Sugars and Polysaccharides

Total Page:16

File Type:pdf, Size:1020Kb

Sugars and Polysaccharides ____________________________________________________________________________________________________ Subject Chemistry Paper No and Title Paper 16, Bioorganic and biophysical chemistry Module No and Title 3, Sugars and polysaccharides Module Tag CHE_P16_M3 CHEMISTRY PAPER No. 16 Bioorganic and biophysical chemistry MODULE No.3: Sugars and polysaccharides ____________________________________________________________________________________________________ TABLE OF CONTENTS 1. Learning outcomes 2. Introduction 2.1 Definition of carbohydrates 3. Classification 3.1 Based on number of simple sugars (mono, di and polysaccharides) 3.2 Based on carbonyl function (aldose, ketose) 3.3 Based on number of carbon atom 4. Structure and stereochemistry of monosaccharide 4.1 Enantiomers, diastereomers and epimers (isomers) 5. Cyclic structure of sugars 5.1 Anomers, racemic mixture, mutorotation 6. Chemical properties of monosaccharaides 6.1 Action of acids and alkalis 6.2 Oxidation and reduction of sugars 6.3 Osazone formation 6.4 Glycoside formation 7. Derivatives of monosaccharaides 7.1 Amino sugar, deoxysugars, sugar acids, sugar alcohols, phosphoric acid esters of sugars 8. Disaccharides 8.1 Reducing 8.2 Non- reducing 9. Polysaccharides (glycan) 9.1 Homo polysaccharides 9.2 Hetero polysaccharides 10. Glycoproteins 11. Functions of carbohydrates 12. Summary CHEMISTRY PAPER No. 16 Bioorganic and biophysical chemistry MODULE No.3: Sugars and polysaccharides ____________________________________________________________________________________________________ 1. Learning Outcomes After studying this module, you shall be able to • Know about general definition and basis of classification of carbohydrates • Know about straight chain and cyclic structures of carbohydrates • Chemicalproperties of monosaccharaidesand their derivatives • Types of disaccharides and their properties • Polysaccharides and its types • Function of carbohydrates 2. Introduction The carbohydrates are an important class of naturally occurring organic compounds. They occur naturally in plants (where they are produced photosynthetically), when the word "carbohydrate" was coined, it originally referred to compounds of general formula Cn(H2O)n. However, only the simple sugars or monosaccharaides fit this formula exactly. The other types of carbohydrates, oligosaccharides, and polysaccharides, are based on monosaccharaides units and have slightly different general formula. Carbohydrates are also called "saccharides" which means sugar in Greek. Many commonly encountered carbohydrates are polysaccharides, including glycogen, which is found in animals, and starch and cellulose, which occur in plants. 2.1 What is carbohydrate? The carbohydrates are poly functional compounds. They contain following functional groups:- (1). Alcoholic hydroxy group, -OH (2). Aldehyde group, -CHO (3). Ketone, >C=O A precise definition of the term 'carbohydrate' can be given as:- Polyhydroxyaldehydes or polyhydroxy ketones, and large molecules that produce these compounds on hydrolysis. The above definition of carbohydrate is not entirely satisfactory. It envisages the presence of free carbonyl group in simple carbohydrate molecule which is not true. CHEMISTRY PAPER No. 16 Bioorganic and biophysical chemistry MODULE No.3: Sugars and polysaccharides ____________________________________________________________________________________________________ We understand that carbonyl compound (aldehyde or ketone) reacts with an alcohol to form hemiacetal. In carbohydrates, we have an aldehyde group which combines with an alcoholic OH of the same molecule to form an internal hemiacetal. We will also see that it is by elimination of H2O between the hemiacetal OH group of two sugars molecules that larger carbohydrate molecule are formed. In light of above, the definition of carbohydrate may be improved as: A polyhydoxy compound that has an aldehyde or a ketone function present, either free or as hemiacetal or acetal. 3.Classification of carbohydrates 3.1 Based on number of simple sugars (mono, di and polysaccharides) The carbohydrates are divided into three major classes depending on the number of simple sugar unit present in their molecule. In other words, the basis of classification of carbohydrate will be the number of simple sugar molecules on hydrolysis. The molecules so obtained may be of same or different sugars 3.1.1 Monosaccharaides (simple sugars) These are single unit carbohydrate that cannot be broken into simpler glucose and fructose. Examples: 3.1.2 Oligosaccharides They are made of 2 to 10 units of monosaccharaides or simple sugars. The oligosaccharides containing two monosaccharaides units are called disaccharide and those containing three units are trisaccharides. Thus sucrose, C12H22O11 is disaccharides because on hydrolysis it gives one molecule of glucose and one molecule of fructose. Oligosaccharides with more than three subunits are normally found in glycoproteins, such as blood group antigens. CHEMISTRY PAPER No. 16 Bioorganic and biophysical chemistry MODULE No.3: Sugars and polysaccharides ____________________________________________________________________________________________________ 3.1.3 Polysaccharides They contain more than ten monosaccharide units in molecule. Thus one molecule of starch or cellulose on hydrolysis gives very large number of glucose units. 3.2 Further classification of monosaccharides 3.2.1 Based on carbonyl function Those containing the aldehyde function, -CHO are called aldoses and other containing keto group -Co are, called ketoses. Fig1. Structure of glucose and fructose 3.3 Based on number of carbon atom The monosaccharaides containing 3, 4, 5, 6 etc carbon atoms are designated as trioses, tetroses, pentoses, hexoses and so on as shown in table1. For example, glucose a six carbon sugar with aldehyde function is aldohexose, fructose, a six carbon having ketone function is a ketohexose. CHEMISTRY PAPER No. 16 Bioorganic and biophysical chemistry MODULE No.3: Sugars and polysaccharides ____________________________________________________________________________________________________ Table1. Classification of monosaccharaides 4. Structure and stereochemistry of monosaccharide 4.1 Enantiomers, diastereomers and epimers (isomers) The building blocks of all carbohydrates are simple sugars called monosaccharaides, which can be an aldose or ketose. The simplest aldose, glyceraldehyde, has only one asymmetric carbon atom or chiral centre (carbon-2) (Figure 2)and only two possible of OH and H of the CH2OH unit are possible. If the OH group is shown as projecting to left on penultimate carbon atom in the straight chain representation of the molecule, then by convention the molecule is called L isomer, while if OH group is represented as projecting to right it is known as D isomer. Fig2. Structure of L- Glyceraldehyde and D-Glyceraldehyde These two stereoisomers to same carbohydrates are enantiomers or mirror images of one another. CHEMISTRY PAPER No. 16 Bioorganic and biophysical chemistry MODULE No.3: Sugars and polysaccharides ____________________________________________________________________________________________________ 4.1.2 Diastereomers Glyceraldehyde has only one asymmetric centre (*) and the designation of D or L is determined by the orientation of H and OH groups about the carbon atoms. For carbohydrates with more than one asymmetric carbon atom, the prefix D or L, refers only to configuration about the highest numbered asymmetric carbon atom. For higher carbohydrate structures, each time number of carbon is increased by one (with the addition of CHOH group), a new carbohydrate is produced, which has a chemically distinct form and completely different name because this group may be added as either OH-C-H or H-C-OH, an extra asymmetric (chiral) centre is created within the molecule, so aldotetroses have two chiral carbon C-2 and C-3, and there are 22 or four possible stereoisomer. Two of isomers have the D-configuration, and the two have L-configuration the two D isomers have same configuration at C-3 but they differ in configuration (arrangement of the -OH group) at other chiral carbon, C-2. These two isomers are called D-erythrose and D-threose. They are not superimposable on each other, but neither is they mirror images of each other. Such non superimposable, non-mirror image stereoisomers are called diastereomers. Fig3. D-Erythrose and D-Threose 4.1.3 Epimers (isomers) The two L isomers or L-erythrose, and L-threose is the enantiomer of D-threose. L-threose is a diastereomer of both D and L-erythrose, and L-erythrose is a diastereomer of both D and L- threose. Diasteromers that differ from each other in configuration at only one chiral carbon are called epimers; erythrose and D-threose are epimers. Glucose, galactose are also examples of epimers. Aldopentoses have three chiral carbons and there are 23 or 8 possible stereoisomers - four D form and four L- form, similarly aldohexoses will have 16 stereoisomers. Some of the possible CHEMISTRY PAPER No. 16 Bioorganic and biophysical chemistry MODULE No.3: Sugars and polysaccharides ____________________________________________________________________________________________________ stereoisomers are much more common in nature than others. For example D sugars rather than L sugars, predominate in nature. Most sugars present in nature, especially in foods, contain either five or six carbon atoms. We shall discuss D - glucose (an aldohexose) because it is most abundant monosaccharide in nature. Fig4. Epimers
Recommended publications
  • Liquid Chromatography with Electrospray Ionization And
    Hindawi Publishing Corporation International Journal of Analytical Chemistry Volume 2016, Article ID 9269357, 8 pages http://dx.doi.org/10.1155/2016/9269357 Research Article Liquid Chromatography with Electrospray Ionization and Tandem Mass Spectrometry Applied in the Quantitative Analysis of Chitin-Derived Glucosamine for a Rapid Estimation of Fungal Biomass in Soil Madelen A. Olofsson and Dan Bylund DepartmentofNaturalSciences,MidSwedenUniversity,85170Sundsvall,Sweden Correspondence should be addressed to Madelen A. Olofsson; [email protected] Received 2 September 2015; Accepted 12 January 2016 Academic Editor: Frantisek Foret Copyright © 2016 M. A. Olofsson and D. Bylund. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This method employs liquid chromatography-tandem mass spectrometry to rapidly quantify chitin-derived glucosamine for estimating fungal biomass. Analyte retention was achieved using hydrophilic interaction liquid chromatography, with a zwitter- ionic stationary phase (ZIC-HILIC), and isocratic elution using 60% 5 mM ammonium formate buffer (pH 3.0) and 40% ACN. Inclusion of muramic acid and its chromatographic separation from glucosamine enabled calculation of the bacterial contribution to the latter. Galactosamine, an isobaric isomer to glucosamine, found in significant amounts in soil samples, was also investigated. Thetwoisomersformthesameprecursorandproductionsandcouldnotbechromatographicallyseparatedusingthisrapid method. Instead, glucosamine and galactosamine were distinguished mathematically, using the linear relationships describing the differences in product ion intensities for the two analytes. The m/z transitions of 180 → 72 and 180 → 84 were applied for the detection of glucosamine and galactosamine and that of 252 → 126 for muramic acid.
    [Show full text]
  • Chapter 12 Slides
    11/15/17 CHAPTER 12: Carbohydrates: Structure and Function OUTLINE • 12.1 Role of Carbohydrates • 12.2 Monosaccharides • 12.3 Complex Carbohydrates • 12.4 Carbohydrate Catabolism • 12.5 Oligosaccharides as Cell Markers CHAPTER 12: Carbohydrates: Structure and Function WHAT ARE CARBOHYDRATES? • Glucose and its derivatives are carbohydrates: Ø Carbohydrates are simple organic molecules that have a shared basic chemical Formula: Cn(H2O)n Ø The name “carbo + hydrate” represents that Fact that they are made from CO2 and H2O by photosynthesis • About halF oF all earth’s solid carbon is Found in two polymers of glucose found in plants: Ø Starch = major energy storage molecule Ø Cellulose = major structural component oF the plant cell wall (aka. “fiber”) CHAPTER 12: Carbohydrates: Structure and Function THE SIMPLEST CARBOHYDRATES • Monosaccharides are carbohydrates that cannot be hydrolyZed into simpler carbohydrates: Ø These are the Fundamental building blocks For all other carbohydrates (oFten called “simple sugars”) Ø All have Formulas of based on the basic pattern: Cn(H2O)n • Monosaccharides have speciFic Functional groups: 1. An aldehyde OR a ketone (not both!) 2. Several (two or more) alcohol (-OH) groups 1 11/15/17 CHAPTER 12: Carbohydrates: Structure and Function STRUCTURE & NOMENCLATURE OF MONOSACCHARIDES • Monosaccharides are classiFied by two features: 1. Length of their main carbon chain (utilize standard IUPAC naming For # oF carbons) 2. Whether they contain an aldehyde or ketone group • Names always end with –ose • Two common hexoses:
    [Show full text]
  • Amino Sugars and Muramic Acid—Biomarkers for Soil Microbial Community Structure Analysis
    Soil Biology & Biochemistry 36 (2004) 399–407 www.elsevier.com/locate/soilbio Amino sugars and muramic acid—biomarkers for soil microbial community structure analysis Bruno Glasera,*, Marı´a-Bele´n Turrio´nb, Kassem Alefc aInstitute of Soil Science and Soil Geography, University of Bayreuth, Bayreuth D-95440, Germany bArea of Soil Science and Soil Chemistry, ETSIIAA, University of Valladolid, Palencia 34004, Spain cUmwelt und Technologie Consulting, Bayreuth D-95448, Germany Received 13 December 2002; received in revised form 22 July 2003; accepted 7 October 2003 Abstract Characterizing functional and phylogenetic microbial community structure in soil is important for understanding the fate of microbially- derived compounds during the decomposition and turn-over of soil organic matter. This study was conducted to test whether amino sugars and muramic acid are suitable biomarkers to trace bacterial, fungal, and actinomycetal residues in soil. For this aim, we investigated the pattern, amounts, and dynamics of three amino sugars (glucosamine, mannosamine and galactosamine) and muramic acid in the total microbial biomass and selectively cultivated bacteria, fungi, and actinomycetes offive different soils amended with and without glucose. Our results revealed that total amino sugar and muramic acid concentrations in microbial biomass, extracted from soil after chloroform fumigation varied between 1 and 27 mg kg21 soil. In all soils investigated, glucose addition resulted in a 50–360% increase of these values. In reference to soil microbial biomass-C, the total amino sugar- and muramic acid-C concentrations ranged from 1–71 g C kg21 biomass-C. After an initial lag phase, the cultivated microbes revealed similar amino sugar concentrations of about 35, 27 and 17 g glucosamine-C kg21 TOC in bacteria, fungi, and actinomycetes, respectively.
    [Show full text]
  • United States Patent Office
    - 2,926,180 United States Patent Office Patented Feb. 23, 1960 2 cycloalkyl, etc. These substituents R and R' may also be substituted with various groupings such as carboxyl 2,926,180 groups, sulfo groups, halogen atoms, etc. Examples of CONDENSATION OF AROMATIC KETONES WITH compounds which are included within the scope of this CARBOHYDRATES AND RELATED MATER ALS 5 general formula are acetophenone, propiophenone, benzo Carl B. Linn, Riverside, Ill., assignor, by mesne assign phenone, acetomesitylene, phenylglyoxal, benzylaceto ments, to Universal Oil Products Company, Des phenone, dypnone, dibenzoylmethane, benzopinacolone, Plaines, Ill., a corporation of Delaware dimethylaminobenzophenone, acetonaphthalene, benzoyl No Drawing. Application June 18, 1957 naphthalene, acetonaphthacene, benzoylnaphthacene, ben 10 zil, benzilacetophenone, ortho-hydroxyacetophenone, para Serial No. 666,489 hydroxyacetophenone, ortho - hydroxy-para - methoxy 5 Claims. (C. 260-345.9) acetophenone, para-hydroxy-meta-methoxyacetophenone, zingerone, etc. This application is a continuation-in-part of my co Carbohydrates which are condensed with aromatic pending application Serial No. 401,068, filed December 5 ketones to form a compound selected from the group 29, 1953, now Patent No. 2,798,079. consisting of an acylaryl-desoxy-alditol and an acylaryl This invention relates to a process for interacting aro desoxy-ketitol include simple sugars, their desoxy- and matic ketones with carbohydrates and materials closely omega-carboxy derivatives, compound sugars or oligo related to carbohydrates. The process relates more par saccharides, and polysaccharides. ticularly to the condensation of simple sugars, their 20 Simple sugars include dioses, trioses, tetroses, pentoses, desoxy- and their omega-carboxy derivatives, compound hexoses, heptoses, octoses, nonoses, and decoses. Com sugars or oligosaccharides, and polysaccharides with aro pound sugars include disaccharides, trisaccharides, and matic ketones in the presence of a hydrogen fluoride tetrasaccharides.
    [Show full text]
  • Supplementary Data
    Metabolomics in cancer research: Supplementary data 1 Supplementary Data 2 Supplementary methods 3 Additional information regarding the search strategy used in the main paper 4 Supplementary tables 5 Supplementary Table 1: List of reported metabolites to be altered in human cancers 6 Supplementary figures 7 Supplementary Figure 1: General overview over the metabolomics workflow 8 1 Metabolomics in cancer research: Supplementary data 9 Supplementary methods 10 Search strategy 11 The search strategy was described in the main paper. For the Web of Knowledge search an 12 additional refinement step was necessary to reduce irrelevant findings. The following research 13 areas of low relevance were excluded: 14 Plant Science, Biophysics, Agriculture, Environmental Sciences Ecology, Microbiology, 15 Computer Science, Mathematics, Cardiology, Engineering, Automation control Systems, 16 Marine Freshwater Biology, Behavioral Science, Physics, Developmental Biology, Zoology, 17 Psychiatry, Energy Fuels, Infectious Disease, Parasitology, Mycology, Rheumatology, 18 Psychology, Veterinary Sciences, Dentistry, Legal Medicine, Polymer Science, 19 Anesthesiology, Robotics, Sports Science, Forestry, Tropical Medicine, Virology, Water 20 Resources, Electrochemistry, Evolutionary Biology, Fisheries, Materials Science, 21 Oceanography, Substance Abuse, Geology, Nuclear Science Technology, Operations 22 Research Management, Orthopedics, Allergy, Biodiversity, Educational Research, 23 Metallurgy, Optics, Emergency Medicine, Geochemistry, History philosophy of science, 24 Mathematical methods in Social sciences, Mechanics, Social Issues, Thermodynamics 25 Additionally the abstracts had to contain one of the following keywords: 26 “MS” OR “mass spectrometry” OR “patients”. 2 Metabolomics in cancer research: Supplementary data 27 Supplementary tables 28 Supplementary Table 1: List of reported metabolites altered in human cancers. Metabolites in bold were reported from a study that validated 29 findings within an independent study population.
    [Show full text]
  • Monosaccharide Disaccharide Oligosaccharide Polysaccharide Monosaccharide
    Carbohydrates Classification of Carbohydrates monosaccharide disaccharide oligosaccharide polysaccharide Monosaccharide is not cleaved to a simpler carbohydrate on hydrolysis glucose, for example, is a monosaccharide Disaccharide is cleaved to two monosaccharides on hydrolysis these two monosaccharides may be the same or different C12H22O11 + H2O C6H12O6 + C6H12O6 glucose sucrose (a monosaccharide) fructose (a disaccharide) (a monosaccharide) Higher Saccharides oligosaccharide: gives two or more monosaccharide units on hydrolysis is homogeneous—all molecules of a particular oligosaccharide are the same, including chain length polysaccharide: yields "many" monosaccharide units on hydrolysis mixtures of the same polysaccharide differing only in chain length Some Classes of Carbohydrates No. of carbons Aldose Ketose 4 Aldotetrose Ketotetrose 5 Aldopentose Ketopentose 6 Aldohexose Ketopentose 7 Aldoheptose Ketoheptose 8 Aldooctose Ketooctose Fischer Projections and D-L Notation Fischer Projections Fischer Projections Fischer Projections of Enantiomers Enantiomers of Glyceraldehyde CH O CH O H OH HO H D L CH2OH CH2OH (+)-Glyceraldehyde (–)-Glyceraldehyde The Aldotetroses An Aldotetrose 1 CH O 2 H OH 3 H OH D 4 CH2OH stereochemistry assigned on basis of whether configuration of highest-numbered stereogenic center is analogous to D or L-glyceraldehyde An Aldotetrose 1 CH O 2 H OH 3 H OH 4 CH2OH D-Erythrose The Four Aldotetroses CH O CH O H OH HO H D-Erythrose and L-erythrose are H OH HO H enantiomers CH2OH CH2OH D-Erythrose L-Erythrose The Four
    [Show full text]
  • Xorox Univerelty Microfilms
    INFORMATION TO USERS This material was producad from a microfilm copy of the original document. While the moit advanced technological meant to photograph and reproduce thii document have been used, the quality it heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help ou understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to ob tain the mining page(s) or section, they are spliced into the film along w ith: adjacent pages, This may have necessitated cutting thru an image and dupli eating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image, fou will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning” the material. It is customary to begin photoi ig at the upper left hand comer of a large dieet and to continue photoi ig from left to right in equal sections with a small overlap. If necessary, sectioning is continued agein — beginning below the first row and continuing on until complete. 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation.
    [Show full text]
  • Analysis of Proteomic Responses of Freeze-Dried Oenococcus Oeni to Access the Molecular Mechanism of Acid Acclimation on Cell Freeze-Drying Resistance
    Accepted Manuscript Analysis of proteomic responses of freeze-dried Oenococcus oeni to access the molecular mechanism of acid acclimation on cell freeze-drying resistance Kun Yang, Yang Zhu, Yiman Qi, Tingjing Zhang, Miaomiao Liu, Jie Zhang, Xinyuan Wei, Mingtao Fan, Guoqiang Zhang PII: S0308-8146(19)30188-8 DOI: https://doi.org/10.1016/j.foodchem.2019.01.120 Reference: FOCH 24215 To appear in: Food Chemistry Received Date: 2 October 2018 Revised Date: 24 December 2018 Accepted Date: 17 January 2019 Please cite this article as: Yang, K., Zhu, Y., Qi, Y., Zhang, T., Liu, M., Zhang, J., Wei, X., Fan, M., Zhang, G., Analysis of proteomic responses of freeze-dried Oenococcus oeni to access the molecular mechanism of acid acclimation on cell freeze-drying resistance, Food Chemistry (2019), doi: https://doi.org/10.1016/j.foodchem. 2019.01.120 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Analysis of proteomic responses of freeze-dried Oenococcus oeni to access the molecular mechanism of acid acclimation on cell freeze-drying resistance Kun Yang1,2, Yang Zhu3, Yiman Qi2,Tingjing Zhang4, Miaomiao Liu2, Jie Zhang2, Xinyuan Wei2, Mingtao Fan2,*, Guoqiang Zhang1,* 1 College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, 241000, China 2 College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China 3 School of Agriculture and Food Sciences, University of Queensland, QLD, 4046, Australia 4 College of Food Science and Technology, Henan University of Technology, Zhenzhou, 450001, China * Corresponding author: 1.
    [Show full text]
  • The Metabolic Building Blocks of a Minimal Cell Supplementary
    The metabolic building blocks of a minimal cell Mariana Reyes-Prieto, Rosario Gil, Mercè Llabrés, Pere Palmer and Andrés Moya Supplementary material. Table S1. List of enzymes and reactions modified from Gabaldon et. al. (2007). n.i.: non identified. E.C. Name Reaction Gil et. al. 2004 Glass et. al. 2006 number 2.7.1.69 phosphotransferase system glc + pep → g6p + pyr PTS MG041, 069, 429 5.3.1.9 glucose-6-phosphate isomerase g6p ↔ f6p PGI MG111 2.7.1.11 6-phosphofructokinase f6p + atp → fbp + adp PFK MG215 4.1.2.13 fructose-1,6-bisphosphate aldolase fbp ↔ gdp + dhp FBA MG023 5.3.1.1 triose-phosphate isomerase gdp ↔ dhp TPI MG431 glyceraldehyde-3-phosphate gdp + nad + p ↔ bpg + 1.2.1.12 GAP MG301 dehydrogenase nadh 2.7.2.3 phosphoglycerate kinase bpg + adp ↔ 3pg + atp PGK MG300 5.4.2.1 phosphoglycerate mutase 3pg ↔ 2pg GPM MG430 4.2.1.11 enolase 2pg ↔ pep ENO MG407 2.7.1.40 pyruvate kinase pep + adp → pyr + atp PYK MG216 1.1.1.27 lactate dehydrogenase pyr + nadh ↔ lac + nad LDH MG460 1.1.1.94 sn-glycerol-3-phosphate dehydrogenase dhp + nadh → g3p + nad GPS n.i. 2.3.1.15 sn-glycerol-3-phosphate acyltransferase g3p + pal → mag PLSb n.i. 2.3.1.51 1-acyl-sn-glycerol-3-phosphate mag + pal → dag PLSc MG212 acyltransferase 2.7.7.41 phosphatidate cytidyltransferase dag + ctp → cdp-dag + pp CDS MG437 cdp-dag + ser → pser + 2.7.8.8 phosphatidylserine synthase PSS n.i. cmp 4.1.1.65 phosphatidylserine decarboxylase pser → peta PSD n.i.
    [Show full text]
  • Patent No .: US 10703789 B2
    US010703789B2 ( 12 ) United States Patent ( 10 ) Patent No.: US 10,703,789 B2 De Fougerolles et al. (45 ) Date of Patent: * Jul. 7 , 2020 (54 ) MODIFIED POLYNUCLEOTIDES FOR THE (2013.01 ) ; A61K 38/36 ( 2013.01 ) ; A61K PRODUCTION OF SECRETED PROTEINS 38/363 ( 2013.01 ) ; A61K 38/44 ( 2013.01) ; A61K 38/4833 (2013.01 ) ; A61K 38/4846 ( 71 ) Applicant : Moderna TX , Inc., Cambridge, MA (2013.01 ) ; A61K 39/3955 ( 2013.01) ; A61K (US ) 47/10 (2013.01 ) ; A61K 47/54 (2017.08 ) ; A61K 47/542 (2017.08 ) ; A61K 48/0033 ( 2013.01 ) ; ( 72 ) Inventors: Antonin De Fougerolles, Waterloo A61K 48/0066 (2013.01 ) ; A61K 48/0075 ( BE ) ; Justin Guild , Framingham , MA (2013.01 ) ; CO7K 14/47 ( 2013.01 ) ; CO7K (US ) 14/475 ( 2013.01) ; CO7K 14/505 (2013.01 ) ; ( 73 ) Assignee : Moderna TX , Inc., Cambridge , MA CO7K 14/525 (2013.01 ) ; C07K 14/56 (US ) (2013.01 ) ; CO7K 14/565 ( 2013.01 ) ; CO7K 14/745 (2013.01 ) ; C07K 14/75 ( 2013.01) ; ( * ) Notice: Subject to any disclaimer , the term of this CO7K 16/2887 ( 2013.01 ) ; CO7K 16/32 patent is extended or adjusted under 35 ( 2013.01) ; CO7K 19/00 ( 2013.01) ; C12N U.S.C. 154 (b ) by 0 days . 9/0069 ( 2013.01) ; C12N 9/644 ( 2013.01 ) ; C12N 15/85 (2013.01 ) ; C12N 15/88 This patent is subject to a terminal dis ( 2013.01 ) ; C12Y 113/12007 (2013.01 ) ; C12Y claimer . 304/21005 (2013.01 ) ; C12Y 304/21022 (2013.01 ) ; A61K 9/0019 (2013.01 ) ; A61K (21 ) Appl. No.: 16 /438,978 48/00 (2013.01 ) ; C12N 2840/00 (2013.01 ) ( 22 ) Filed : Jun .
    [Show full text]
  • Structures and Characteristics of Carbohydrates in Diets Fed to Pigs: a Review Diego M
    Navarro et al. Journal of Animal Science and Biotechnology (2019) 10:39 https://doi.org/10.1186/s40104-019-0345-6 REVIEW Open Access Structures and characteristics of carbohydrates in diets fed to pigs: a review Diego M. D. L. Navarro1, Jerubella J. Abelilla1 and Hans H. Stein1,2* Abstract The current paper reviews the content and variation of fiber fractions in feed ingredients commonly used in swine diets. Carbohydrates serve as the main source of energy in diets fed to pigs. Carbohydrates may be classified according to their degree of polymerization: monosaccharides, disaccharides, oligosaccharides, and polysaccharides. Digestible carbohydrates include sugars, digestible starch, and glycogen that may be digested by enzymes secreted in the gastrointestinal tract of the pig. Non-digestible carbohydrates, also known as fiber, may be fermented by microbial populations along the gastrointestinal tract to synthesize short-chain fatty acids that may be absorbed and metabolized by the pig. These non-digestible carbohydrates include two disaccharides, oligosaccharides, resistant starch, and non-starch polysaccharides. The concentration and structure of non-digestible carbohydrates in diets fed to pigs depend on the type of feed ingredients that are included in the mixed diet. Cellulose, arabinoxylans, and mixed linked β-(1,3) (1,4)-D-glucans are the main cell wall polysaccharides in cereal grains, but vary in proportion and structure depending on the grain and tissue within the grain. Cell walls of oilseeds, oilseed meals, and pulse crops contain cellulose, pectic polysaccharides, lignin, and xyloglucans. Pulse crops and legumes also contain significant quantities of galacto-oligosaccharides including raffinose, stachyose, and verbascose.
    [Show full text]
  • Did an Earlier Genetic Molecule Predate DNA and RNA? 9 January 2012, by Richard Harth
    Simpler times: Did an earlier genetic molecule predate DNA and RNA? 9 January 2012, by Richard Harth have acted as genetic precursors to RNA and DNA is to examine other nucleic acids that differ slightly in their chemical composition, yet still possess critical properties of self-assembly and replication as well as the ability to fold into shapes useful for biological function. According to Chaput, one interesting contender for the role of early genetic carrier is a molecule known as TNA, whose arrival on the primordial scene may have predated its more familiar kin. A nucleic acid similar in form to both DNA and RNA, TNA differs in the sugar component of its structure, using threose rather than deoxyribose (as in DNA) or ribose (as in The nucleic acid TNA may have acted as a precursor RNA) to compose its backbone. molecule to DNA and RNA, bearing genetic information and performing important biological functions. Photo: Public domain In an article released online today in the journal Nature Chemistry, Chaput and his group describe the Darwinian evolution of functional TNA molecules from a large pool of random sequences. (PhysOrg.com) -- In the chemistry of the living This is the first case where such methods have world, a pair of nucleic acids-DNA and RNA-reign been applied to molecules other than DNA and supreme. As carrier molecules of the genetic code, RNA, or very close structural analogues thereof. they provide all organisms with a mechanism for Chaput says "the most important finding to come faithfully reproducing themselves as well as from this work is that TNA can fold into complex generating the myriad proteins vital to living shapes that can bind to a desired target with high systems.
    [Show full text]