.3 Fluid Equation.............................6 1.1.4 Equation of State............................7 1.1.5 Luminosity Distance and the Matter-Energy Content of the Universe8 1.2 The Local Peculiar Velocity Field....................... 11 1.3 Type Ia Supernovae as Standard Candles................... 12 1.3.1 Progenitor Scenarios.......................... 15 1.3.2 Observational tests of progenitor systems............... 16 1.3.2.1 Pre-explosion data....................... 16 1.3.2.2 Event Rates.......................... 17 1.3.2.3 Remnants............................ 18 1.3.2.4 Observed Event Properties.................. 19 1.3.3 Standardizing SN Ia Light Curves................... 20 1.4 Current limitations of SN Ia Data Sets.................... 22 1.5 Dissertation Overview............................. 24 2.0 AN UNBIASED METHOD OF MODELING THE LOCAL PECU- LIAR VELOCITY FIELD WITH TYPE IA SUPERNOVAE ...... 26 2.1 Introduction................................... 26 iv 2.2 Non-parametric Analysis of a Scalar Field.................. 33 2.2.1 Weighted Least Squares Estimator.................. 35 2.2.2 Coefficient Unbiased Estimator.................... 36 2.2.2.1 Estimating h(x)........................ 37 2.3 Determining Tuning Parameter via Risk Estimation............. 38 2.3.1 Risk Estimation for WLS....................... 38 2.3.2 Risk Estimation for CU........................ 39 2.4 Application to Simulated Data......................... 40 2.4.1 Simulated Data............................. 40 2.4.2 Recovered Peculiar Velocity Field from WLS............. 42 2.4.3 Recovered Peculiar Velocity Field from CU.............. 45 2.5 Application to Observed SN Ia data...................... 52 2.5.1 SN Ia Data............................... 52 2.5.2 WLS and CU Regressions on SN Ia Data............... 59 2.6 Dependence of CU and WLS on Bulk Flow Direction............ 66 2.7 Conclusion.................................... 72 2.8 acknowledgments................................ 73 3.0 LIKELIHOOD-FREE COSMOLOGICAL INFERENCE WITH TYPE IA SUPERNOVAE: APPROXIMATE BAYESIAN COMPUTATION FOR A COMPLETE TREATMENT OF UNCERTAINTY ....... 74 3.1 Introduction................................... 75 3.1.1 Classical Estimation of Cosmological Parameters from SN Ia Data. 76 3.2 General Problem Formulation......................... 79 3.2.1 A Simple Example........................... 81 3.3 Approximate Bayesian Computation..................... 89 3.3.1 ABC Rejection Samplers........................ 89 3.3.2 Adaptive ABC Algorithms....................... 92 3.3.3 Example: Revisited........................... 95 3.4 SMC ABC Cosmology with SDSS-II Supernovae............... 99 3.4.1 Simulation Setup............................ 99 v 3.4.2 SMC ABC Implementation...................... 102 3.4.3 Results and Discussion......................... 106 3.4.4 Type IIP Contamination........................ 109 3.5 Future Work................................... 112 3.6 Conclusions................................... 113 3.7 Acknowledgements............................... 114 4.0 SWEETSPOT: NEAR-INFRARED OBSERVATIONS OF THIRTEEN TYPE IA SUPERNOVAE FROM A NEW NOAO SURVEY PROB- ING THE NEARBY SMOOTH HUBBLE FLOW ............. 115 4.1 Introduction................................... 115 4.2 The Observation and Processing of the SN Ia Sample............ 118 4.2.1 Observations and Sample Selection.................. 118 4.2.2 Image Processing and Coaddition................... 121 4.2.3 Photometry and Calibration...................... 122 4.3 SN Ia Sample from the Literature....................... 130 4.4 Analysis..................................... 133 4.5 Results...................................... 143 4.5.1 Near-Infrared SN Ia Hubble Diagram................. 143 4.5.2 Absolute H-band Magnitude of a SN Ia................ 143 4.6 Discussion.................................... 147 4.6.1 NIR SN Ia as Standard Candles.................... 147 4.6.2 Absolute Brightness.......................... 148 4.7 SweetSpot: A 3-Year Survey Program with WHIRC............. 149 4.8 Conclusion.................................... 152 4.9 Acknowledgments................................ 152 5.0 CONCLUSIONS .................................. 154 APPENDIX A. CHAPTER 1 APPENDICES .................. 157 A.1 Bias on WLS coefficients............................ 157 A.2 Bias on CU Coefficients............................ 158 A.3 Risk Estimation................................. 159 vi A.4 Smoothing Matrix for CU Regression..................... 160 APPENDIX B. NON-PARAMETRICALLY SMOOTHING THE SIMU- LATED AND OBSERVED DATA ....................... 161 APPENDIX C. BIBLIOGRAPHY ......................... 162 vii LIST OF TABLES 1 SN Ia Data..................................... 54 2 Summary of Results................................ 62 3 Paired t-test results................................ 64 4 Summary of Dipole Results............................ 65 5 Probability of the 95% confidence interval containing the truth........ 68 6 SN Ia Properties.................................. 119 7 SN Ia Sample Summary I............................. 120 8 SN Ia Sample Summary II............................ 121 9 Photometric Calibration Terms.......................... 125 10 2MASS Calibration Stars............................. 127 11 SN Ia Light Curves................................ 128 12 H-band Maximum Apparent Magnitude for Current Sample.......... 136 viii LIST OF FIGURES 1 Supernova brightness corrected for light curve shape as a function of redshift (Hubble diagram) using a recent compilation of SNe Ia from Conley at al. (2011)........................................9 2 Cosmological constraints from Conley at al. (2011) including statistical and systematic uncertainty............................... 10 3 Quasi-bolometric light curve and spectra from 2003du.............. 14 4 2D distribution of 1000 simulated data points.................. 41 5 2D simulated peculiar velocity field in km/s, described by Equation 2.36.... 41 6 Estimated risk for WLS (black-solid) and CU (red-dashed)........... 43 7 Recovered velocity field (top), standard deviation (middle), and residuals (bot- tom) in km/s for WLS for one realization of the data (left) and the combined results of 100 realizations of the data (right)................... 44 8 Results for WLS forcing the tuning parameter to be J=8 created in an identical manner to the plots presented in Figure7..................... 45 9 Estimated risk for the sampling density with a minimum at l=4........ 46 10 Typical recovered sampling density for one realization of the data using the tuning parameter I=4 (top)............................ 47 11 Recovered velocity field (top), standard deviation (middle),
Recommended publications
  • Cosmicflows-3: Cosmography of the Local Void
    Draft version May 22, 2019 Preprint typeset using LATEX style AASTeX6 v. 1.0 COSMICFLOWS-3: COSMOGRAPHY OF THE LOCAL VOID R. Brent Tully, Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA Daniel Pomarede` Institut de Recherche sur les Lois Fondamentales de l'Univers, CEA, Universite' Paris-Saclay, 91191 Gif-sur-Yvette, France Romain Graziani University of Lyon, UCB Lyon 1, CNRS/IN2P3, IPN Lyon, France Hel´ ene` M. Courtois University of Lyon, UCB Lyon 1, CNRS/IN2P3, IPN Lyon, France Yehuda Hoffman Racah Institute of Physics, Hebrew University, Jerusalem, 91904 Israel Edward J. Shaya University of Maryland, Astronomy Department, College Park, MD 20743, USA ABSTRACT Cosmicflows-3 distances and inferred peculiar velocities of galaxies have permitted the reconstruction of the structure of over and under densities within the volume extending to 0:05c. This study focuses on the under dense regions, particularly the Local Void that lies largely in the zone of obscuration and consequently has received limited attention. Major over dense structures that bound the Local Void are the Perseus-Pisces and Norma-Pavo-Indus filaments sepa- rated by 8,500 km s−1. The void network of the universe is interconnected and void passages are found from the Local Void to the adjacent very large Hercules and Sculptor voids. Minor filaments course through voids. A particularly interesting example connects the Virgo and Perseus clusters, with several substantial galaxies found along the chain in the depths of the Local Void. The Local Void has a substantial dynamical effect, causing a deviant motion of the Local Group of 200 − 250 km s−1.
    [Show full text]
  • The Hestia Project: Simulations of the Local Group
    MNRAS 000,2{20 (2020) Preprint 13 August 2020 Compiled using MNRAS LATEX style file v3.0 The Hestia project: simulations of the Local Group Noam I. Libeskind1;2 Edoardo Carlesi1, Rob J. J. Grand3, Arman Khalatyan1, Alexander Knebe4;5;6, Ruediger Pakmor3, Sergey Pilipenko7, Marcel S. Pawlowski1, Martin Sparre1;8, Elmo Tempel9, Peng Wang1, H´el`ene M. Courtois2, Stefan Gottl¨ober1, Yehuda Hoffman10, Ivan Minchev1, Christoph Pfrommer1, Jenny G. Sorce11;12;1, Volker Springel3, Matthias Steinmetz1, R. Brent Tully13, Mark Vogelsberger14, Gustavo Yepes4;5 1Leibniz-Institut fur¨ Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam, Germany 2University of Lyon, UCB Lyon 1, CNRS/IN2P3, IUF, IP2I Lyon, France 3Max-Planck-Institut fur¨ Astrophysik, Karl-Schwarzschild-Str. 1, D-85748, Garching, Germany 4Departamento de F´ısica Te´orica, M´odulo 15, Facultad de Ciencias, Universidad Aut´onoma de Madrid, 28049 Madrid, Spain 5Centro de Investigaci´on Avanzada en F´ısica Fundamental (CIAFF), Facultad de Ciencias, Universidad Aut´onoma de Madrid, 28049 Madrid, Spain 6International Centre for Radio Astronomy Research, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia 7P.N. Lebedev Physical Institute of Russian Academy of Sciences, 84/32 Profsojuznaja Street, 117997 Moscow, Russia 8Potsdam University 9Tartu Observatory, University of Tartu, Observatooriumi 1, 61602 T~oravere, Estonia 10Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel 11Univ. Lyon, ENS de Lyon, Univ. Lyon I, CNRS, Centre de Recherche Astrophysique de Lyon, UMR5574, F-69007, Lyon, France 12Univ Lyon, Univ Lyon-1, Ens de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, F-69230, Saint-Genis-Laval, France 13Institute for Astronomy (IFA), University of Hawaii, 2680 Woodlawn Drive, HI 96822, USA 14Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Accepted | .
    [Show full text]
  • How Fast Can You Go
    Traveling on Earth How fast can you go . Fast walking 2 m/s . Fast running 12 m/s You are always moving, even when you are standing still. Below are some . Automobile 30 m/s speeds to ponder. All values are expressed in meters per second. Japanese Bullet Train 90 m/s . Passenger Aircraft, 737 260 m/s You are Travelling . Concord Supersonic Aircraft 600 m/s . Bullet 760 m/s . Earth's rotation, at North Pole 0 m/s . Earth's rotation, at New York City 354 m/s . Earth's rotation, at the Equator 463 m/s Going to Space . Earth orbiting Sun 29,780 m/s The escape velocity is the minimum speed needed for a free, non-propelled . Sun orbiting Milky Way Galaxy 230,000 m/s object (e.g. bullet) to escape from the gravitational influence of a massive body. It is slower the farther away from the body the object is, and slower . Milky Way moving through space 631,000 m/s for less massive bodies. Your total speed in New York City 891,134 m/s . Earth 11,186 m/s . Moon 2,380 m/s Solar System Objects . Mars 5,030 m/s Planets closer to the Sun travel faster: . Jupiter 60,200 m/s . Mercury orbiting Sun 47,870 m/s . Milky Way (from Sun's orbit) 500,000 m/s . Venus orbiting Sun 35,020 m/s . Earth orbiting Sun 29,780 m/s References . Mars orbiting Sun 24,077 m/s https://en.wikipedia.org/wiki/Galactic_year . Jupiter orbiting Sun 13,070 m/s https://en.wikipedia.org/wiki/Tropical_year .
    [Show full text]
  • Arxiv:1807.06205V1 [Astro-Ph.CO] 17 Jul 2018 1 Introduction2 3 the ΛCDM Model 18 2 the Sky According to Planck 3 3.1 Assumptions Underlying ΛCDM
    Astronomy & Astrophysics manuscript no. ms c ESO 2018 July 18, 2018 Planck 2018 results. I. Overview, and the cosmological legacy of Planck Planck Collaboration: Y. Akrami59;61, F. Arroja63, M. Ashdown69;5, J. Aumont99, C. Baccigalupi81, M. Ballardini22;42, A. J. Banday99;8, R. B. Barreiro64, N. Bartolo31;65, S. Basak88, R. Battye67, K. Benabed57;97, J.-P. Bernard99;8, M. Bersanelli34;46, P. Bielewicz80;8;81, J. J. Bock66;10, 7 12;95 57;92 71;56;57 2;6 45;32;48 42 85 J. R. Bond , J. Borrill , F. R. Bouchet ∗, F. Boulanger , M. Bucher , C. Burigana , R. C. Butler , E. Calabrese , J.-F. Cardoso57, J. Carron24, B. Casaponsa64, A. Challinor60;69;11, H. C. Chiang26;6, L. P. L. Colombo34, C. Combet73, D. Contreras21, B. P. Crill66;10, F. Cuttaia42, P. de Bernardis33, G. de Zotti43;81, J. Delabrouille2, J.-M. Delouis57;97, F.-X. Desert´ 98, E. Di Valentino67, C. Dickinson67, J. M. Diego64, S. Donzelli46;34, O. Dore´66;10, M. Douspis56, A. Ducout57;54, X. Dupac37, G. Efstathiou69;60, F. Elsner77, T. A. Enßlin77, H. K. Eriksen61, E. Falgarone70, Y. Fantaye3;20, J. Fergusson11, R. Fernandez-Cobos64, F. Finelli42;48, F. Forastieri32;49, M. Frailis44, E. Franceschi42, A. Frolov90, S. Galeotta44, S. Galli68, K. Ganga2, R. T. Genova-Santos´ 62;15, M. Gerbino96, T. Ghosh84;9, J. Gonzalez-Nuevo´ 16, K. M. Gorski´ 66;101, S. Gratton69;60, A. Gruppuso42;48, J. E. Gudmundsson96;26, J. Hamann89, W. Handley69;5, F. K. Hansen61, G. Helou10, D. Herranz64, E. Hivon57;97, Z. Huang86, A.
    [Show full text]
  • Evidence of Environmental Dependencies of Type Ia Supernovae from the Nearby Supernova Factory Indicated by Local Hα?
    A&A 560, A66 (2013) Astronomy DOI: 10.1051/0004-6361/201322104 & c ESO 2013 Astrophysics Evidence of environmental dependencies of Type Ia supernovae from the Nearby Supernova Factory indicated by local Hα? M. Rigault1, Y. Copin1, G. Aldering2, P. Antilogus3, C. Aragon2, S. Bailey2, C. Baltay4, S. Bongard3, C. Buton5, A. Canto3, F. Cellier-Holzem3, M. Childress6, N. Chotard1, H. K. Fakhouri2;7, U. Feindt,5, M. Fleury3, E. Gangler1, P. Greskovic5, J. Guy3, A. G. Kim2, M. Kowalski5, S. Lombardo5, J. Nordin2;8, P. Nugent9;10, R. Pain3, E. Pécontal11, R. Pereira1, S. Perlmutter2;7, D. Rabinowitz4, K. Runge2, C. Saunders2, R. Scalzo6, G. Smadja1, C. Tao12;13, R. C. Thomas9, and B. A. Weaver14 (The Nearby Supernova Factory) 1 Université de Lyon, Université de Lyon 1; CNRS/IN2P3, Institut de Physique Nucléaire de Lyon, 69622 Villeurbanne Cedex, France e-mail: [email protected] 2 Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA 3 Laboratoire de Physique Nucléaire et des Hautes Énergies, Université Pierre et Marie Curie Paris 6, Université Paris Diderot Paris 7, CNRS-IN2P3, 4 place Jussieu, 75252 Paris Cedex 05, France 4 Department of Physics, Yale University, New Haven, CT 06520-8121, USA 5 Physikalisches Institut, Universität Bonn, Nußallee 12, 53115 Bonn, Germany 6 Research School of Astronomy and Astrophysics, The Australian National University, Mount Stromlo Observatory, Cotter Road, Weston Creek ACT 2611, Australia 7 Department of Physics, University of California Berkeley, 366 LeConte
    [Show full text]
  • Publications for Richard Scalzo 2021 2020 2019 2018 2017 2016
    Publications for Richard Scalzo 2021 2019 Olierook, H., Scalzo, R., Kohn, D., Chandra, R., Farahbakhsh, Scalzo, R., Kohn, D., Olierook, H., Houseman, G., Chandra, R., E., Clark, C., Reddy, S., Muller, R. (2021). Bayesian geological Girolami, M., Cripps, S. (2019). Efficiency and robustness in and geophysical data fusion for the construction and uncertainty Monte Carlo sampling for 3-Dgeophysical inversions with quantification of 3D geological models. Geoscience Frontiers, Obsidian v0.1.2: setting up for success. Geoscientific Model 12(1), 479-493. <a Development, 12, 2941-2960. <a href="http://dx.doi.org/10.1016/j.gsf.2020.04.015">[More href="http://dx.doi.org/10.5194/gmd-12-2941-2019">[More Information]</a> Information]</a> Sweeney, D., Norris, B., Tuthill, P., Scalzo, R., Wei, J., Betters, Scalzo, R., Parent, E., Burns, C., Childress, M., Tucker, B., C., Leon-Saval, S. (2021). Learning the lantern: neural network Brown, P., Contreras, C., Hsiao, E., Krisciunas, K., Morrell, N., applications to broadband photonic lantern modeling. Journal et al (2019). Probing type Ia supernova properties using of Astronomical Telescopes, Instruments, and Systems, 7(2), bolometric light curves from the Carnegie Supernova Project 028007-1-028007-20. <a and the CfA Supernova Group. Monthly Notices of the Royal href="http://dx.doi.org/10.1117/1.JATIS.7.2.028007">[More Astronomical Society, 483(1), 628-647. <a Information]</a> href="http://dx.doi.org/10.1093/mnras/sty3178">[More Wong, A., Norris, B., Tuthill, P., Scalzo, R., Lozi, J., Vievard, Information]</a> S., Guyon, O. (2021). Predictive control for adaptive optics Varidel, M., Croom, S., Lewis, G., Brewer, B., Di Teodoro, E., using neural networks.
    [Show full text]
  • Local Galaxy Flows Within 5
    A&A 398, 479–491 (2003) Astronomy DOI: 10.1051/0004-6361:20021566 & c ESO 2003 Astrophysics Local galaxy flows within 5 Mpc?;?? I. D. Karachentsev1,D.I.Makarov1;11,M.E.Sharina1;11,A.E.Dolphin2,E.K.Grebel3, D. Geisler4, P. Guhathakurta5;6, P. W. Hodge7, V. E. Karachentseva8, A. Sarajedini9, and P. Seitzer10 1 Special Astrophysical Observatory, Russian Academy of Sciences, N. Arkhyz, KChR 369167, Russia 2 Kitt Peak National Observatory, National Optical Astronomy Observatories, PO Box 26732, Tucson, AZ 85726, USA 3 Max-Planck-Institut f¨ur Astronomie, K¨onigstuhl 17, 69117 Heidelberg, Germany 4 Departamento de F´ısica, Grupo de Astronom´ıa, Universidad de Concepci´on, Casilla 160-C, Concepci´on, Chile 5 Herzberg Fellow, Herzberg Institute of Astrophysics, 5071 W. Saanich Road, Victoria, B.C. V9E 2E7, Canada 6 Permanent address: UCO/Lick Observatory, University of California at Santa Cruz, Santa Cruz, CA 95064, USA 7 Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195, USA 8 Astronomical Observatory of Kiev University, 04053, Observatorna 3, Kiev, Ukraine 9 Department of Astronomy, University of Florida, Gainesville, FL 32611, USA 10 Department of Astronomy, University of Michigan, 830 Dennison Building, Ann Arbor, MI 48109, USA 11 Isaac Newton Institute, Chile, SAO Branch Received 10 September 2002 / Accepted 22 October 2002 Abstract. We present Hubble Space Telescope/WFPC2 images of sixteen dwarf galaxies as part of our snapshot survey of nearby galaxy candidates. We derive their distances from the luminosity of the tip of the red giant branch stars with a typical accuracy of 12%.
    [Show full text]
  • Type Ia Supernova Rate at a Redshift of ∼0.1
    A&A 423, 881–894 (2004) Astronomy DOI: 10.1051/0004-6361:20035948 & c ESO 2004 Astrophysics Type Ia supernova rate at a redshift of ∼0.1 G. Blanc1,12,22,C.Afonso1,4,8,23,C.Alard24,J.N.Albert2, G. Aldering15,,A.Amadon1, J. Andersen6,R.Ansari2, É. Aubourg1,C.Balland13,21,P.Bareyre1,4,J.P.Beaulieu5, X. Charlot1, A. Conley15,, C. Coutures1,T.Dahlén19, F. Derue13,X.Fan16, R. Ferlet5, G. Folatelli11, P. Fouqué9,10,G.Garavini11, J. F. Glicenstein1, B. Goldman1,4,8,23, A. Goobar11, A. Gould1,7,D.Graff7,M.Gros1, J. Haissinski2, C. Hamadache1,D.Hardin13,I.M.Hook25, J. de Kat1,S.Kent18,A.Kim15, T. Lasserre1, L. Le Guillou1,É.Lesquoy1,5, C. Loup5, C. Magneville1, J. B. Marquette5,É.Maurice3,A.Maury9, A. Milsztajn1, M. Moniez2, M. Mouchet20,22,H.Newberg17,S.Nobili11, N. Palanque-Delabrouille1 , O. Perdereau2,L.Prévot3,Y.R.Rahal2, N. Regnault2,14,15,J.Rich1, P. Ruiz-Lapuente27, M. Spiro1, P. Tisserand1, A. Vidal-Madjar5, L. Vigroux1,N.A.Walton26, and S. Zylberajch1 1 DSM/DAPNIA, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France 2 Laboratoire de l’Accélérateur Linéaire, IN2P3 CNRS, Université Paris-Sud, 91405 Orsay Cedex, France 3 Observatoire de Marseille, 2 pl. Le Verrier, 13248 Marseille Cedex 04, France 4 Collège de France, Physique Corpusculaire et Cosmologie, IN2P3 CNRS, 11 pl. M. Berthelot, 75231 Paris Cedex, France 5 Institut d’Astrophysique de Paris, INSU CNRS, 98 bis boulevard Arago, 75014 Paris, France 6 Astronomical Observatory, Copenhagen University, Juliane Maries Vej 30, 2100 Copenhagen, Denmark 7 Departments of Astronomy and Physics, Ohio
    [Show full text]
  • Arxiv:0705.4139V2 [Astro-Ph] 14 Dec 2007 the Bulk Motion of the Local Sheet Away from the Local Void
    Our Peculiar Motion Away from the Local Void R. Brent Tully, Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 and Edward J. Shaya University of Maryland, Astronomy Department, College Park, MD 20743 and Igor D. Karachentsev. Special Astrophysical Observatory, Nizhnij Arkhyz, Karachaevo-Cherkessia, Russia and H´el`eneM. Courtois, Dale D. Kocevski, and Luca Rizzi Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 and Alan Peel University of Maryland, Astronomy Department, College Park, MD 20743 ABSTRACT The peculiar velocity of the Local Group of galaxies manifested in the Cosmic Microwave Background dipole is found to decompose into three dominant components. The three compo- nents are clearly separated because they arise on distinct spatial scales and are fortuitously almost orthogonal in their influences. The nearest, which is distinguished by a velocity discontinuity at ∼ 7 Mpc, arises from the evacuation of the Local Void. We lie in the Local Sheet that bounds the void. Random motions within the Local Sheet are small and we advocate a reference frame with respect to the Local Sheet in preference to the Local Group. Our Galaxy participates in arXiv:0705.4139v2 [astro-ph] 14 Dec 2007 the bulk motion of the Local Sheet away from the Local Void. The component of our motion on an intermediate scale is attributed to the Virgo Cluster and its surroundings, 17 Mpc away. The third and largest component is an attraction on scales larger than 3000 km s−1 and centered near the direction of the Centaurus Cluster. The amplitudes of the three components are 259, 185, and 455 km s−1, respectively, adding collectively to 631 km s−1 in the reference frame of the Local Sheet.
    [Show full text]
  • Type Ia Supernovae As Stellar Endpoints and Cosmological Tools
    REVIEW Published 14 Jun 2011 | DOI: 10.1038/ncomms1344 Type Ia supernovae as stellar endpoints and cosmological tools D. Andrew Howell1,2 Empirically, Type Ia supernovae are the most useful, precise, and mature tools for determining astronomical distances. Acting as calibrated candles they revealed the presence of dark energy and are being used to measure its properties. However, the nature of the Type Ia explosion, and the progenitors involved, have remained elusive, even after seven decades of research. But now, new large surveys are bringing about a paradigm shift—we can finally compare samples of hundreds of supernovae to isolate critical variables. As a result of this, and advances in modelling, breakthroughs in understanding all aspects of these supernovae are finally starting to happen. uest stars (who could have imagined they were distant stellar explosions?) have been surprising humans for at least 950 years, but probably far longer. They amazed and confounded the likes of Tycho, Kepler and Galileo, to name a few. But it was not until the separation of these events G 1 into novae and supernovae by Baade and Zwicky that progress understanding them began in earnest . This process of splitting a diverse group into related subsamples to yield insights into their origin would be repeated again and again over the years, first by Minkowski when he separated supernovae of Type I (no hydrogen in their spectra) from Type II (have hydrogen)2, and then by Elias et al. when they deter- mined that Type Ia supernovae (SNe Ia) were distinct3. We now define Type Ia supernovae as those without hydrogen or helium in their spectra, but with strong ionized silicon (SiII), which has observed absorption lines at 6,150, 5,800 and 4,000 Å (ref.
    [Show full text]
  • A List of Nearby Dwarf Galaxies Towards the Local Void in Hercules-Aquila
    ASTRONOMY & ASTROPHYSICS MARCH I 1999, PAGE 221 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 135, 221–226 (1999) A list of nearby dwarf galaxies towards the Local Void in Hercules-Aquila V.E. Karachentseva1,2, I.D. Karachentsev1,3, and G.M. Richter4 1 Visiting astronomer, Astrophysikalisches Institut Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany 2 Astronomical Observatory of Kiev University, Observatorna 3, 254053, Kiev, Ukraine 3 Special Astrophysical Observatory, Russian Academy of Sciences, N. Arkhyz, KChR, 357147, Russia 4 Astrophysicalisches Institut Potsdam, an der Sternwarte 16, D-14482 Potsdam, Germany Received July 6; accepted September 21, 1998 Abstract. Based on film copies of the POSS-II we in- Our main goal was to search for new nearby dwarf spected a wide area of ∼ 6000ut◦ in the direction of the galaxies in this Local Void. Because the Local Void begins h m ◦ nearest cosmic void: {RA = 18 38 , D =+18,V0 < actually just beyond the Local Group edge, we obtain here 1500 km s−1}. As a result we present a list of 78 nearby unprecedently a low threshold for detection of very faint dwarf galaxy candidates which have angular diameters dwarf galaxies in a void, which is an order of magnitude 0 00 ∼> 0.5 and a mean surface brightness ∼< 26 mag/ut .Of lowerthanfordetectioninothervoids. them 22 are in the direction of the Local Void region. To measure their redshifts, a HI survey of these objects is undertaken on the 100 m Effelsberg telescope. 2. Field of the search Key words: galaxies: general — galaxies: dwarf To outline the position of the Local Void on the sky, we reproduce in Fig.
    [Show full text]
  • Kasliwal Phd Thesis
    Bridging the Gap: Elusive Explosions in the Local Universe Thesis by Mansi M. Kasliwal Advisor Professor Shri R. Kulkarni In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2011 (Defended April 26, 2011) ii c 2011 Mansi M. Kasliwal All rights Reserved iii Acknowledgements The first word that comes to my mind to describe my learning experience at Caltech is exhilarating. I have no words to thank my “Guru”, Professor Shri Kulkarni. Shri taught me the “Ps” necessary to Pursue the Profession of a Professor in astroPhysics. In addition to Passion & Perseverance, I am now Prepared for Papers, Proposals, Physics, Presentations, Politics, Priorities, oPPortunity, People-skills, Patience and PJs. Thanks to the awesomely fantastic Palomar Transient Factory team, especially Peter Nugent, Robert Quimby, Eran Ofek and Nick Law for sharing the pains and joys of getting a factory off-the-ground. Thanks to Brad Cenko and Richard Walters for the many hours spent taming the robot on mimir2:9. Thanks to Avishay Gal-Yam and Lars Bildsten for illuminating discussions on different observational and theoretical aspects of transients in the gap. The journey from idea to first light to a factory churning out thousands of transients has been so much fun that I would not trade this experience for any other. Thanks to Marten van Kerkwijk for supporting my “fishing in new waters” project with the Canada France Hawaii Telescope. Thanks to Dale Frail for supporting a “kissing frogs” radio program. Thanks to Sterl Phinney, Linqing Wen and Samaya Nissanke for great discussions on the challenge of finding the light in the gravitational sound wave.
    [Show full text]