Heat and Mass Transfer During Lignocellulosic Biomass Torrefaction: Contributions from the Major Components—Cellulose, Hemicellulose, and Lignin

Total Page:16

File Type:pdf, Size:1020Kb

Heat and Mass Transfer During Lignocellulosic Biomass Torrefaction: Contributions from the Major Components—Cellulose, Hemicellulose, and Lignin processes Article Heat and Mass Transfer during Lignocellulosic Biomass Torrefaction: Contributions from the Major Components—Cellulose, Hemicellulose, and Lignin Ken-ichiro Tanoue 1,*, Kentaro Hikasa 1, Yuuki Hamaoka 1, Akihiro Yoshinaga 1, Tatsuo Nishimura 1, Yoshimitsu Uemura 2,3 and Akihiro Hideno 4 1 Department of Mechanical Engineering, School of Sciences and Engineering for Innovation, Yamaguchi University, Tokiwadai 2-16-1, Ube, Yamaguchi 755-8611, Japan; [email protected] (K.H.); [email protected] (Y.H.); [email protected] (A.Y.); [email protected] (T.N.) 2 NPO Kuramae Bioenergy, Minato-ku, Tokyo 108-0023, Japan; [email protected] 3 Center for Biofuel and Biochemical Research, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia 4 Paper industry innovation center of Ehime University, 127 Mendori-cho, Shkokuchuo 799-0113, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-836-85-9122 Received: 27 June 2020; Accepted: 6 August 2020; Published: 9 August 2020 Abstract: The torrefaction of three representative types of biomass—bamboo, and Douglas fir and its bark—was carried out in a cylindrical-shaped packed bed reactor under nitrogen flow at 573 K of the reactor wall temperature. As the thermal energy for the torrefaction was supplied from the top and the side of the bed, the propagation of the temperature profile of the bed is a crucial factor for discussing and improving the torrefaction reactor performance. Therefore, the temperature and gas flow rate (vector) profiles throughout the bed were calculated by model simulation so as to scrutinize this point. The measured temperature at a certain representative location (z = 30 mm and r = 38 mm) of the bed was well reproduced by the simulation. The volume faction of the bed at temperatures higher than 500 K at 75 min was 0.89, 0.85, and 0.99 for bamboo, and Douglas fir and its bark, respectively. It was found that the effective thermal conductivity is the determining factor for this difference. The heat of the reactions was found to be insignificant. Keywords: biomass torrefaction; packed bed reactor; biomass major components; reaction enthalpy; numerical simulation 1. Introduction Biomass is one of the representative renewable energy sources, and is one of the only energy sources that is tangible, as it consists of carbon, hydrogen, oxygen, and some minor atoms. Therefore, one of the near-future applications for biomass is the production of solid fuels. Torrefaction is a promising and simple technology for producing high-quality solid fuels from biomass [1–8]. Heat transfer within biomass is an important factor for determining the performance of torrefaction, as the size of biomass in the torrefaction reactor is larger than that for the other conversion technologies, such as gasification or liquefaction. Kinetic studies of heat and mass transfer are also being conducted experimentally and numerically regarding how much production can be expected and how much heat is required by torrefaction. A two-step parallel successive reaction model for all major components during pyrolysis, when the temperature was higher than 400 ◦C, has been reported by Miller et al. [9]. Their model, which was Processes 2020, 8, 959; doi:10.3390/pr8080959 www.mdpi.com/journal/processes Processes 2020, 8, x FOR PEER REVIEW 2 of 13 Processes 2020, 8, 959 2 of 13 pyrolysis, when the temperature was higher than 400 °C, has been reported by Miller et al. [9]. Their model, which was suggested by Di Blasi (1994) [10] for cellulose pyrolysis, was extended to hemicellulosesuggested by Dipyrolysis Blasi (1994) and [lignin10] for pyrolysis cellulose on pyrolysis, the basis was of extendedprevious toexperimental hemicellulose data. pyrolysis It has also and beenlignin reported pyrolysis by on Kawamoto the basis of that previous the cellulose experimental of biomass data. is It composed has also been of crystalline reported by (long Kawamoto block) and that amorphousthe cellulose (short of biomass block) is composedalternately, of like crystalline a block (long co-polymer block) and [11]. amorphous Decomposition (short block)starts alternately,at around 200like °C a block in the co-polymer amorphous [ 11state,]. Decomposition and the crystalline starts hardly at around decomposes 200 ◦C in at the that amorphous temperature. state, At andaround the 300crystalline °C, amorphous hardly decomposes decomposition at that is transmitted temperature. to Atthe around crystalline 300 ◦material,C, amorphous and the decomposition decomposition is progressestransmitted rapidly. to the crystalline material, and the decomposition progresses rapidly. The heat ofof thethe reactionsreactions during during pyrolysis pyrolysis or or torrefaction torrefaction have have been been summarized summarized in relationin relation to the to thechar char formation formation [12– 17[12–17].]. In particular, In particular, the heat the ofheat the of reactions the reactions during during pyrolysis pyrolysis were measured were measured directly directlyusing DSC using (Di ffDSCerential (Differential Scanning Calorimetry),Scanning Calorimetry), and it has beenand it suggested has been that, suggested firstly, anthat, endothermic firstly, an endothermicreaction will reaction occur, and will then occur, an exothermicand then an reaction exothermic will reaction successively will successively occur [12,14 –occur16]. The[12,14–16]. heat of Thethe pyrolysesheat of the of pyrolyses all of the of major all of components the major comp haveonents been reported have been qualitatively reported qualitatively using DTA (diusingfferential DTA (differentialthermal analysis) thermal [18]. analysis)[18]. Although direct Although measurement direct measurement by DSC for the by heat DSC of afor reaction the heat during of a cellulosereaction duringpyrolysis cellulose was reported pyrolysis by was Mok reported et al. [12 by], thereMok areet al no. [12], data there by DSC are no for data the heatby DSC of reaction for the heat during of reactionhemicellulose during pyrolysis hemicellulose and lignin pyrolysis pyrolysis. and As lignin heat and pyrolysis. mass transfer As heat during and pyrolysis mass transfer were reviewed during pyrolysisby Di Blasi were (2008) reviewed [19], it by has Di beenBlasi studied(2008) [19], using it has a chemical been studied reaction using model a chemical suitable reaction for the model heat suitableand mass for transfer the heat experimental and mass transfer results experimental [20–26], and results an analysis [20–26], using and the an heatanalysis of chemical using the reaction heat of chemicalcommensurate reaction with commensurate temperature changewith temperature has also been change conducted has also [20 been–23]. conducted [20–23]. In addition, the the effect effect of inorganic materials in biomass feedstock on torrefaction has been investigated by by S. S. Zhang et al. [27]. [27]. They They found found that that when when the the torrefaction torrefaction temperature temperature was was 270 270 °C,◦C, the product yields for raw rice husk were 55% in char, 23% in liquid, and 21% in gas, while the product yieldsyields for for rice rice husk husk with with a reduced a reduced potassium potassium concentration concentration of less of than less 1 wt%than of 1 allwt% inorganic of all inorganiccompounds compounds were 60% were in char, 60% 23% in inchar, liquid, 23% andin liquid, 17% in and gas. 17% in gas. There are manymany varietiesvarieties of of biomass, biomass, but but few few reports reports have have been been generalized generalized and and analyzed analyzed for thefor thethermochemical thermochemical reaction reaction of the of thermalthe thermal decomposition decomposition behavior, behavior, and and it is it not is clearnot clear about about heat heat and andmass mass transfer transfer in low in temperaturelow temperature regions, regions, like torrefaction.like torrefaction. In this study, study, we aimed to generalize the biom biomassass torrefaction behavior using the concentrations of the major constituents of cellulose, hemicellulos hemicellulose,e, and and lignin. lignin. Specifically, Specifically, as as shown shown in in Figure Figure 11,, the heat of the the reaction reaction for the the major major components components of the biomass during pyrolysis was measured. We We also experimentally investigatedinvestigated thethe biomassbiomass torrefaction torrefaction process process on on a a packed packed bed bed of of small small particles particles of ofbiomass, biomass, because because a big a big chunk chunk of a of biomass a biomass slab isslab di ffiiscult difficult to handle to handle and has and no has assurance no assurance for spatial for spatialuniformity. uniformity. Furthermore, Furthermore, the heat the and heat mass and transfer mass transfer simulation simulation during torrefactionduring torrefaction in the biomass in the biomasspacked bed packed were bed performed were performed using the using heat ofthe the heat chemical of the chemical reaction andreaction the pyrolysis and the pyrolysis model by model Miller byet al.Miller [9]. et The al. validity [9]. The ofvalidity the numerical of the numerical simulation simulation model was model compared was compared with that with of the that biomass of the biomasstorrefaction torrefaction process experiment.process experiment. Figure 1. ConceptConcept of of this this work work to to investigate the biomass torrefaction processes. 2. Materials and Methods Processes 2020,
Recommended publications
  • What Is Still Limiting the Deployment of Cellulosic Ethanol? Analysis of the Current Status of the Sector
    applied sciences Review What is still Limiting the Deployment of Cellulosic Ethanol? Analysis of the Current Status of the Sector Monica Padella *, Adrian O’Connell and Matteo Prussi European Commission, Joint Research Centre, Directorate C-Energy, Transport and Climate, Energy Efficiency and Renewables Unit C.2-Via E. Fermi 2749, 21027 Ispra, Italy; [email protected] (A.O.); [email protected] (M.P.) * Correspondence: [email protected] Received: 16 September 2019; Accepted: 15 October 2019; Published: 24 October 2019 Abstract: Ethanol production from cellulosic material is considered one of the most promising options for future biofuel production contributing to both the energy diversification and decarbonization of the transport sector, especially where electricity is not a viable option (e.g., aviation). Compared to conventional (or first generation) ethanol production from food and feed crops (mainly sugar and starch based crops), cellulosic (or second generation) ethanol provides better performance in terms of greenhouse gas (GHG) emissions savings and low risk of direct and indirect land-use change. However, despite the policy support (in terms of targets) and significant R&D funding in the last decade (both in EU and outside the EU), cellulosic ethanol production appears to be still limited. The paper provides a comprehensive overview of the status of cellulosic ethanol production in EU and outside EU, reviewing available literature and highlighting technical and non-technical barriers that still limit its production at commercial scale. The review shows that the cellulosic ethanol sector appears to be still stagnating, characterized by technical difficulties as well as high production costs.
    [Show full text]
  • Cellulose Structural Changes During Mild Torrefaction of Eucalyptus Wood
    polymers Article Cellulose Structural Changes during Mild Torrefaction of Eucalyptus Wood Ana Lourenço 1,* , Solange Araújo 1, Jorge Gominho 1 and Dmitry Evtuguin 2,* 1 Forest Research Center, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal; [email protected] (S.A.); [email protected] (J.G.) 2 CICECO, Chemistry Department, University of Aveiro, Campus de Santiago, P-3810-193 Aveiro, Portugal * Correspondence: [email protected] (A.L.); [email protected] (D.E.); Tel.: +351-21365-3384 (A.L.); +351-23440-1526 (D.E.) Received: 5 November 2020; Accepted: 26 November 2020; Published: 28 November 2020 Abstract: The changes in the cellulose structure of eight Eucalyptus species (E. botryoides, E. globulus, E. grandis, E. maculata, E. propinqua, E. rudis, E. saligna and E. viminalis) in a mild torrefaction (from 160 ◦C to 230 ◦C, 3 h) were studied in situ and after cellulose isolation from the wood by solid-state carbon nuclear magnetic resonance (13C NMR), wide angle X-ray scattering (WAXS), Fourier transform infrared spectroscopy (FTIR) and by analytic pyrolysis coupled with gas chromatography and mass spectrometry (Py-GC/MS). Changes in molecular weight were assessed by viscosimetry. A small decrease in cellulose crystallinity (ca. 2%–3%) was attributed to its amorphization on crystallite surfaces as a result of acid hydrolysis and free radical reactions resulting in the homolytic splitting of glycosidic bonds. The degree of the cellulose polymerization (DPv) decreased more than twice during the heat treatment of wood. It has been proposed that changes in the supramolecular structure of cellulose and in molecular weight during a heat treatment can be affected by the amount of lignin present in the wood.
    [Show full text]
  • Download PDF (Inglês)
    Brazilian Journal of Chemical ISSN 0104-6632 Printed in Brazil Engineering www.abeq.org.br/bjche Vol. 32, No. 01, pp. 23 - 33, January - March, 2015 dx.doi.org/10.1590/0104-6632.20150321s00003146 EVALUATION OF COMPOSITION, CHARACTERIZATION AND ENZYMATIC HYDROLYSIS OF PRETREATED SUGAR CANE BAGASSE A. A. Guilherme1*, P. V. F. Dantas1, E. S. Santos1, F. A. N. Fernandes2 and G. R. Macedo1 1Department of Chemical Engineering, Federal University of Rio Grande do Norte, UFRN, Av. Senador Salgado Filho 3.000, Campus Universitário, Lagoa Nova, Bloco 16, Unidade II, 59.078-970, Natal - RN, Brazil. Phone: + (55) 84 3215 3769, Fax: + (55) 84 3215 3770 E-mail: [email protected] 2Department of Chemical Engineering, Federal University of Ceará, UFC, Campus do Pici, Bloco 709, 60455-760, Fortaleza - CE, Brazil. (Submitted: December 2, 2013 ; Revised: March 28, 2014 ; Accepted: March 31, 2014) Abstract - Glucose production from sugarcane bagasse was investigated. Sugarcane bagasse was pretreated by four different methods: combined acid and alkaline, combined hydrothermal and alkaline, alkaline, and peroxide pretreatment. The raw material and the solid fraction of the pretreated bagasse were characterized according to the composition, SEM, X-ray and FTIR analysis. Glucose production after enzymatic hydrolysis of the pretreated bagasse was also evaluated. All these results were used to develop relationships between these parameters to understand better and improve this process. The results showed that the alkaline pretreatment, using sodium hydroxide, was able to reduce the amount of lignin in the sugarcane bagasse, leading to a better performance in glucose production after the pretreatment process and enzymatic hydrolysis.
    [Show full text]
  • Lignocellulosic Biomass Fractionation by Mineral Acids and Resulting
    Lignocellulosic biomass fractionation by mineral acids and resulting extract purification processes: Conditions, yields, and purities Vincent Oriez, Jérôme Peydecastaing, Pierre-Yves Pontalier To cite this version: Vincent Oriez, Jérôme Peydecastaing, Pierre-Yves Pontalier. Lignocellulosic biomass fractionation by mineral acids and resulting extract purification processes: Conditions, yields, and purities. Molecules, MDPI, 2019, 24 (23), 21 p. 10.3390/molecules24234273. hal-02622871 HAL Id: hal-02622871 https://hal.inrae.fr/hal-02622871 Submitted on 26 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License molecules Review Lignocellulosic Biomass Fractionation by Mineral Acids and Resulting Extract Purification Processes: Conditions, Yields, and Purities Vincent Oriez * ,Jérôme Peydecastaing and Pierre-Yves Pontalier * Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRA, INPT, 4 allée Emile Monso, 31030 Toulouse, France; [email protected] * Correspondence: [email protected] or [email protected] (V.O.); [email protected] (P.-Y.P.) Academic Editor: Rafał Łukasik Received: 14 October 2019; Accepted: 14 November 2019; Published: 23 November 2019 Abstract: Fractionation of lignocellulose is a fundamental step in the valorization of cellulose, hemicelluloses, and lignin to produce various sustainable fuels and chemicals.
    [Show full text]
  • Lignocellulosic Biomass for Advanced Biofuels and Bioproducts: Workshop Report, DOE/SC-0170
    DRAFT: February 2015 Bioenergy Workshop June 23–24, 2014, Washington, D.C. Convened by U.S. Department of Energy Office of Science Office of Biological and Environmental Research Co-Chairs Erich Grotewold, Ph.D Kristala L. Jones Prather, Ph.D Ohio State University Massachusetts Institute of Technology Organizer Biological Systems Science Division Kent Peters, Ph.D. [email protected] 301.903.5549 http://genomicscience.energy.gov/biofuels/lignocellulose/ Mission The Office of Biological and Environmental Research (BER) advances world-class fundamental research programs and scientific user facilities to support the Department of Energy’s energy, environment, and basic research missions. Addressing diverse and critical global challenges, the BER program seeks to understand how genomic information is translated to functional capabilities, enabling more confident redesign of microbes and plants for sustainable biofuel production, improved carbon storage, or contaminant bioremediation. BER research advances understanding of the roles of Earth’s biogeochemical systems (the atmosphere, land, oceans, sea ice, and subsurface) in determining climate so that it can be predicted decades or centuries into the future, information needed to plan for energy and resource needs. Solutions to these challenges are driven by a foundation of scientific knowledge and inquiry in atmospheric chemistry and physics, ecology, biology, and biogeochemistry. Cover Credits Brown Column: From top to bottom. Poplar tree tops (Oak Ridge National Laboratory). Switchgrass (U.S. Department of Agriculture’s Agricultural Research Service). Atomic force micrograph showing nanometer-scale detail of interwoven rope-like, lignocellulosic microfibril bundles in a switchgrass cell wall (BioEnergy Science Center and National Renewable Energy Laboratory). Scanning electron micrograph of Clostridium cellulolyticum cells growing on switchgrass (BioEnergy Science Center and National Renewable Energy Laboratory).
    [Show full text]
  • Bioresources.Com
    PEER-REVIEWED ARTICLE bioresources.com PRODUCTION OF XYLO-OLIGOSACCHARIDES FROM MISCANTHUS x GIGANTEUS BY AUTOHYDROLYSIS Pablo Ligero,a Johannes C. van der Kolk,b Alberto de Vega,a,* and Jan E.G. van Dam b Xylo-oligosaccharides were obtained from Miscanthus x giganteus. The process was designed as a biorefinery scheme, which seeks the separation of the three main components: cellulose, hemicelluloses, and lignin. To extract the hemicelluloses, particularly xylans, in an efficient way, Miscanthus was subjected to autohydrolysis. The system was evaluated for the effects of temperature (160 to 200oC) and reaction time (15 to 60 min) on various parameters, reflecting the changes undergone during the process. The results showed that autohydrolysis is a suitable method for obtaining high yields of xylo-oligosaccharides, reaching values close to 65% of the dissolved xylans (based on the initial amount of potential xylose). Analysis of the process by using the severity factor (RO) allowed for the identification of a set of time-temperature values for which the fractionation was optimal. Keywords: Miscanthus x giganteus; Autohydrolysis; Xylo-oligosaccharides; Fractionation Contact information: a: Departament of Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of A Coruña, Rúa da Fraga 10, 15004, A Coruña, Spain; b: Food and Biobased Research, Wageningen University and Research Centre, P.O. Box 17, 6700 AA Wageningen, The Netherlands; * Corresponding author: [email protected] INTRODUCTION Lignocellulosic biomass is considered to be a major source for ‘green’ chemicals, bio-fuels, and biobased products. Among the advantages of using lignocellulosic biomass can be mentioned that it is abundantly available around the world, non-competitive with food production, and it is a renewable and sustainable resource.
    [Show full text]
  • Torrefied Pellets
    Bioenergy Fact Sheet Last Update 2020 Torrefied pellets DEFINITION AND PROPERTIES Torrefied pellets, also called black pellets, are a densified biofuel, made from thermally treated solid biomass, with or without additives. They usually have a cylindrical form, a length of 5 to 40mm, a diameter up to 25mm and broken ends. The common raw material of torrefied pellets is sawdust, but every feedstock which can be pelletized can be torrefied. Properties of torrefied pellets (TW2a) Alternative feedstocks include bark, miscanthus or Bulk density (kg/m³) ≥ 650 agricultural residues. There is a European standard (DIN Moisture (w-%) ≤ 8 EN ISO 17225-8:2016: Solid biofuels – Fuel Lower heating value (MJ/kg) ≥ 20.2 specifications and classes – Part 8: Graded thermally Mechanical durability (w-%) ≥ 96 treated and densified biomass fuels) which defines Ash content (w-%, dry) ≤ 3 specifications of torrefied pellets. Table 1 shows properties of torrefied pellets in medium quality Table 1: Properties according ISO/TS 17225-8:2016 (TW2a). Compared to white pellets, torrefied pellets have lower moisture content and a higher heating value, but higher ash content. Properties vary depending on the feedstock, especially when using low-quality feedstocks. Research on improving the properties of torrefied pellets from different feedstocks is ongoing. THE TORREFACTION PROCESS Torrefaction is a thermochemical process (Figure 1). In the first step, biomass with a humidity of about 20 to 50% is dried. It is possible to use gases from the torrefaction process, in order to increase efficiency. Subsequently, the biomass is torrefied, which means it is heated up to between 200 to 350°C, under atmospheric pressure, without oxygen, for 30 to 60 minutes.
    [Show full text]
  • Food Or Non-Food: Which Agricultural Feedstocks Are Best for Industrial Uses?
    nova paper #2 on bio-based economy 2013-07 Food or non-food: Which agricultural feedstocks are best for industrial uses? Authors: Michael Carus (Dipl.-Physicist) and Lara Dammer (M.A. Pol. Sci.), nova-Institut GmbH nova papers on bio-based economy are proposals to stimulate the discussion on current WRSLFVRIWKHELREDVHGHFRQRP\E\FUHDWLQJQHZSHUFHSWLRQVEDVHGRQVFLHQWL¿FIDFWVDQG by inviting relevant stakeholders to participate in decision-making processes and debates. Contents Page 1 Executive Summary ............................................................................................... 2 2 Introduction & Objectives ...................................................................................... 2 3 Biomass use in the European Union and worldwide ............................................. 2 4 Current frameworks for the industrial use of biomass ...........................................4 5 A differentiated approach to finding the most suitable biomass for industry ........ 4 6 Facts about food and non-food crops ................................................................... 5 7 Level playing field for industrial material use and bioenergy/biofuels .................... 7 8 Impacts on policy – what are we asking for? ........................................................ 8 9 Literature ................................................................................................................ 9 Download this paper and further documents at: www.bio-based.eu/policy/en V.i.S.d.P.: Michael Carus, nova-Institut GmbH, Industriestrasse
    [Show full text]
  • Lignocellulosic Biomass: a Sustainable Platform for Production of Bio-Based Chemicals and Polymers
    Lignocellulosic Biomass: A Sustainable Platform for Production of Bio-Based Chemicals and Polymers Furkan H. Isikgora, C. Remzi Becer*b a Department of Chemistry, Boğaziçi University, Bebek, 34342 İstanbul, Turkey b School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E1 4NS London, United Kingdom The demand for petroleum dependent chemicals and materials has been increasing despite the dwindling of their fossil resources. As the dead-end of petroleum based industry has started to appear, today’s modern society has to implement alternative energy and valuable chemical resources immediately. Owing to the importance of lignocellulosic biomass for being the most abundant and bio-renewable biomass on earth, this critical review provides insights into the potential of lignocellulosic biomass as an alternative platform to fossil resources. In this context, over 200 value-added compounds, which can be derived from lignocellulosic biomass by using various treatment methods, are presented with their references. Lignocellulosic biomass based polymers and their commercial importance are also reported mainly in the frame of these compounds. The review article aims to draw the map of lignocellulosic biomass derived chemicals and their synthetic polymers, and to reveal the scope of this map in today’s modern chemical and polymer industry. cheaper than any other commodity products. However, the 1. Introduction. competitive price advantage of fossil fuels during the last century has disappeared.5 After crossing the oil production peak, the Modern industrial polymerization technologies make it possible dwindling of fossil resources will further boost the oil price and to produce versatile polymers with highly tunable properties and this situation will drastically impact the cost-effectiveness and broad range of applications.
    [Show full text]
  • Qualitative and Kinetic Analysis of Torrefaction of Lignocellulosic Biomass Using DSC-TGA-FTIR
    AIMS Energy, 3 (4): 760–773. DOI: 10.3934/energy.2015.4.760 Received date 28 June 2015, Accepted date 01 November 2015, Published date 12 November 2015 http://www.aimspress.com/ Research article Qualitative and kinetic analysis of torrefaction of lignocellulosic biomass using DSC-TGA-FTIR Bimal Acharya*, Ranjan R. Pradhan and Animesh Dutta School of Engineering, University of Guelph, 50 stone Rd E, N1G2W1, ON, Canada * Correspondence: Email: [email protected]; Tel: +1-519-824-4120. Abstract: Torrefaction is a thermochemical conversion technique to improve the fuel properties of lignocellulosic biomass by treating at temperature 200 °C –300 °C in the minimum oxygen environment for a reasonable residence time. In this study, thermal decomposition and thermal activities of miscanthus and wheat straw during the torrefaction at 200 °C , 275 °C , and 300 °C in a nitrogen environment for 45 minutes of residence time are analyzed in a simultaneous thermogravimetric analyzer (micro TGA) with a differential scanning calorimetry (DSC), and a macro-TGA. The output of the micro TGA is fed into the Fourier transform infrared spectrometry (FTIR) and qualitative analysis of the gaseous product is carried out. The composition of different gas products during the torrefaction of biomass are compared critically and kinetics were analyzed. It is found that the weight loss due to degradation of initial biomass in second stage (torrefaction process) is a much faster conversion process than the weight loss process in the first stage (drying process). The weight loss of biomass increases with increase in the residence time and torrefaction treatment temperatures. The yield after torrefaction is a solid bio-coal product.
    [Show full text]
  • Pros and Cons of Torrefaction of Woody Biomass
    PROS AND CONS OF TORREFACTION OF WOODY BIOMASS By A. Dutta, PhD, P.Eng Mathias A. Leon, D.Eng Assistant Professor Industrial Research Fellow School of Engineering University of Guelph 1 BACKGROUND Depleting fossil fuel resources and GHG/Global Warming Renewable energy, sustainable fuels Biomass Carbon-neutral, local fuel; energy security Technology barriers to their utilization as energy source Torrefaction 2 PROPERTIES OF WOODY BIOMASS . Low energy density/heating value (low fixed carbon content ~45%) . High moisture content (~50%) . High volatile matter content (~70%) . Low ash content; high alkali metal content (Na, K) (low Cl content compared to herbaceous biomass) . More oxygen content (needs less air for stoichiometric combustion) . Hygroscopic (absorbs moisture) . Non-uniform (wide range of shapes, sizes and types) ISSUES WITH WOODY BIOMASS AS FUEL . Low calorific value, high moisture content . Low energy density too bulky, not economical to transport over long distances . Non-homogeneous Wide variations in combustion properties (Fixed C, VC, inorganic constituents, moisture, calorific value) Wide variations in sizes, shapes and types (handling and storage difficulties) . Low combustion efficiency, smoking during combustion 4 ISSUES WITH WOODY BIOMASS AS FUEL . Difficult to pulverize like coal (poor grindability) . Hygroscopic (absorbs moisture during storage) . Significant inorganic matter content (mainly Ca, Si and K) ash-related problems (sintering, fusion, agglomeration) coal generally has a much higher ash content, but biomass ash is more prone to slagging & fouling Torrefaction can address most of these issues to a reasonable extent. TORREFACTION A thermochemical treatment process, similar to roasting or mild pyrolysis To separate water, some VOCs & hemicellulose in woody biomass, leaving only cellulose & lignin to produce a charcoal-like carbonaceous residue Torrefied wood.
    [Show full text]
  • Combustion and Gasification Characteristics of Chars from Raw and Torrefied Biomass E
    Combustion and gasification characteristics of chars from raw and torrefied biomass E. M. Fisher, Celine Dupont, L. I. Darvell, Jean-Michel Commandre, A. Saddawi, J. M. Jones, M. Grateau, T. Nocquet, Sylvain Salvador To cite this version: E. M. Fisher, Celine Dupont, L. I. Darvell, Jean-Michel Commandre, A. Saddawi, et al.. Combustion and gasification characteristics of chars from raw and torrefied biomass. Bioresource Technology, Elsevier, 2012, 119, pp.157-165. 10.1016/j.biortech.2012.05.109. hal-01688420 HAL Id: hal-01688420 https://hal.archives-ouvertes.fr/hal-01688420 Submitted on 16 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Combustion and gasification characteristics of chars from raw and torrefied biomass a, b c d c c b E.M. Fisher ⇑, C. Dupont , L.I. Darvell , J.-M. Commandré , A. Saddawi , J.M. Jones , M. Grateau , T. Nocquet b, S. Salvador e a Sibley School of Mechanical and Aerospace Engineering, Upson Hall, Cornell University, Ithaca, NY 14853, USA b Commissariat à l’Energie Atomique et aux Energies Alternatives, LITEN/DTBH/LTB, Grenoble, France c School of Process, Environmental and Materials Engineering, University of Leeds, Leeds, LS2 9JT, UK d CIRAD, UPR 42 Biomasse Energie, Montpellier, France e Université de Toulouse, MINES ALBI, RAPSODEE, FRE CNRS 3213, Campus Jarlard, route de Teillet, 81013 ALBI CT CEDEX 09, France Keywords: abstract Torrefaction Oxidation Torrefaction is a mild thermal pretreatment (T < 300 °C) that improves biomass milling and storage prop- Gasification Biomass erties.
    [Show full text]